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Type 2 diabetes mellitus (T2DM), a major driver of mortality worldwide, is more

likely to develop other cardiometabolic risk factors, ultimately leading to

diabetes-related mortality. Although a set of measures including lifestyle

intervention and antidiabetic drugs have been proposed to manage T2DM,

problems associated with potential side-effects and drug resistance are still

unresolved. Pharmacomicrobiomics is an emerging field that investigates the

interactions between the gut microbiome and drug response variability or drug

toxicity. In recent years, increasing evidence supports that the gut microbiome,

as the second genome, can serve as an attractive target for improving drug

efficacy and safety by manipulating its composition. In this review, we outline the

different composition of gut microbiome in T2DM and highlight how these

microbiomes actually play a vital role in its development. Furthermore, we also

investigate current state-of-the-art knowledge on pharmacomicrobiomics and

microbiome’s role in modulating the response to antidiabetic drugs, as well as

provide innovative potential personalized treatments, including approaches for

predicting response to treatment and for modulating themicrobiome to improve

drug efficacy or reduce drug toxicity.

KEYWORDS

type 2 diabetes mellitus, pharmacomicrobiomics, gut microbiome, antidiabetic

drugs, treatments
1 Introduction

Type 2 diabetes mellitus (T2DM), a major cause of morbidity globally, is a complex

disease with environmental and genetic risk factors that ultimately can lead to serious

complications (1). It is characterized by peripheral insulin resistance (IR) and impaired

insulin secretion (2), and is projected to affect up to 783 million people by 2045 (3).

Individuals with T2DM have an increased risk of developing diabetic complications
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including microvascular events, kidney failure, stroke and limb

amputations (4). Although there are several non-pharmacological

and pharmacological treatments available for managing T2DM (5,

6), problems associated with potential side-effects and drug

resistance remain unresolved.

Over recent years, the human gut microbiota harboring trillions

of microbes and other microorganisms forms a complex ecosystem

and plays a vital role in health and disease. For instance, gut

microbiota functioned as an important contributor in the

pathogenesis of obesity and obesity-related metabolic

dysfunctions (7). The balance of pathogenic and beneficial

bacteria was also reported to be associated with diabetes and

cardiovascular diseases (8, 9). Various studies showed the effect of

drug intake and drug-induced metabolites on the gut microbiota

(10–12), and the gut microbiota could also contribute to an

individual’s response to several drugs in turn (13, 14).

Pharmacomicrobiomics, a new branch, has been proposed

to describe the influence of microbiome variations on drug

response (15). It was useful for investigating how the effect of drugs

could be modulated by the gut microbiota. In addition,

pharmacomicrobiomics played a crucial role in the development of

personalized medicine in order to improve the drug efficacy and

reduce adverse drug reactions (16). Undoubtedly, the microbiota

modulation associated with pharmacomicrobiomics has the potential

to enable the development of microbiota-targeting approaches.

In the present review, we summarize microbiome variations in

T2DM and highlight how these microbiomes actually play a

preponderant role in its development. Besides, we also investigate

pharmacomicrobiomics and microbiome’s role in modulating the

response to antidiabetic drugs, focusing particular attention on

innovative potential personalized treatments for T2DM.
2 The role of gut microbiota in T2DM

Gut microbiota, known as the “human second genome”,

consists of the 10–100 trillion microorganisms including bacteria,

archaea and viruses (17), and has 150 times larger gene sets than

humans (18). It was a well-known fact that the gut microbiota

played an crucial role in the proper functioning of human

organisms (19). Due to the advancements in sequencing

technologies, researches on gut microbiome have developed

rapidly during the past decade. Accumulating evidence indicated

that gut microbiota dysbiosis contributed to the onset and

development of T2DM (20–22).

Although the complete bacterial counts were similar between

healthy controls and T2DM patients (23), the diversity was

significantly declined in T2DM (10, 24–27). Furthermore, the

Integrative Human Microbiome Project found that prediabetic

individuals had distinguishable microbial patterns at baseline from

the healthy controls (28). Both humans and animal models with

T2DM showed the compositional changes in microbiota profiles,

especially at the phyla and genus levels (29, 30). A previous study

showed a decrease in the abundance of butyrate-producing bacteria

and an increase in several opportunistic pathogens, including

Clostridium symbiosum, Clostridium hathewayi and Escherichia coli
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in Chinese T2DM patients (29). Likewise, Li et al. revealed a notable

decrease of butyrate-producing bacteria such as Bifidobacterium and

Akkermansia, as well as a significant increase of Dorea in Chinese

T2DM individuals (31). Another study in Europe found an increase

abundance of four Lactobacillus species and a reduction in the

abundance of five Clostridium species in T2DM patients (23).

Analogously, a recent study demonstrated that Lactobacillus was

significantly higher, whereas Clostridium coccoides and Clostridium

leptum were significantly lower in newly diagnosed T2DM patients

(32). Furthermore, patients with refractory T2DM revealed

reductions in Akkermansia muciniphila and Fusobacterium, as well

as a corresponding enrichment of Bacteroides vulgatus andVeillonella

denticariosi (33). Yassour and his colleagues suggested that decreased

Akkermansia muciniphila could be used as a biomarker for the early

diagnosis of T2DM (34). Notably, Bacteroidetes, Firmicutes and

Proteobacteria were reported as the main predominant phyla in

T2DM patients (27, 35–37). In newly diagnosed T2DM, the

phylum Firmicutes significantly increased, along with the phylum

Bacteroidetes significantly decreased (27, 35, 37). Sedighi et al.

performed a case-control study and found that Firmicutes increased

but Bacteroidetes decreased in T2DM patients (24). Uniformly, a

recent study recruited 65 T2DM patients and 35 healthy controls and

observed a consistent result (36). Interestingly, these studies also

highlighted a significant increase (36, 37) or decrease (27, 35) in

Proteobacteria respectively. Therefore, it is necessary to reduce the

impact of confounding factors (i.e. dietary habits, lifestyle, disease

status) and increase the sample size to further verify these

inconsistent results.

In addition, the role of gut microbiota in T2DM was also

confirmed in several animal models (38–40). 16S rRNA gene

sequencing illuminated that the abundance of several butyrate-

producing bacterial genera, such as Dialister, Anaerotruncus and

some members of Ruminococcaceae, was reduced in diabetic cats

(38). Okazaki et al. established a T2DM zebrafish model and

revealed a lower bacterial diversity than the control (39), which

indicated functional similarities in T2DM individuals. Wang et al.

constructed Zucker diabetic fatty (ZDF) rats that were fed with

Purina Lab Diet to induce obesity-related T2DM and found twelve

potential biomarkers of microbial flora and 357 differential

metabolites in ZDF rats, among which three flora, Phocea,

Pseudoflavonifractor and Lactobacillus, contributed to the

perturbation of metabolites (40). Besides, microbiome analysis

demonstrated that the time-dependent alterations in the fecal

microbiome were associated with age and disease progression of

T2DM in ZDF rats (41). Of interest, Bifidobacterium, Lactobacillus,

Ruminococcus, and Allobaculum were the most abundant genera in

15-week-old rats (41). Leptin receptor-deficient db/db mice were

commonly used as T2DM murine models (42). Yu et al. found a

significant increase in Verrucomicrobia and a significant decrease in

Bacteroidaceae in T2DMmurine model (43). They also showed that

the fecal microbiota transplantation (FMT) from T2DM murine

transplanted into pseudo-germ-free mice induced an increase in

body weight and fasting blood glucose. Another study exhibited a

loss of diurnal oscillations in several certain bacteria, including

Akkermansia, Bifidobacterium, Allobaculum, and Oscillospira in

T2DM db/db mice (44). In high-fat diet (HFD)/streptozotocin
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(STZ)-induced T2DM mice model, genistein could alleviate

inflammation and IR by increasing the abundance of Bacteroides

and Prevotella and decreasing the levels of Helicobacter and

Ruminococcus, indicating that the gut microbiota might be a

potential target for the treatment of T2DM (45). Recently,

increasing evidence showed that several bacterial taxa, including

Akkermansia muciniphila (46) and Bacteroides (47), had consistent

trends in T2DM patients and animal models. Collectively, gut

microbiota is closely related to the onset and development of

T2DM (Table 1), as well as may be an important participant in

the pathogenesis of T2DM.

As mentioned above, gut microbiota plays a regulatory role in the

development of T2DM. There is growing evidence that microbiota and

its metabolites are involved in modulating gut permeability, as well as

influence immune and inflammatory responses and metabolic

homeostasis in T2DM (Figure 1). Intestinal barrier protects the body

from intestinal lipopolysaccharide (LPS), and increased intestinal

permeability leads to chronic inflammation and is a characteristic of

human T2DM (48). A previous study, in turn, verified that

hyperglycemia drived intestinal barrier permeability through altering

the integrity of tight and adherence junctions (49). Microbial anti-

inflammatory molecule derived from Faecalibacterium prausnitzii

could restore the intestinal barrier structure and function via

stabilizing the cell permeability and increasing zonula occludens-1

expression in T2DM mouse model (50). Akkermansia muciniphila-

derived extracellular vesicles (AmEVs) were reported to decrease in the

fecal samples of patients with T2DM, and AmEV administration
Frontiers in Endocrinology 03
reduced intestinal permeability by enhancing tight junction function

and thus improved glucose homeostasis in HFD-induced diabetic mice

(51). Strikingly, numerous clinical and preclinical researches have

shown that gut microbial imbalance is closely interconnected to IR.

For example, an observational study found that reduced fecal

Akkermansia muciniphila abundance increased the severity of IR in

Asians with T2DM, particularly those who were lean in weight (52).

Similarly, another study reported that butyrate-producing bacteria,

such as Fecalibacterium prausnitzii, alleviated IR by inducing glucagon-

like peptide-1 receptor (GLP-1) secretion from colonic L cells via fatty

acid receptor GPR43 (53). Of note, the levels of fecal and serum LPS

were elevated in HFD/STZ-induced T2DM model (54). Subsequent

studies have confirmed that when LPS is transported to metabolic

tissues, it induces a pro-inflammatory response through the activation

of toll-like receptor 4 (TLR4) pathway, ultimately leading to IR (55).

Moreover, Amuc_1100, a purified membrane protein from

Akkermansia muciniphila, improved the integrity of the intestinal

barrier by interacting with toll-like receptor 2 (TLR2), thus

alleviating IR in HFD-fed mice (56). It was well known that

microbiota and its metabolites stimulated anti-inflammatory

cytokines and decreased inflammatory markers, as well as improved

glucose metabolism. For instance, Lactobacillus plantarum had

potential hypoglycaemic ability and improved glucose metabolism by

increasing the levels of interleukin-10 and reducing the levels of

malondialdehyde and tumour necrosis factor-a, thus ameliorating IR

and systemic inflammation in HFD/STZ-induced T2DMmice (57, 58).

Furthermore, Lactobacillus casei and rhamnosus also decreased the
TABLE 1 The changes of gut microbiota in T2DM.

Subjects Methods Changes in gut microbiota References

European women with T2DM Shotgun sequencing Increased abundance of four Lactobacillus species and reduced the abundance of five
Clostridium species

(23)

Iranian T2DM patients 16S rRNA
sequencing

Increased Firmicutes and decreased Bacteroidetes (24)

Chinese T2DM patients Deep shotgun
sequencing

A decrease in the abundance of butyrate-producing bacteria and an increase in Clostridium
symbiosum, Clostridium hathewayi and Escherichia coli

(29)

Danish T2DM patients 16S rRNA
pyrosequencing

Reduced the proportions of Firmicutes and Clostridia (30)

T2DM patients from Northern
China

16S rRNA
pyrosequencing

Decreased butyrate-producing bacteria such as Bifidobacterium and Akkermansia, as well
as increased Dorea

(31)

Newly diagnosed T2DM
patients from Taiwan

16S rRNA
sequencing

A higer level of Lactobacillus and a lower level of Clostridium coccoides and Clostridium
leptum

(32)

Patients with refractory T2DM
from Taiwan

16S rRNA
sequencing

Decreased Akkermansia muciniphila and Fusobacterium, as well as enriched Bacteroides
vulgatus and Veillonella denticariosi

(33)

Patients with sub-clinical state
of T2DM from Korea

Shotgun
metagenomes

Decreased Akkermansia muciniphila (34)

Chinese T2DM patients 16S rRNA
sequencing

Increased the abundance of Proteobacteria and the ratio of Firmicutes/Bacteroidetes (36)

Newly diagnosed T2DM
patients from India

16S rRNA
sequencing

Decreased Akkermansia, Blautia,and Ruminococcus and increased Lactobacillus (37)

Lean individuals with newly
diagnosed T2DM

Shotgun
metagenomic
sequencing

Decreased the abundance of Akkermansia muciniphila (46)
T2DM, type 2 diabetes mellitus; ZDF, zucker diabetic fatty; HFD, high-fat diet.
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levels of the inflammatory markers tumor necrosis factor-a and

interleukin-6 in HFD/STZ-induced T2DM rats (59, 60), thereby

improving glucose metabolism and attenuating symptoms of T2DM.

Although several potential detrimental microbes, such as

Fusobacterium nucleatum and Ruminococcus gnavus could increase

several inflammatory cytokines in inflammatory diseases (61, 62), its

similar role in T2DM remained to be further investigated. Taken

together, more studies are needed to deepen our understanding of the

role of gut microbiota in T2DM.
3 Pharmacomicrobiomics focuses
on T2DM

Given that the preponderant role of gut microbiota in T2DM,

there is growing interest in pharmacomicrobiomics and

microbiome’s role in T2DM. Pharmacomicrobiomic studies have

been proposed to describe the bidirectional effects between the gut

microbiome and antidiabetic drugs, including metformin,

thiazolidinedione (TZD), a-glucosidase inhibitors (a-GIs),
sodium-glucose cotransporter 2 (SGLT2) inhibitors, glucagon-like

peptide-1 receptor agonists (GLP-1 RAs), dipeptidyl peptidase-4

(DPP-4) inhibitors and traditional Chinese medicines (TCMs),

appropriately investigating the interactions between the host, gut

microbiome and drug action (Figure 2).
3.1 Metformin-microbiome-host
interactions

Metformin, the most commonly used glucose-lowering drug,

can alleviate patients’ hyperglycemia via the suppression of hepatic
Frontiers in Endocrinology 04
glucose production and the increase of glucose uptake and

utilization in adipocytes and muscle cells (63). A vast body of

studies revealed that metformin altered the gut microbiota

community in T2DM (11, 64–66). A multicenter, randomized

clinical trial suggested that metformin ameliorated hyperglycemia

and hyperlipidemia in T2DM patients via increasing beneficial

bacteria, such as Blautia and Faecalibacterium (64). Another

randomized, placebo-controlled study showed that metformin

perturbed the gut microbiome in individuals with treatment-naive

T2DM (11). The authors also transplanted the fecal samples from

donors (treated with metformin for 4 months) to germ-free mice

and observed that glucose tolerance was improved by increasing the

production of short-chain fatty acids (SCFAs) or altering plasma

bile acid composition, suggesting a direct metabolic benefits of

metformin. Similarily, Sun et al. demonstrated that Bacteroides

fragilis was decreased and the bile acid glycoursodeoxycholic acid

(GUDCA) was increased in newly diagnosed T2DM individuals

treated with metformin, and the benefits of metformin were

abrogated in HFD-fed mice colonizaed with Bacteroides fragilis,

implicating that Bacteroides fragilis–GUDCA–intestinal farnesoid X

receptor (FXR) axis mediated the glucose-lowering effect of

metformin (67). A recent systematic review disclosed that pre-

diabetes and newly diagnosed T2DM patients treated with

metformin were correlated with increases in specific taxa

associated with metabolic control, such as Enterobacteriales and

Akkermansia muciniphila (68). In line with clinical research, studies

in animal models further confirmed that metformin increased

SCFAs production, reduced circulation lipopolysaccharides and

inhibited intestinal proinflammatory signaling activities (65, 69,

70), thus contributing to improving metabolic disoders. Notably,

gut microbiota could also mediate the side effects of metformin.

Forslund et al. emphasized that a relative increase in abundance of
FIGURE 1

The role of gut microbiota dysbiosis in the development of T2DM. Microbiota dysbiosis increased intestinal barrier permeability and increased the
level of LPS, thus leading to chronic inflammation and IR. Microbiota dysbiosis reduced the anti-inflammatory molecule and AmEVs levels, thus
impairing the intestinal barrier structure and increasing intestinal barrier permeability. Microbiota dysbiosis also reduced butyrate-producing bacteria,
which contributed to IR by inhibiting GLP-1 secretion from colonic L cells via the fatty acid receptor GPR43. LPS, lipopolysaccharide; IR, insulin
resistance; AmEVs, Akkermansia muciniphila-derived extracellular vesicles GLP-1, glucagon-like peptide-1 receptor.
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Escherichia could enrich virulence factors and gas metabolism genes

(10), which contributed to the gastrointestinal side effects

of metformin.
3.2 TZD-microbiome-host interactions

TZD drugs belong to peroxisome proliferative activated

receptor (PPARG) agonists and improve insulin sensitivity for

T2DM (71). It reduced hepatic glucose production and increased

peripheraltion of glucose and lipid metabolism, thus improving

glycemic control. Few studies have discussed the interaction

between gut microbiome homeostasis and insulin sensitizers and

insulin in T2DM (72, 73). Full-length bacterial 16S rRNA

sequencing and RNA sequencing analysis presented that

rosiglitazone improved insulin sensitivity without altering the

composition of gut microbiome but modifying gene expression

signatures associated with lipid and carbohydrate metabolism as

well as immune regulation in diabetic mice (72). Moreover, insulin

improved taurine and hypotaurine metabolism via increasing

Fusobacterium and up-regulating the genes involved in

triglyceride and arachidonic acid metabolism (73).
3.3 a-GIs-microbiome-host interactions

a-GIs, including acarbose, voglibose and miglitol, are

considered to postpone the digestion of carbohydrates in the

intestinal tract and reduce postprandial hyperglycemia in

noninsulin-dependent T2DM (74). They are commonly used oral

glucose-lowering drugs in China and many Asian countries. A
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randomized clinical study revealed that acarbose increased the

abundance of Bifidobacterium, Eubacterium and Lactobacillus,

and lowered the abundance of Bacteroides in Japanese patients

with T2DM (75). Likewise, in Chinese patients with T2DM, Su et al.

found that acarbose treatment increased the content of

Bifidobacterium and Enterococcus, as well as decreased some

inflammatory cytokines (76). Mechanistically, Gu et al.

highlighted that acarbose altered the relative abundance of

microbial genes involved in bile acid metabolism and improved

metabolic parameters (12). Interestingly, acarbose also increased

the relative abundance of Ruminococcus and Bifidobacterium in

ZDF rats (77). On the other hand, acarbose was an inhibitor of both

human and bacterial a-glucosidases, which might limite the ability

of the target microbiome to metabolize complex carbohydrates,

thus leading to the resistance of acarbose (78). Additionally, due to

the weakened microbial enzyme activities, the metabolism of

voglibose was reduced, along with significantly glucose-lowering

effects were presented in antibiotic pretreatment mice (79),

suggesting that gut microbiota mediated the effect of a-
glucosidase inhibitors.
3.4 SGLT2 inhibitors-microbiome-host
interactions

SGLT2 is expressed in the renal proximal tubule and accounts

for reabsorbing the filtered glucose. SGLT2 inhibitors exert the

glucose-lowering effect by blocking glucose reabsorption in the

renal proximal tubule and increasing urinary glucose excretion,

accompanied with pleiotropic benefits in cardiovascular and renal

protection (80, 81). Several studies have explored the alteration of
FIGURE 2

Pharmacomicrobiomics studies drug-microbe-host interactions. Antidiabetic drugs-microbe interactions could result in alterations in microbial
composition and changes in the chemical structure of compounds, which could in turn directly or indirectly affect the drug response in host,
including T2DM patients, mice and rats.
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gut microbiota with SGLT2 inhibitor treatment (82–85). After a 3-

month intervention, empagliflozin improved cardiovascular disease

(CVD) risk factors in patients with T2DM, which might be

attributed to the significantly altered gut microbiota, including the

elevated levels of SCFA-producing bacteria (Roseburia ,

Eubacterium, and Faecalibacterium) and a reduction in several

harmful bacteria (Escherichia–Shigella, Bilophila, and Hungatella)

(82). Whereas, van Bommel et al. reported that 2-week treatment

with dapagliflozin and gliclazide did not affect either gut

microbiome alpha diversity or composition in T2DM patients

treated with metformin (83). This discrepancy might be due to

the fact that all the participants had already been treated with

metformin, which could overshadow the possible impact of

dapagliflozin on the gut microbiome. In T2DM mice,

dapagliflozin treatment showed a trend for increased

Akkermansia muciniphila and decreased Oscillospira and

Firmicutes/Bacteroidetes ratios (84). However, another study

demonstrated that dapagliflozin did not increase the abundance

of beneficial bacteria (85). Therefore, more rigorous clincial studies

with greater sample size are needed to figure out the interactions

between SGLT2 inhibitors and gut microbiota.
3.5 GLP-1 RAs-microbiome-host
interactions

GLP-1 secreted by enteroendocrine L cells is an incretin

hormone and stimulates glucose-dependent insulin secretion.

GLP-1 RAs, a new type of hypoglycemic drugs, mimic the effects

of endogenous GLP-1, as well as improve glycemic control and

cardiovascular outcomes for T2DM patients (86, 87). Accumulating

evidence reported that GLP-1 RAs were linked to the changed

composition of gut microbiota (88–91). In liraglutide-treated

diabetic male rats, several SCFA-producing bacteria, such as

Bacteroides , Lachnospiraceae , and probiot ic bacter ia ,

Bifidobacterium, were selectively enhanced, which might alleviate

systemic inflammation and improve glucose control (88). Besides,

germ-free mice colonized with microbiota from liraglutide-treated

diabetic mice were shown to improve glucose-induced insulin

secretion and regulate the intestinal immune system (91). Also, in

T2DM patients, microbial interaction network was altered in

patients treated with liraglutide. The distribution of community

structure differed between the pre-liraglutide-treatment group (21

species of bacteria were abundant) and post-liraglutide-treatment

group (15 species were abundant) (89). Nevertheless, a recent study

enrolling 51 T2DM adults with initial therapy of metformin and/or

sulphonylureas showed that the diversity and composition of the

intestinal microbiota did not change after 12-week liraglutide

intervention (92). This inconsistency might be attributed to the

initial therapy of metformin and/or sulphonylureas, which could

counteract the effect of liraglutide. Recently, Tsai et al. found that

gut microbiota contributed to the heterogenicity of GLP-1 RA

responses in T2DM patients (90). To sum up, the positive

microbial signatures, mainly including Bacteroides and Roseburia,
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with immunomodulation effects were dominant in GLP-1 RA

responders, while the negative microbial signatures, such as

Prevotella, Butyricimonas, Mitsuokella and Dialister, with pro-

inflammatory properties were dominant in GLP-1 RA non-

responders (90). Thus, gut microbiota may be a potential target

to improve the GLP-1 resistance.
3.6 DPP-4 inhibitors-microbiome-host
interactions

DPP-4 inhibitors improve hyperglycemic conditions by

stabilizing GLP-1 and glucose-dependent insulinotropic

polypeptides (93). A series of studies considered that DPP-4

inhibitors reshaped the microbial composition and increased fecal

SCFAs to improve metabolic homeostasis (94–97). Liao et al.

demonstrated that DPP-4 inhibitors promoted a functional shift

of the altered microbiome induced by HFD, especially increasing

the abundance of Bacteroidetes, which contributed to improving

glucose homeostasis (94). Another study revealed that DPP-4

inhibitors displayed significantly decreased Firmicutes/

Bacteroidetes ratios, and elevated levels of butyrate-producing

Ruminococcus and Dorea in HFD-induced mice (97). Likewise,

vildagliptin treatment also reduced the ratio of Fimicutes/

Bacteroidetes, and increased butyrate-producing bacteria,

including Baceroides and Erysipelotrichaeae, in HFD-induced SD

rats (96). Furthermore, vildagliptin significantly reduced DPP-4

activity mainly by decreasing Oscillibacter and increasing

Lactobacillus (95), which provided new therapeutic uses of DPP-4

inhibition to tackle gut microbiome dysfunctions in T2DM.
3.7 TCMs-microbiome-host interactions

TCMs, known as botanical medicine or phytomedicine, could

significantly improve glucose control by enhancing insulin

sensitivity, simulating insulin secretion and protecting b-cells
(98). In recent years, increasing evidence confirmed that TCMs

improved glucose metabolisms and alleviated T2DM at least partly

by modulating gut microbiota (99).

A number of studies in animal models of T2DM have

extensively explored the interactions between TCMs and gut

microbiota (100–107). Zhou et al. found that ginsenoside Rb1,

one of the most valuable herbal medicine, increased the abundance

of Parasutterella, and decreased Alistipes, Prevotellaceae,

Odoribacter and Anaeroplasma in T2DM mice model, thus

attenuating IR and metabolic disorders (100). In T2DM rats

model, Baihu Rensheng decoction (BHRS) increased the relative

abundance of Lactobacillus, Blautia, and Anaerostipes, as well as

decreased the Allobaculum, Candidatus Saccharimonas, and

Ruminococcus (101). Mechanically, BHRS was considered to

repair gut barrier and inhibit TLR4/NF-kB-mediated

inflammatory response. Similarly, Buyang Huanwu decoction

(BYHWD), a widely used TCM formula, decreased the
frontiersin.org

https://doi.org/10.3389/fendo.2023.1149256
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Jia et al. 10.3389/fendo.2023.1149256
Firmicutes/Bacteroidetes ratio and increased the abundance of

Lactobacillus and Blautia (102). Another study suggested that

Fufang Fanshiliu decoction enriched the abundance of

Lactobacillus, Akkermansia, and Proteus, and reduced the

abundance of Alistipes, Desulfovibrio, and Helicobacter in T2DM

rats model (104). Moreover, Liu-Wei-Di-Huang Pills improved

glucose metabolism by promoting the abundance of Lactobacillus,

Allobaculum, and Ruminococcus, and increasing SCFAs levels in

T2DM rats model (106), which might be related to the SCFAs-

GPR43/41-GLP-1 pathway. Shenqi compound (SQC), a TCM

formula, has been widely used for T2DM. It showed that SQC

exerted a beneficial role by decreasing the Firmicutes/Bacteroidetes

ratio and modulating metabolites in different pathways (107).

Gegen Qinlian Decoction exerted the glucose-lowering effect by

significantly modulating the overall gut microbiota structure and

enriching butyrate-producing bacteria, including Faecalibacterium

and Roseburia, which subsequently attenuated intestinal

inflammation (108). Ge-Gen-Jiao-Tai-Wan formula alleviated

symptoms ofT2DM rats by increasing the beneficial phylum

Firmicutes and bile-acid-related genus Lactobacillus, thus

promoting the production of primary bile acids, and upregulating

the PBA-FXR/TGR5-GLP-1 pathway (109). Intriguingly, a current

study suggested that the Scrophulariae Radix and Atractylodes

sinensis (XC) pair could assist metformin in improving

postprandial hyperglycemia by inhibiting the increase of

Bacteroides in T2DM rats model (105), which could effectively

apply to clinical practice in treating T2DM. In addition to the

animal studies, a clinical trial in newly diagnosed T2DM patients

also underlined that the hypoglycemic effect of berberine was

related to the inhibition of DCA biotransformation by

Ruminococcus bromii (110). Collectively, these findings address

the effect of antidiabetic drugs on gut microbiota (Figure 3) and

emphasize the host-microbe-drug interactions, providing

promising microbiome-targeting approaches to treat T2DM.
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4 Innovative therapeutics and
translational implications of
pharmacomicrobiomic studies
in T2DM

With the host-microbe-drug interactions in mind, the innovative

therapeutics and translational applicability of pharmacomicrobiomics

are highly relevant to our understanding of drug efficacy and adverse

reactions in T2DM (Figure 4). Given that the magnitude of response

to antidiabetic durgs is known to have a unpredictable and high

interindividual variability, personalized treatments based on novel

technologies and features of the gut microbiome can help to guide a

more rational use of these treatments.
4.1 Developing predictive tools via
machine learning and network analyses

With the completion of the human genome and the human

microbiome projects (111), a number of large biobanks including gut

microbiome and multiple omics data (information on genetics,

transcriptome, proteome and metabolome) had been established,

such as UK biobank and TwinsUK cohort (112, 113). These

biobanks utilized clinical studies, involving well-characterized

human cohorts with extensive clinical and demographic details,

exploring the host-microbe-drug interactions. In parallel with the

existing data, there was continuous need for digging deeper into the

unknown filed of drug-microbiome interactions. The accumulated

data in literature calls for the construction of predictive tools or

models that consider all such parameters to provide accurate

predictions (114, 115). Machine learning methods and network

analyses, including decision-tree algorithms and random forest,

could then be applied to create a predictive tool for the efficacy and
FIGURE 3

Antidiabetic drugs regulated the relative abundance of gut microbes and improved T2DM.
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toxicity of antidiabetic drugs in T2DM (Figure 4A). For instance, the

T2DM prediction model based on the characteristics of the salivary

microbiota (microbiome data) was established by random forest in

elderly patients with T2DM (116). Another study showed that

machine learning tools with gut microbiome profiling exhibited the

highest overall predictive power for improving early prediction of

T2DM (117). These findings not only had the ability to rapidly inform

clinical practice but also elucidated hypotheses regarding the

mechanisms in which microbial transformations of drugs changed

their pharmacokinetic properties.
4.2 Novel technologies for developing
personalized treatments

Given the interplay between the host, gut microbiome and drug

metabolism, there is increasing awareness that we should take

microbiome profile based on novel technologies into account

when considering personalized medicine.

Considering that microbiome profiling of human samples

provided evidence for microorganism-mediated drug metabolism,

further experimental studies are required to identify the specific

microbiome responsible for drug biotransformation. Experimental
Frontiers in Endocrinology 08
manipulations of gut microbiota incorporated the use of humanized

gnotobiotic mice models to further investigate the specific role of the

microbiota in modulating drug pharmacokinetics (118). Humanized

gnotobiotic mice are typically either germ-free animals or those

colonized with defined microbiota and achieved by transplanting

human faecal microbiota into germ-free mice (119). As discussed,

these models have already proven successful for the treatment of

several diseases, including T2DM (120). In recent years, organs-on-

chips and bacterial culturomics as emerging technologies also have

been developed (121, 122), making functional validation of gut

microbiome finally possible. Antidiabetic drugs of interest can be

incubated via these technologies to assess their biotransformation by

gut microbiome, enabling the development of personalized medicine

in T2DM (Figure 4B).
5 Concluding remarks and
future perspectives

There is a mountain of evidence linking gut microbiota to T2DM

and its hypoglycemic therapy. In recent years, a growing body of

research now focuses on the bidirectional effects between the gut
A B

FIGURE 4

Innovative therapeutics and translational implications of pharmacomicrobiomic studies in T2DM. (A) In well-phenotyped patient populations,
microbial features and multiple omics could be integrated via machine learning and network analyses to predict the efficacy and toxicity of
antidiabetic drugs. (B) Novel technologies, including organs-on-chips and bacterial culturomics assessed their biotransformation by gut microbiome,
providing new insights into personalized medicine in T2DM.
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microbiome and antidiabetic drugs (123, 124). In this review, we

summarize the microbe-drug-host interactions and provide a novel

perspective towards possible personalized treatment for T2DM.

With the advancement of the studies on the pharmacomicrobiomics

(interactions between drugs, microbial communities and host)

(125–127), manipulation of microbiota can be a promising target

to improve therapeutic outcomes and alleviate adverse drug effects

in T2DM. For instance, prebiotics could modulate intestinal

microbiota and increase the relative abundance of beneficial

bacteria including SCFAs (128, 129), and the combination of

hypoglycemic drugs and certain prebiotics could enhance the

glucose-lowering effects (130). In addition, FMT, a process of

transferring stool from a healthy donor or antidiabetes treatment

subjects to mice, displayed a significant improvement in microbial

composition and metabolic homeostasis (131). A prospective study

revealed that FMT could bring benefits for the management of

T2DM via modulating levels of certain microbiome such as

Rikenellaceae and Anaerotruncus (132).

Given the great diversity of microbial signatures and the complex

drug-microbe-host interactions, a systems-based approach including

the integration of multi-omics data with microbiome data and the

utilization of bacterial culturomics are required to understand the

underlying mechanisms, thus exploring the new therapeutic

interventions and potential personalized strategies.
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