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G protein-coupled receptors (GPCRs), the largest family of transmembrane

proteins, regulate a wide array of physiological processes in response to

extracellular signals. Although these receptors have proven to be the most

successful class of drug targets, their complicated signal transduction pathways

(including different effector G proteins and b-arrestins) and mediation by

orthosteric ligands often cause difficulties for drug development, such as on- or

off-target effects. Interestingly, identification of ligands that engage allosteric

binding sites, which are different from classic orthosteric sites, can promote

pathway-specific effects in cooperation with orthosteric ligands. Such

pharmacological properties of allosteric modulators offer new strategies to

design safer GPCR-targeted therapeutics for various diseases. Here, we explore

recent structural studies of GPCRs bound to allosteric modulators. Our inspection

of all GPCR families reveals recognition mechanisms of allosteric regulation. More

importantly, this review highlights the diversity of allosteric sites and presents how

allosteric modulators control specific GPCR pathways to provide opportunities for

the development of new valuable agents.
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Introduction

G protein-coupled receptors (GPCRs), the most successful class of drug targets, regulate

almost all physiological responses by sensing diverse external signals, including light,

hormones, ions, and proteins (1–3). GPCRs share a typical architecture with seven

transmembrane helices and exhibit conformational dynamics under physiological

conditions (4–7). Historically, most marketed pharmaceuticals target orthosteric sites on

GPCRs, where endogenous signal molecules are bound, to control conformational changes

and regulate signal transduction (8). However, the highly conserved property of orthosteric

sites among GPCR subtypes and their complicated signaling pathways cause numerous

difficulties for the development of specific and safe therapeutics. Unlike classical orthosteric

ligands, allosteric modulators bind to a distinct site on the receptor. Upon binding, allosteric
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modulators can remotely regulate the conformational transition of

GPCRs and specifically regulate their signal transduction pathways,

offering new strategies for the development of GPCR-targeted drugs

(8–10).

Emerging allosteric modulators of GPCRs are chemically diverse

(including proteins, peptides, small molecules, ions, and lipids) but

can be divided into three categories according to their

pharmacological properties on receptor signaling (11, 12): (i)

positive allosteric modulators (PAMs) work synergistically with

orthosteric agonists to enhance downstream signals; (ii) negative

allosteric modulators (NAMs) modulate the affinity of orthosteric

ligands to a receptor, ultimately downregulating or blocking

orthosteric agonism; and (iii) neutral allosteric modulators do not

have a positive or negative regulatory effect on signal transduction of

the receptor after binding to the allosteric site. Some allosteric

modulators also exhibit intrinsic agonism (known as ago-PAM) or

inverse agonist profiles when used alone (13, 14). Notably, such

modulator-mediated allostery depends on orthosteric ligands and

receptor signaling pathways, and is therefore deemed to be probe-

dependent (14–16). For example, the NTSR1 modulator SBI-55 was

found a PAM for b-arrestin recruitment but a NAM-agonist at G

protein pathway when cooperating with the orthosteric ligand

neurotensin, thus allosterically induced biased signaling (17–19).
Frontiers in Endocrinology 02
According to the Allosteric Database (ASD, http://mdl.shsmu.

edu.cn/ASD) (20), four allosteric drugs targeting GPCRs

(Cinacalcet, Ticagrelor, Ivermectin, and ATx-201) have been

approved by the U.S. Food and Drug Administration (FDA), and

another 25 are in clinical trials (Table 1). Among agents currently

on the market, Cinacalcet and ATx-201 positively modulate the Gq

signaling of extracellular Ca2+-sensing receptor (CaSR) and

neuropeptide Y receptor type 4 (NPY4R), respectively (21, 26),

while Ticagrelor negatively regulates the Gi pathway of P2Y

receptor 12 (26). Avacopan was recently approved for

antineutrophil cytoplasmic antibody-associated vasculitis (52)

but has not been updated in the ASD database. Avacopan is a

NAM of C5a anaphylatoxin chemotactic receptor 1 that inhibits

both Gi protein and b-arrestin signals, which may confer

signal bias (29). With recent breakthroughs in structural

biology, more abundant al losteric sites and regulatory

mechanisms of GPCRs have been identified, providing a basis

for accelerating the development of allosteric drugs. This mini-

review summarizes recent structural investigations of allosteric

regulation of Class A, Class B, and Class C GPCRs (Table 2) and

exemplars of allosteric modulator-bound GPCR structures to

provide insight into the allosteric mechanisms of GPCR

transduction signaling.
TABLE 1 List of allosteric drugs target GPCR in clinical trials.

Allosteric
drugs Condition GPCR

Target Data Action Signaling References

Approved

Cinacalcet Hyperparathyroidism CasR April 2002 PAM
Ca2+

mobilization
(21–25)

Ticagrelor Stroke; Acute coronary syndrome P2Y12 July 2011 NAM Gi (26)

Ivermectin Parasitic roundworm infections GABAB 1987 PAM Unclear (27)

ATx-201
viral and bacterial infections;
Atopic dermatitis; Cancer;
Rheumatoid arthritis;

NPY4 2019 PAM Gq (28)

Avacopan ANCA-Associated Vasculitis C5aR1 October 2021 NAM
Gi/b-

arrestin2
(29)

Phase III

Vercirnon Inflammatory bowel disease CCR9
September 2017
(completed)

NAM
Ca2+

mobilization
(30)

BMS-986165
Plaque psoriasis; Psoriatic arthritis;

Crohn’s disease; Systemic lupus erythematosus
mGluR4

January 2023
(Recruiting)

Unclear Unclear ASD database

mavoglurant Fragile X syndrome mGluR5
March 2016
(Terminated)

NAM Gq (31)

ADX-48621
Parkinson’s disease levodopa-

induced dyskinesia
mGluR5

April 2022
(Recruiting)

NAM Gq (32)

Basimglurant Fragile X syndrome mGluR5
December 2022
(Recruiting)

NAM Gq (33)

Phase II

ADX-10059 Gastroesophageal reflux; Migraines mGluR5
July 16, 2012
(completed)

NAM Unclear (34)

(Continued)
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Allosteric modulation mechanism of
Class A GPCRs transduction

Class A GPCRs (also called rhodopsin-like GPCRs), including

aminergic receptors, lipid receptors, peptide receptors, and other

receptors, are the single most fruitful drug target (91–93). The first

structure of rhodopsin was determined two decades ago (94), while

the first GPCR signaling complex [b2 adrenergic receptor (b2AR)-
Gs bound to an agonist] was reported in 2011 (95). Growing

numbers of receptors in complex with orthosteric or allosteric

ligands are being published, providing opportunities to
Frontiers in Endocrinology 03
understand conformational transitions of receptors upon

activation and allosteric modulation.

The b2AR is a well-characterized canonical receptor that exhibits

dynamic conformational changes in membrane bilayers (96). Ligand

Cmpd-6FA, identified as a PAM of b2AR, exhibits robust positive

cooperativity with orthosteric agonists to activate Gs signaling. The

structure of this receptor complex reveals that the binding pocket of

Cmpd-6FA is formed by the intracellular regions of transmembrane

helix 2 (TM2), TM3, TM4, and intracellular loop 2 (ICL2) (53)

(Figures 1, 2A). Upon Cmpd-6FA binding, ICL2 undergoes notable

rearrangement from a disordered loop to a helical shape. This
TABLE 1 Continued

Allosteric
drugs Condition GPCR

Target Data Action Signaling References

T-62
Neuropathic pain;

Postherpetic neuralgia (PHN)
A1AR

June 8, 2012
(Terminated)

PAM Unclear (35)

AZD-8529 Smoking cessation therapy; Schizophrenia mGluR2
November 2017
(completed)

PAM Gi (36)

ADX-71149 Epilepsy; Anxiety disorder; Schizophrenia mGluR2
January 2023
(Recruiting)

PAM Gi (37, 38)

MK-7622
Pain; Schizophrenia; Sleep disorder; Dementia,

Alzheimer’s type
M1R

September 2018
(terminated)

PAM Gq (39–41)

LY-3154207 Dementia, Parkinson DRD1
July 23, 2021
(completed)

PAM Gs (42, 43)

ASP-4345 Schizophrenia; Cognitive disorders DRD1
May 2022
(completed)

PAM Unclear (44)

PXT-002331 Parkinson’s disease mGluR4
March 2020
(completed)

PAM Gi (45)

ASP-8302 Detrusor underactivity (Underactive bladder) M3R
July 2022

(completed)
PAM Gq (46)

Emraclidine Schizophrenia M4R
December 2022
(Recruiting)

PAM Gi (47)

Phase I

HTL-
0014242

Neurological disorders; Psychiatric disorders mGluR5
April 2021
(completed)

NAM Gq (48)

[11C]JNJ-
4229193

Diagnostics mGluR2 Unclear PAM Gi (49)

JNJ-2463
Non-alcoholic steatohepatitis; Nephropathy, diabetic;
Non-alcoholic fatty liver disease (NAFLD); Fibrosis;

Metabolic Diseases
CB1 Unclear NAM Unclear

https://profiles.biocentury.com/
products/namacizumab_(jnj-

2463_ryi-018)

RG-7342 Schizophrenia mGluR5 Unclear PAM Unclear ASD database

JNJ-
55375515

Cognitive disorders; Psychosis mGluR2
October 2018
(Completed)

NAM Unclear ASD database

ODM-106 Essential tremor GABAB
December 2016
(Completed)

PAM Unclear ASD database

MK-6884 Dementia, Alzheimer’s type M4R
September 2022
(completed)

PAM Gq (50)

RGH-618 Anxiety disorder mGluR5 Unclear NAM Unclear ASD database

TAK-071
Lewy body dementia; Neurological Disorders; Dementia,

Alzheimer’s type
M1R

December 2022
(Active, not
recruiting)

PAM Gq (51)

VU-319
Pain; Sleep disorder;

Dementia, Alzheimer’s type
M1R

February 2020
(completed)

PAM Unclear ASD database
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TABLE 2 Recent structures of GPCRs in complex with allosteric modulators.

Allosteric
modulators

GPCR
Target Action Binding site Signaling PDB code References

Class A

Cmpd-6FA b2AR PAM Within 7TMD near TM2/TM3/TM4 and ICL2 Gs 6N48 (53)

Cmpd-15PA b2AR NAM
Intracellular ends of TM1, TM2, TM6, TM7, helix 8, and

ICL1
Gs 5X7D (54)

AS408 b2AR NAM Outside 7TMD near TM3//TM5 Gs/b-arrestin 6OBA (55)

AP8 GPR40 ago-PAM Outside 7TMD near TM3/TM4/TM5 and ICL2 Gq 5TZY (56)

MK-8666 GPR40
Partial
agonist

Outside the 7TMD near TM3/TM4 Gq 5TZR (56)

TAK-875 GPR40
Partial
agonist

Outside the 7TMD near TM3/TM4 Gq 4PHU (57)

LY3154207 DRD1 PAM Outside 7TMD near TM3/TM4/TM5 and ICL2 Gs 7CKZ (43, 58)

ZCZ011 CB1 PAM Outside 7TMD near TM2/TM3/TM4 Gi 7FEE;7WV9 (59)

ORG27569 CB1 NAM Outside 7TMD near TM2/TM3/TM4 Gi 6KQI (60)

MIPS521 A1R PAM Outside 7TMD near TM6/TM7 Gi 7LD3 (61)

LY2116920 M2R PAM Top of extracellular vestibule
GoA/b-
arrestin

4MQT;7T94;7T96 (62, 63)

2-PCCA GPR88 PAM Outside 7TMD near the cytoplasmic ends of TM5/TM6 Gi 7EJK (64)

ML382 MRGPRX1 PAM Within 7TMD near TM1/TM2/TM3/TM6/TM7 Gq 8DWG (65)

BPTU P2Y1R antagonist Outside 7TMD near TM1/TM2/TM3 unclear 4XNV (66)

AZ3451 PAR2 antagonist Outside 7TMD near TM2/TM3/TM4 Gq/b-arrestin 5NDZ (67)

AZ8838 PAR2 antagonist Extracellular vestibule near TM1/TM2/TM3/TM7 Gq/b-arrestin 5NDD (67)

CCX168 C5aR1 antagonist Outside 7TMD near TM3/TM4/TM5 Gi/b-arrestin2 6C1R (68)

NDT9513727 C5aR1 antagonist Outside 7TMD near TM3/TM4/TM5 Gi/b-arrestin2 5O9H (69)

CCR2-RA-[R] CCR2 antagonist Intracelluar surface near TM6/TM7/H8 Gi 5T1A (70)

vercirnon CCR9 antagonist Intracellular surface near TM6/TM7/H8 Gi 5LWE (71)

Class B

PF-06372222 GLP-1R NAM Outside 7TMD near TM5/TM6/TM7 Gs 5VEW (72)

NNC0640 GLP-1R NAM Outside 7TMD near TM5/TM6/TM7 Gs 5VEX (72)

LSN3160440 GLP-1R PAM Within 7TMD near TM1/TM2 Gs 6VCB (73)

compound 2 GLP-1R ago-PAM Outside 7TMD near TM6 Gs
7DUR;

7DUQ;7E14
(74)

NNC0640 GCGR NAM Outside 7TMD near TM5/TM6/TM7 Gs 5XEZ;5XF7 (75)

MK-0893 GCGR NAM Outside 7TMD near TM5/TM6/TM7 Gs 5EE7 (76)

CP-376395 CRF1R NAM Within 7TMD near TM3/TM5/TM7 Gs 4K5Y (77)

Class C

GS39783 GABAB PAM Intracellular tips of TM6-mediated dimerization interface Gi/o 6UO8 (78)

rac-BHFF GABAB PAM Intracellular tips of TM5-TM6 of GB1 and TM6 of GB2 Gi/o 7CA3;7C7Q;7EB2 (79–81)

Evocalcet CaSR PAM Outside 7TMD near TM2/TM5/TM6/TM7 Gq 7DD7 (82, 83)

NPS-2143 CaSR NAM Outside 7TMD near TM3/TM5/TM6/TM7 Gq 7DD5;7SIN;7M3J (82–84)

R-568 CaSR PAM Outside 7TMD near TM2/TM5/TM6/TM7 Gq 7SIL (84)

Cinacalcet CaSR PAM Outside 7TMD near TM2/TM5/TM6/TM7 Gq 7M3F (83)

(Continued)
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stabilization of ICL2 by Cmpd-6FA may explain its allosteric

communication with agonists, e.g., enhanced binding affinity of

orthosteric agonists (Figures 1, 2A). Similar binding of allosteric

modulators to the region above the ICL2 has been reported for

other GPCRs, such as GPR40 with ago-PAM AP8(56) and DRD1

with PAM LY3154207 (43, 58) (Figure 2B). These findings indicate

that certain PAM ligands can stabilize an intermediate receptor state

and further activate intracellular effectors. Especially, 2-PCCA is a

synthetic ago-allosteric modulator of orphan receptor GPR88, which

has two binding sites. One is canonical orthosteric site formed by

TM3, TM4, TM5, TM7 and ECL2, another is formed by the

cytoplasmic ends of TM5 TM6 and C-terminus of the Gi1 a5 helix.

2-PCCA binding to GPR88 and directly interact with G protein,
Frontiers in Endocrinology 05
which stabilizes the active state of the receptor (64). In contrast,

Cmpd-15PA, a negative allosteric modulator of b2AR, binds an

intracellular allosteric site formed by the intracellular ends of TM1,

TM2, TM6, TM7, helix 8, and ICL1 (Figures 1, 2C). The structure of

b2AR with Cmpd-15PA reveals that the NAM molecule restricts the

inactive conformation of receptor by making direct contacts with

residues N692.40, I722.43 and T2746.36, thereby decreasing its binding

affinity for the agonist isoproterenol and activation of corresponding

signaling (54, 97, 98).

Cannabinoid receptor 1 (CB1) is the most abundant GPCR in the

central nervous system (CNS), whereby it regulates diverse

physiological and pathological processes (99). Plant-derived

cannabinoids and synthetic agonists are under clinical trials for
TABLE 2 Continued

Allosteric
modulators

GPCR
Target Action Binding site Signaling PDB code References

Etelcalcetide CaSR PAM At the LB2 interface(ECD) Gq 7M3G (83)

FITM mGluR1 NAM Outside 7TMD near TM2/TM3/TM4/TM5 and ECL2 Unclear 4OR2 (85)

JNJ-40411813 mGluR2 PAM Outside 7TMD near TM3/TM5/TM6/TM7 Gi 7E9G (38)

NAM563 mGluR2 NAM Outside 7TMD near TM3/TM5/TM6/TM7 Gi 7EPE (86)

NAM597 mGluR2 NAM Outside 7TMD near TM3/TM5/TM6/TM7 Gi 7EPF (86)

VU6001966 mGluR2 NAM Unclear Gi 7MTQ (87)

ADX55164 mGluR2 ago-PAM Outside 7TMD near TM3/TM5/TM6 Gi 7MTR (87)

VU0650786 mGluR3 NAM Outside 7TMD near TM3/TM5/TM6/TM7 Gi 7WI6 (88)

Mavoglurant mGluR5 NAM Outside 7TMD near TM2/TM3/TM5/TM6/TM7 Gq 4OO9 (89)

Fenobam mGluR5 NAM Outside 7TMD near TM2/TM3/TM5/TM6/TM7 Gi 6FFH (90)

M-MPEP mGluR5 NAM Outside 7TMD near TM2/TM3/TM5/TM6/TM7 Gi 6FFI (90)

MMPIP mGluR7 NAM Unclear Gi 7EPC (86)
FIGURE 1

Allosteric modulation of Class A GPCRs. Negative allosteric modulation of b2AR and CB1R signaling transduction (left) and positive allosteric modulation
of b2AR, CB1R and M2R signaling transduction (right).
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treatment of various diseases (100, 101); unfortunately, some have

undesirable side effects referred to as “cannabimimetic” effects (102–

108). Allosteric modulators undoubtedly release the untapped

potential of CB1 by cooperatively or non-cooperatively regulating

the efficacy of its signal transduction with orthosteric ligands (109).

ZCZ011, a PAM ligand of CB1, was recently reported to bind an

extrahelical site in TM2, TM3, and TM4 (Figures 1, 2D). Our

molecular dynamics simulations indicate that ZCZ011 could

increase the distribution of receptor conformations by promoting

rearrangements of TM2 to enhance Gi protein-mediated signaling
Frontiers in Endocrinology 06
(59). Distinct from the PAM mechanism of ZCZ011 on CB1, the

NAM ORG27569 was found to bind to the lower half of the TM2-

TM3-TM4 surface (Figures 1, 2E). Accordingly, the mechanism of

allosteric antagonism might involve ORG27569 capturing an

intermediate state of CB1 in which toggle-switch residues F3.36–

W6.48 at the base of the agonist-binding pocket adopt an inactive

conformation, thereby inhibiting Gi-protein activation of CB1 (59).

Allosteric sites in GPCRs are not conserved and exhibit divergent

pharmacological properties, providing new therapeutic strategies for a

wide array of diseases (13). In particular, MIPS521 was found to act as
A B

D E F

G IH

C

FIGURE 2

Binding sites of allosteric modulators in Class A GPCRs. (A) Interactions of Cmpd-6FA (orange, sticks) with TM2, TM3, TM4, and ICL2 of b2AR
(gray, cartoon) (PDB ID: 6N48). (B) Interactions of LY3154207 (pink, sticks) with TM2, TM3, TM4, and ICL2 of DRD1 (gray, cartoon) (PDB ID: 7CKZ).
(C) Interactions of Cmpd-15PA (purple, sticks) with TM1, TM2, TM6, TM7, H8 and ICL1 of b2AR (gray, cartoon) (PDB ID: 5X7D). (D) Interactions of
ZCZ011 (blue, sticks) with TM2, TM3 and TM4 of CB1R (gray, cartoon) (PDB ID: 7WV9). (E) Interactions of ORG27569 (deep blue, sticks) with TM2,
TM3 and TM4 of CB1R (gray, cartoon) (PDB ID: 6KQI). (F) Interactions of MIPS521 (magentas, sticks) with TM6 and TM7 of A1R (gray, cartoon) (PDB
ID: 7LD3). (G) Interactions of LY2116920 (yellow, sticks) with extracellular region of M2R (gray, cartoon) (PDB ID: 4MQT). (H) Interactions of DCA
(wheat, sticks) with extracellular region of GPBAR (gray, cartoon) (PDB ID: 7CFM). (I) Interactions of cholesterol (green, sticks) with TM1 and TM7 of
5-HT1A (gray, cartoon) (PDB ID: 7E2Y).
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a PAM of adenosine 1 receptor (A1R) by binding a novel allosteric site

formed by TM6 and TM7 (Figure 2F). In this interaction, the ligand

exerts positive allosteric modulation cooperatively with endogenous

adenosine to further stabilize the Gi-protein activation state of A1R

(61). In addition to extrahelical and intracellular allosteric sites,

allosteric modulators can bind to the extracellular region of

receptors. LY2116920, a well-characterized ligand, acts as a PAM of

muscarinic acetylcholine receptor M2 (Figures 1, 2G) by binding a

new allosteric site formed above the orthosteric pocket to

synergistically modulate receptor signal transduction by preventing

agonist dissociation from the orthosteric pocket (62, 63).

Furthermore, TAK-875 was characterized as an ago-allosteric

modulator of GPR40 and is under phase III clinical trials for the

treatment of type-2 diabetes, further structural determination reveals

that TAK-875 binds to a non-canonical site formed by TM3, TM4,

TM5 and ECL2 (57).

Recently, an emerging class of GPCR allosteric modulators, which

exert pathway-specific effects on receptor signaling, are defined as

biased allosteric modulators (BAMs). For instance, SBI-553 was

reported as an arrestin-biased PAM of NTS1R (18, 19). A recent

complex structure indicated that SBI-553 is bound to a binding site at

the interface between GRK2 and NTSR1, where it can enhance GRK2

binding and phosphorylation of receptor (19). In detail, SBI-553

forms predominately hydrophobic contacts with the intracellular

residues from TM2, TM3, TM5, TM6, TM7, and H8 in NTS1R, as

well as direct interactions with intracellular effectors (18, 19).

Some endogenous molecules can reportedly behave as allosteric

modulators (110, 111). For example, certain bile acid-derivative cholic

acids (e.g., deoxycholic acid (DCA), taurocholic acid (TCA), and

taurodeoxycholic acid (TDCA) act as PAMs by binding an allosteric

pocket formed by TM3, TM4, TM5, and ICL2 in G protein-coupled

bile acid receptor (GPBAR) (110) (Figure 2H). In addition, certain

endogenous lipids in membrane bilayers, such as phospholipid and

cholesterol, can regulate signaling transduction by GPCRs (112–116).

Cholesterol is an essential component of eukaryotic membranes and

plays an important role in GPCR function and pharmacology (112,

117). Approximately 44% of human class A receptors are predicted to

have a cholesterol binding site (118, 119). Indeed, high-resolution

GPCR structures confirm the presence of lipid-binding sites in

GPCRs. For example, a cholesterol molecule was found to bind to

the cleft between TM1 and TM7 in the serotonin 1A receptor

(5HT1AR), shaping the orthosteric ligand binding pocket by

allosteric communication (111, 120) (Figure 2I). On the contrary,

for b2AR, cholesterol was found to bind the surface of TM1, TM2,

TM3 and TM4 and act as a NAM, since the bound cholesterol can

increase the affinity for partial inverse agonist timolol and inhibit

signaling pathway (118, 119).
Structural basis for Class B
GPCR allostery

Class B GPCRs are a small subfamily of 15 receptors, typically

with a large N-terminal domain involved in recognition of peptide

hormones (77, 121, 122). A prototypical example is glucagon-like

peptide-1 receptor (GLP-1R), which predominately couples to the Gs
Frontiers in Endocrinology 07
effector and serves as an important drug target for the treatment of

type 2 diabetes (123, 124).

PF-06372222 and NNC0640, two reported NAMs of GLP-1 with

distinct scaffolds, bind a common extrahelical binding pocket formed

by TM5–TM7 near the intracellular part (72). These NAMs inhibit

the Gs protein pathway by restricting the outward movement of TM6

from the inactive state, which is crucial for receptor activation.

Coincidentally, previous studies revealed that NNC0640 and MK-

0893 (another NAM for the glucagon receptor) also bind in this

region, although the allosteric pocket is not fully conserved between

these two receptors (75, 76) (Figure 3). These results suggest a

common mechanism by which NAMs of Class B GPCRs inhibit Gs

protein coupling by preventing the conformational transition of TM6

to an active state, although the allosteric antagonist CP-376395 of

CRF1R were identified to bind within the helical bundle of TM3, TM5

and TM7 (77).

LSN3160440 was characterized as a PAM of GLP-1R that

enhances both the efficacy and potency of G protein signaling.

Structural determination suggests that binding of LSN3160440

within the transmembrane helical bundle near TM1 and TM2

simultaneously interacts with the orthosteric ligand GLP-1(9-36)

and GLP-1R (73) (Figure 3). This unique binding mode appears to

stabilize the interacting interface between the orthosteric agonist and

receptor, thereby enhancing the binding affinity of GLP-1(9-36) and

elevating potential receptor activation.

Spatially distinct from LSN3160440, the ago-PAM compound 2

was found to covalently bond to the C3476.36b residue located on the

intracellular side of TM6 of GLIP-1R (74). Intriguingly, in a reported

structure of compound 2/GLP-1/GLP-1R/Gs, compound 2 seemed to

remotely induce insertion of the N-terminal domain into the

orthosteric binding pocket, thus triggering activation of G1P-1R

underlying its agonistic property (Figure 3). In addition, compound

2 cooperated with diverse orthosteric agonists to positively modulate

cAMP signaling (125), enhanced the binding ability of agonists, and

strengthened the G protein-receptor interface (74).

Together, the structural discovery of allosteric sites expands our

understanding of negative and positive allosteric modulation of

downstream signaling of Class B GPCRs.
Structural basis for Class C
GPCR allostery

Class C GPCRs mainly include g-aminobutyric acid B (GABAB)

receptors, CaSR, and metabotropic glutamate (mGlu) receptors,

which are very important therapeutic targets for the treatment of

CNS disorders (126). Class C receptors function in a dimer state

(either hetero or homo), each with three domains: Venus flytrap

(VFT), a cysteine-rich domain (CRD, except GABAB receptors), and a

seven-transmembrane-helices domain (TMD) (127) (Figure 4).

The GABAB heterodimer includes two subunits: GABAB1

(responsible for endogenous ligand binding) and GABAB2

(responsible for Gi/o protein activation) (128). Several compounds

reportedly act as PAMs of GABAB receptors, such as CGP7930 (129)

(the first characterized PAM of GABAB receptors), R,S-5,7-di-tert-

butyl-3-hydroxy-3-trifluoromethyl-3H-benzofuran-2-one (BHFF)
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(130), and GS39783 (131). Notably, they all exert positive allosteric

effects on both ligand binding and the signaling response of GABA

(78). A reported structure of the GABAB-Gi signaling complex bound

to BHFF and an agonist reveals that the PAM links TM6 from both

receptor subunits, forming a TM6-TM6 bridge required for receptor

activation (81) (Figures 4A, 5A). In contrast, the first identified NAM

of the GABAB receptor, CLH304a, can attenuate intracellular

signaling (132).

Cinacalcet, the first GPCR allosteric drug approved by the FDA

(21, 22), acts as a PAM of CaSR (25). Two other PAMs, evocalcet and

etelcalcetide, have been investigated in clinical trials to treat

secondary hyperparathyroidism and familial hypocalciuric

hypercalcemia type 1 (FHH1) (83). Cinacalcet adopts two different

binding conformations that allow it to bend into the seven-

transmembrane core of each subunit of CaSR; purportedly, the

extended version stabilizes the active state to promote G protein

activation (Figures 4B, 5B). In addition, L-amino acids can bind to

one VFT cleft of CaSR to increase its sensitivity to fast fluctuations of

Ca2+ concentrations. Compared with the asymmetric activation of

CaSR induced by a PAM, the TMD of CaSR bound to the NAM NPS-

2143 is absolutely symmetrical (83) (Figure 5C).

mGluRs can be divided into three groups: Group I (mGluR1 and

mGluR5) couples to Gq/G11 proteins and activates phospholipase

Cb, resulting in production of inositol 1,4,5-trisphosphate (IP3) and

diacylglycerol; Group II (mGluR2 and mGluR3) and Group III

(mGluR4, mGluR6–mGluR8) predominantly couple to Gi/o,
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inhibiting adenylyl cyclase and cAMP production (127, 133). The

ligand FTIM was characterized as a NAM of mGluR1; its recognition

pocket is constituted by residues from extracellular loop 2, TM2–

TM3, and TM5–TM7 (85). Interestingly, VU0424465 (a PAM of

mGluR5) could make TMD closer in the absence of an endogenous

agonist, further triggering signal transduction (134). Mavoglurant

acts as a NAM of mGlu5, which is used to treat fragile X syndrome. In

comparison to the position of FITM in mGlu1, mavoglurant is found

lower in the mGlu5 allosteric site (89). The ligand JNJ-40411813, a

reported PAM of mGluR2, binds to one of the TMD required for Gi

protein coupling to potentiate downstream signaling (38) (Figure 4C).

Upon binding of the NAM VU0650786 to mGluR3, the TMD

undergoes structural rearrangements to reduce the distance between

TM3 and TM4 helices, subsequently decreasing cAMP inhibition.

These findings confirm that VU0650786 stabilizes the inactive state of

mGluR3 (88).
Conclusion and perspectives

In this review, we summarized recent structural studies of

allosteric regulation of GPCRs. Progress in defining GPCR

structures has facilitated understanding of the complex

pharmacological features of their allosteric modulation, providing

structural clues for ligand optimization and design of novel allosteric

therapeutics. Recent studies demonstrate the analgesic efficacy of
FIGURE 3

Allosteric modulation of GLP-1R signaling. Negative allosteric modulation of GLP-1R signaling (left), positive allosteric modulation of GLP-1R signaling
(middle) and positive allosteric agonism of GLP-1R signaling (right).
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allosteric modulators of A1R in rats with neuropathic pain (61),

whereas SBI-553 (an arrestin-biased allosteric modulator of

neurotensin receptor 1) shows efficacy in animal models of

psychostimulant abuse (18). Thus, understanding how allosteric

modulators bias mechanisms of GPCRs has the potential to

improve the precision of treatments for various diseases, while

structure-based allosteric agent discovery could accelerate
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translational studies of GPCR allostery. Nevertheless, some

challenges remain to untap the mechanisms of GPCRs, namely: (i)

more GPCR structures in complex with allosteric modulators are

urgently needed to identify and characterize allosteric sites (e.g., no

structure of a GPCR in complex with a biased allosteric modulator has

been reported); (ii) divergent cooperative mechanisms of allosteric

modulators with orthosteric ligands remain largely elusive; and (iii)
A B C

FIGURE 4

Structural basis of allosteric regulation in Class C GPCRs. (A) Cryo-EM structural model of active-state GABAB complexed with PAM BHFF (orange).
(B) Cryo-EM structural model of active-state CaSR complexed with PAM cinacalcet (magentas). (C) Cryo-EM structural model of active-state mGluR2
complexed with PAM JNJ-40411813 (salmon).
A B C

FIGURE 5

Binding Sites of allosteric modulators in Class C GPCRs. (A) Close view of binding sites of positive allosteric modulator BHFF (orange, sticks) in GABAB

(dark cyan and light salmon, cartoon) (PDB ID: 7EB2). (B) Close view of binding sites of positive allosteric modulator cinacalcet (magentas, sticks) in CaSR
(cornflower blue and medium aquamarine, cartoon) (PDB ID: 7M3F). (C) Close view of binding sites of negative allosteric modulator NPS-2143 (medium
purple, sticks) in CaSR (cornflower blue and medium aquamarine, cartoon) (PDB ID: 7M3J).
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recently NMR study of the PAM LY2119620 at the M2R (63) as well

as single molecule FRET studies (134–137) that explore

conformational changes at the mGlu2 in response to PAMs have

begun to provide dynamic structural information for understanding

the mechanism of GPCR allostery. Further exploration of the

dynamic states of GPCRs in response to different types of ligands

using biophysical techniques (e.g., nuclear magnetic resonance

(NMR), electron paramagnetic resonance (EPR), hydrogen-

deuterium exchange (HDX), and time-resolved single molecules)

will facilitate additional identification of intermediate receptor

states in response to allosteric modulators. In sum, the structural

determination of GPCRs in complexes with allosteric modulators will

improve our understanding of receptor allostery.
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