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Cognitive function in humans depends on the complex and interplay between

multiple body systems, including the hypothalamic-pituitary-adrenal (HPA)

axis. The gut microbiota, which vastly outnumbers human cells and has a

genetic potential that exceeds that of the human genome, plays a crucial role

in this interplay. The microbiota-gut-brain (MGB) axis is a bidirectional

signalling pathway that operates through neural, endocrine, immune, and

metabolic pathways. One of the major neuroendocrine systems responding

to stress is the HPA axis which produces glucocorticoids such as cortisol in

humans and corticosterone in rodents. Appropriate concentrations of

cortisol are essential for normal neurodevelopment and function, as well as

cognitive processes such as learning and memory, and studies have shown

that microbes modulate the HPA axis throughout life. Stress can significantly

impact the MGB axis via the HPA axis and other pathways. Animal research has

advanced our understanding of these mechanisms and pathways, leading to a

paradigm shift in conceptual thinking about the influence of the microbiota

on human health and disease. Preclinical and human trials are currently

underway to determine how these animal models translate to humans. In

this review article, we summarize the current knowledge of the relationship

between the gut microbiota, HPA axis, and cognition, and provide an

overview of the main findings and conclusions in this broad field.
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1 Introduction

Humans have a longstanding and intimate, life-long,

relationship with microbes, collectively known as the human

microbiota, which plays a key role in influencing bodily systems

responsible for human health and disease (1–4). The gut microbiota

(GM), which comprises a complex, heterogeneous ecosystem of

microorganisms, including bacteria, archaea, fungi, protozoa,

viruses, and parasites, is a vital component of the human

microbiota (5–9). The bacterial population is the most extensively

characterised subset of the GM. While initially believed that

microbial cells outnumbered human cells by a factor of 10 to 1,

the current estimate is approximately 1.3 to 1 (10). Notably, the

Human Gut Microbiome (HRGM) has recently been expanded to

include 232,098 non-redundant genomes for 5,414 representative

prokaryotic species, with over 103 million unique proteins (11).

While the human genome is essentially stable and limited in

flexibility for the lifespan of the host, the vast genetic potential of

the microbes is dynamic and responsive to the environment. This

suggests that the GM is an important environmental factor for

humans, with evolutionarily conserved roles in the metabolism,

immunity, development, and behaviour of the host (2, 12–17).

Recently, pivotal roles in endocrine and neural development and

function have started to be elucidated (18, 19).

Emerging evidence suggests that the GM, the hypothalamic-

pituitary-adrenal (HPA) axis, and cognitive processes are linked

bidirectionally via multiple pathways, including the vagus nerve,

neurotransmitter and metabolite production, immune system and

blood-brain barrier regulation, and hormone metabolism.

Alterations in the GM, whether due to diet, antibiotics, or other

factors, can impact the stress response, HPA axis activity, and

overall cognitive health. This review aims to summarize the current

understanding of the role of the GM in regulating the HPA axis, a

key component of the gut-brain axis. The review further explores

the mechanisms and pathways through which the GM can alter gut-

brain communication, with an emphasis on the effects on the HPA

axis and its influence on cognition.
2 The microbiota-gut-brain axis

The MGB axis refers to the bidirectional communication

network between the CNS, the autonomic nervous system (ANS),

the endocrine system, the immune system, and the GM (20–23).

This system enables microbes to share information with the brain,

and the brain to communicate with the gut (24, 25). Despite

extensive data from animal and human studies supporting the

role of the GM in the MGB axis, the mechanisms by which the

GM impacts the human brain are not yet fully understood. What is

known has primarily been learnt from studies using germ-free

animal models, and studies examining the effects of specific

microbial species, probiotics, antibiotics, and infections. Further,

technological advancements in sequencing and metabolomics have

enabled scientists to explore this topic more thoroughly.

As a key regulator, the GM can modulate host physiological

processes through several proposed mechanisms (25, 26). These
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include microbial constituents [e.g. lipopolysaccharides (LPS) and

peptidoglycans (PG)] (25), microbial products [e.g. enzymes, short

chain fatty acids (SCFAs), and neurotransmitters] (27, 28),

hormone release (e.g. glucocorticoids) (29), and substrate

metabolism [e.g. bile acids (BAs) and tryptophan] (30, 31). In the

gut, the GM and its metabolites have been shown to modulate

gastrointestinal functions via their effects on intestinal permeability

(32–35), mucosal immune function (36–38), intestinal motility and

sensitivity (39, 40), and the enteric nervous system (ENS) (21, 24,

25, 41). The GM can stimulate the release of peptides and hormones

from enteroendocrine cells, which can have direct or indirect

central effects (22, 39). Further neuroendocrine and metabolic

pathways link the GM with the CNS (21).

The GM is critical to the development and functioning of the

CNS. Studies in animals have demonstrated the effect that the GM

has on neural development and neurochemistry in the host,

influencing the stress system, behavior, and cognition (42–47).

Conversely, the brain can affect intestinal function and the GM,

for example, by HPA axis-mediated glucocorticoid modification of

immunity in response to stress (29).
2.1 The role of the HPA axis in the
MGB axis

The HPA axis plays a central role in mediating the stress

response and regulating the interaction between the GM, gut, and

brain (42).

Mechanistically, cortisol can impact the MGB axis through

multiple pathways. Cortisol receptors are expressed on various

cells of the gut, including epithelial cells, immune cells, and

enteroendocrine cells, indicating a direct effect of cortisol on gut

function (21, 29, 48). Cortisol can also affect the gut microbiota by

altering gut transit time, intestinal permeability, and nutrient

availability, which can in turn impact the composition and

diversity of the GM (48). Furthermore, cortisol can impact the

brain by binding to glucocorticoid receptors (GRs) located in

various brain regions, including the hippocampus, amygdala, and

prefrontal cortex. There is also evidence for signaling between the

GM and CNS, since microbes residing in the gut can activate stress

circuits in the CNS through the vagus nerve and sensory neurons of

the ENS (21, 49–54).

Chronic or prolonged stress can lead to dysregulation of the

HPA axis, which can have negative effects on various bodily

systems, including the MGB axis (55). Elevated cortisol levels

have been associated with alterations in GM composition and

increased gut permeability, which can lead to inflammation and

contribute to brain dysfunction and various CNS disorders (56).

The effects of dysregulation of the HPA axis has primarily been

studied using various modalities of stress. Preclinical evidence

suggests that GM-mediated mechanisms are likely involved in

modulating brain processes, including brain biochemistry,

response to stress, pain interpretation, feeding, emotional

behaviors, and cognition (57–64). Initial clinical evidence of MGB

interactions primarily stems from associations between dysbiosis

and CNS disorders, such as autism, anxiety-depressive behaviors,
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and functional gastrointestinal disorders (63, 65–72). Furthermore,

recent studies have shown dramatic changes in the GM of patients

with Alzheimer’s disease, Parkinson’s disease, multiple sclerosis,

and schizophrenia (73–77). Fecal microbiota transplant (FMT)

studies have added evidence for causality by inducing many of

the symptoms of these diseases in germ-free animals (78).
2.2 Development and life course of the
MGB axis

There exists some controversy regarding prenatal exposure to

microbes and their importance to fetal development (79, 80).

However, the acquisition of microbes occurs primarily at birth,

with delivery through the birth canal exposing the infant to its

mother’s microbiota, resulting in vertical transmission of an initial

maternal signature (81). Caesarean section delivery alters the initial

microbial composition (82). After birth, several factors influence

GM composition in early life, including breastfeeding, nutrition,

infection and antibiotic use, environmental stressors, and host

genetics (83). While initial microbial diversity is low, it escalates

rapidly as a function of diet and environment, with an increase in

the relative composition of strict anaerobes (84). A more stable and

complex, adult-like microbiota starts to emerge as early as one to

three years of age, although this development may continue as late

as pre-adolescence (85, 86). The first year of life encompasses a

critical “window period” of development in which the GM may be

more susceptible to environmental influences and highly influential

with regards to the overall health of the host. This critical window of

GM development aligns with critical windows of development of

other systems that are also more sensitive and vulnerable to

environmental input, such as the immune system, HPA axis, and

brain development in general.

The GM of children is characterized by relatively higher

abundances of microbes with genes that function to support

human development, including vitamin biosynthesis and

polysaccharide and xenobiotic metabolism (84). Adolescence is

characterized by an intense period of sexual development and

growth, and recent data indicate that the GM undergoes

progressive changes during this period likely due to hormonal

surges, stressors, and other age-related factors (87). In adulthood,

the core GM is relatively stable, and the main factors influencing its

composition are diet, exercise, stress, disease, and medications (88).

Confirming the role of the GM in cognitive function in midlife,

Meyer et al. explored the relationship between gut microbial

community composition and cognitive function in 597 middle-

aged adults, and found a significant positive association between b-
diversity and all higher cognitive functions tested (89).

The aging process of the host parallels a continuous aging

progression of the GM (90). Stability begins to decline as we age,

and studies suggest that there is greater inter-individual variation in

older adults than younger adults (<65 years old) (91, 92) There is

also evidence that the diversity levels of the GM differ with aging,

with a reduction in the number of different bacterial species present

and changes in the relative abundance of different bacterial phyla,

with a decrease in beneficial bacteria such as Bifidobacteria and an
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increase in potentially harmful bacteria such as Proteobacteria (93–

96). Microbial composition can predict human chronological age

relatively accurately (97). In a study that used metagenomic profiles

from over 4,000 healthy people aged 18–90, the authors were able to

construct an algorithm that predicted individuals’ ages within

approximately six years of their actual age (98). Functionally, an

associated shift towards a more pro-inflammatory state has been

noted, along with a decline in immune function, making older

individuals more susceptible to infections and other diseases (96,

99). The GM of older individuals may be less efficient at

metabolizing certain nutrients, which could affect overall health

(92). These alterations may contribute to age-related inflammation,

oxidative stress, and neurodegeneration, and have been associated

with age-related health issues such as frailty and cognitive decline

(92, 100, 101).

There is growing evidence that age-related changes in the

microbiota may contribute to cognitive decline and other

neurodegenerative disorders (102, 103). Human studies

comparing the composition of the GM of elderly participants

suffering from cognitive impairment with healthy individuals

indicate significant changes in GM composition. Specifically,

there is an increase in pro-inflammatory taxa and a reduction in

anti-inflammatory taxa (104–109).

The HPA axis also undergoes age-related changes including

alterations in the sensitivity and responsiveness of the

hypothalamus and pituitary gland to negative feedback by

cortisol, changes in the levels and circadian rhythm of circulating

cortisol, changes in the expression and function of CRH and

glucocorticoid receptors in the hypothalamus, hippocampus, and

prefrontal cortex, changes in the activity and connectivity of brain

regions involved in stress regulation, including the amygdala,

hippocampus, and prefrontal cortex, and changes in the

microbiota, which can impact HPA axis function and contribute

to inflammation and oxidative stress (110). Essentially, the HPA

axis appears to become less responsive with aging, contributing to

the dysregulation of stress responses and the resultant development

of cognitive decline (111, 112).

Similar to aging, dysbiosis has been associated with increased

cortisol secretion, decreased negative feedback at the level of the

hypothalamus, and changes in the circadian rhythm of cortisol

release (113).
2.3 The influence of the gut microbiota
on neurodevelopment

Animal studies suggest that the GM plays a crucial role in

regulating early brain development (19, 45, 60, 114–117). During

key prenatal and postnatal periods, neurodevelopment depends on

the integration of environmental cues, such as MGB axis molecular

signaling (116). The maturation of neuronal networks is essential

for the developing nervous system to form functional neural

circuitry. Microglial cells, innate immune cells of the brain, play a

critical role in the elimination of unnecessary synaptic connections

required for this maturation process (118, 119). The GM appears to

influence microglial development and maturation (120, 121), and
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animal models have demonstrated downstream effects on various

aspects of neurocognitive function (19, 45, 60, 114, 115). In

contrast, early-life disruptions of gut colonization have been

linked to CNS alterations (122).

Germ-free animal models have been crucial in developing an

understanding of the role that the GM plays in neurodevelopment

(123). The nervous systems of germ-free animals develop differently

from those conventionally colonized, exhibiting key differences in

multiple neurotransmitter systems and their receptors (25). They

display increases in neurogenesis, hippocampal and amygdala

volume, myelination, and myelin plasticity-related genes in the

prefrontal cortex (25). Their dendrites are longer, and spines are

denser, but there are fewer synaptic connections. In the amygdala,

they have increased synaptic and neural plasticity-related genes and

increased neuronal activity-related genes (124). They present with

immature microglia and decreased immune system-related genes.

Due to the decreased expression of tight junction proteins, they have

a more permeable blood-brain barrier (BBB). Correspondingly, they

have impaired immune systems, dysregulated hormone signalling,

altered metabolism, and differences in neurotransmission (25).

Finally, germ-free animal studies demonstrate that the GM is

necessary for normal stress responsivity, anxiety-like behaviors,

sociability, and cognition (123).
3 Mechanisms and pathways of the
MGB axis

Although the precise mechanisms involved in the crosstalk

between the GM and brain remain to be fully determined, there

are several putative mechanisms and pathways (125). Microbes

influence CNS processes viamodulation of the nervous system (52),

endocrine system (51, 126), and immune system (120), together

with their ability to synthesize neurotransmitters (127–129) and

produce metabolites (127, 130–132) (Figure 1). Together, these

mechanisms and pathways illustrate the complex interplay between

the GM and the brain, highlighting the importance of

understanding the MGB axis in health and disease.
3.1 The HPA axis, glucocorticoids, and the
stress response

The HPA axis is a major stress response system in the body,

with neurons in the hypothalamic paraventricular nucleus (PVN)

synthesizing and secreting corticotropin-releasing hormone (CRH)

and antidiuretic hormone (ADH) in response to stress (133). These

peptides stimulate the release of adrenocorticotropic hormone

(ACTH) from corticotropic cells of the anterior pituitary gland,

which in turn targets the zona fasciculata of the adrenal cortex to

produce glucocorticoids, such as cortisol in humans and

corticosterone in rodents (133–135). Cortisol acts on the

hypothalamus and pituitary in a negative feedback loop to
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regulate the response (133). The PVN’s activity is regulated by

various afferent systems, including the sympathetic (SNS) and

parasympathetic nervous system (PNS), and limbic circuits (136).

The interplay of central and peripheral systems produces the

characteristic behavioral, endocrine, autonomic, and immune

responses to stress (135, 137). The release of cortisol is

characterized by both circadian and 60- to 90-minute oscillations

(138). The normal 24-hour profiles of both ACTH and cortisol

show an early morning peak, decreasing concentrations throughout

the day, a nadir around midnight, and an abrupt elevation during

late sleep culminating in the early morning peak (138).

Glucocorticoids are essential for regulating cellular processes,

including metabolism, growth, differentiation, and apoptosis, and

act via intracellular receptors in the nuclear receptor superfamily

(139). They regulate the transcription of target genes in organ

systems that maintain homeostasis and help the body cope with

physical and psychological stress (134, 135). Glucocorticoids are

involved in several processes related to host defense, including

immunity and inflammation, as well as metabolism, growth,

cardiovascular function, water and electrolyte balance,

reproduction, and mood and cognition (49, 140–148).

The brain is a crucial target organ for glucocorticoids, and their

actions are mediated by the mineralocorticoid receptor (MR) and GR,

which act as transcription factors and mediate non-genomic steroid

effects (149). During the early stages of acute stress, MR activation is

required for the appraisal process and memory retrieval, while GR

promotes memory consolidation and behavioral adaptation (150).

Glucocorticoids also play a vital role in central nervous system (CNS)

development and are required for normal maturation (139). In

adulthood, they contribute to neuronal plasticity, and have been

implicated in neurodegenerative processes.

HPA axis dysregulation can result in hyper- or hypocortisolism,

excessive or dampened reactivity to stressors, and circadian rhythm

abnormalities (17). HPA axis dysfunction is linked to a decline in

cognitive function, aging, immune system dysfunction, and

systemic inflammation (135). Individuals with altered HPA axis

function are also more likely to develop metabolic disorders such as

cardiovascular disease, diabetes, and inflammatory bowel disease

(IBD) (142, 151). Neuropsychiatric symptoms such as depression,

mania, anxiety, and neurocognitive impairment are associated with

both hyper- and hypocortisolism (143, 144). HPA axis dysfunction

is also associated with many major psychopathologies, including

autism, anxiety disorders, depression, and schizophrenia, as well as

other cognitive disorders (145).
3.2 The nervous system

3.2.1 The autonomic nervous system
The ANS regulates involuntary physiological processes

throughout the body, except for skeletal muscle, providing neural

control (152). In the gastrointestinal system, both the SNS and PNS

transmit afferent signals arising from the lumen to the CNS (via

enteric, spinal and vagal pathways) and efferent signals from the
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CNS to the intestinal structures (153). The PNS, which includes the

vagus nerve, provides both excitatory and inhibitory control over

gastric, intestinal, and pancreatic functions (154). On the other

hand, the SNS, predominantly inhibits gastrointestinal muscle and

mucosal secretion and regulates blood flow through neural-

dependent vasoconstriction. The ENS is the third and largest

component of the ANS. The individual components of the MGB

axis communicate bidirectionally within the ANS. Additionally, in

combination with the HPA axis and neuroendocrine signaling, the

ANS can induce CNS-modulated changes in the gut (155).
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3.2.1.1 The enteric nervous system

The ENS is a mesh-like system of 200 to 600 million neurons

embedded in the gastrointestinal system’s lining, which facilitates

communication between the brain and the GM (53). The ENS has

several functions, including food propulsion, nutrient handling,

blood flow regulation, and immunological defense (37, 153, 156). It

is crucial in maintaining homeostasis and a stable gut

microenvironment, in collaboration with the intestinal immune

system, endocrine system, and the GM (53). Structurally, it is

arranged into two ganglionated plexuses, the submucosal plexus
FIGURE 1

Overview of microbiota-gut-brain axis. Bidirectional communication mechanisms of the MGB axis include endocrine, neural, metabolic and immune
system pathways. The hypothalamic-pituitary-adrenal axis is a major neuro-endocrine system responding to stress with the release of
corticotrophin-releasing hormone (CRH) from the hypothalamus, and the subsequent release of ACTH from the pituitary, then cortisol from the
adrenal cortex. Cortisol reaches target tissues through the circulation, modulates the immune system, and impacts on GM composition and gut
permeability. The GM in turn is able to influence the stress response (for e.g., the HPA axis can be activated in response to increased circulating
cytokines subsequent to bacterial translocation). Various GM and enteroendocrine cell interactions result in the release of hormones that work
locally or on target tissues such as the brain, via the circulation. The vagus nerve, enteric nervous system, and spinal pathways provide rapid neural
communication routes, while neurotransmitters or their precursors can be produced or metabolized by microbes. Metabolites such as SCFA, BA and
eCB may be produced or modified by microbes and bind specific cell receptors in the gut or they may be absorbed into circulation and affect target
tissues. Microbes and their products may interact with the immune cells with downstream pro-inflammatory or anti-inflammatory effects. ACTH,
Adrenocorticotropic hormone; BA, bile acid; BCAA, branched chain amino acids; CCK, cholecystokinin; CRH, corticotropin-releasing hormone; eCB,
endocannabinoid; GABA, g-aminobutyric acid; GLP-1, glucagon-like peptide 1; GM, gut microbiota; HPA, hypothalamic-adrenal-pituitary; IL,
interleukin; ILC, innate lymphoid cells; LPS, lipopolysaccharide; PYY, Peptide YY; NPY, neuropeptide Y; PAMP, Pathogen-associated molecular
pattern; PG, peptidoglycan; SCFA, short chain fatty acid; Th, T helper cell; TJPC, tight junction protein complex; T reg, regulatory T cell; TNF-a,
tumor necrosis factor-a. Figure created with BioRender.com.
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(Meissner’s plexus) and the myenteric plexus (Auerbach’s Plexus),

consisting of nitrergic (nitric oxide-dependent) and cholinergic

(acetylcholine-dependent) enteric neurons (53).

The ENS can independently manage gastrointestinal function

since it is equipped with intrinsic reflex microcircuits (157, 158).

Moreover, the ENS produces more than 30 neurotransmitters, and

the hormones and peptides it releases into circulation can cross the

blood-brain barrier (BBB) and synergistically act with the vagus

nerve (159). Neuropod cells, a recently discovered type of

enteroendocrine cell, can transduce signals from the ENS to

sensory neurons (160). There are many commonalities between

the ENS and the CNS in terms of neurotransmitters, signaling

pathways, and anatomical properties (53), which is why the ENS is

referred to as the “little brain” (161). Although the ENS provides

independent control over gastrointestinal function, the CNS

provides extrinsic neural inputs that modulate, regulate and

integrate these functions via the vagus nerve, thoracolumbar, and

lumbosacral spinal cord (154).

Interactions between the GM and ENS have garnered

significant attention in the past decade. Cooperative interactions

between the ENS, GM, and intestinal immune and endocrine

systems maintain host homeostasis (53). The GM can influence

the development and function of the ENS directly and indirectly

due to close proximity. For instance, early exposure to intestinal

microbes is crucial for the postnatal development and organization

of the ENS (53). Germ-free mice display abnormalities in ENS

structure, such as reduced enteric neurons, with associated deficits

in gut motility (53). They also exhibit attenuated intrinsic sensory

signaling, defective influx of enteric glial cells into the intestinal

mucosa, and altered neurochemistry (114, 162, 163).

Enterochromaffin cells of the ENS are another intermediary that

facilitates communication with the GM (164). The biosynthesis of

serotonin by enterochromaffin cells is promoted and enhanced by

the GM, and is necessary for mucosal and platelet function (164).

The GM can also produce neurotransmitters, such as serotonin, g-
aminobutyric acid (GABA), histamine, catecholamines, and

acetylcholine, further influencing ENS activity (18). Additionally,

enteric neurons express toll-like receptors (TLRs), which recognize

and respond to microbial molecules (e.g., LPS and PG) or viral

RNA (54).

Recent studies have employed advanced technologies to

investigate how the GM regulates neural programs by sensing

cues from the environment and sending this information to the

CNS (165, 166). For instance, a seminal study by Muller et al. used

neuronal tracing techniques to demonstrate the modulation of

neuronal pathways of the MGB axis by microbes (165).

Specifically, the GM was shown to influence the functioning of

enteric neurons through activation of aryl hydrocarbon receptors

that regulate intestinal motility (166).

The ENS can influence the HPA axis through its regulation of

gut hormones, neuropeptides, and cytokines, which can stimulate

or inhibit HPA axis activity (155). Conversely, the HPA axis can

affect the ENS by altering gut motility and secretion, as well as

modulating the activity of enteric neurons and glial cells (21). This

bidirectional communication suggests that the ENS and HPA axis
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are closely interconnected and play important roles in regulating

stress responses and maintaining homeostasis.

3.2.1.2 The vagus nerve

The vagus nerve is the tenth cranial nerve that extends from its

origin in the brainstem down to the visceral organs (159). It is a vital

component of the PNS that connects the brain and gut to regulate

homeostasis and cognitive areas function (21). The vagus nerve

consists of both afferent and efferent neurons, making it the fastest

and most direct pathway between the brain and gut. Evidence

supports crucial roles in regulating inflammation, appetite, mood,

and the stress response (167).

Some vagal endings synapse onto neurons from the ENS, and

neuropod cells form fast excitatory synapses with vagal afferents

using glutamate as a neurotransmitter (78, 168). This increase in the

range of signals that can be transmitted by the vagus nerve enhances

its ability to perform various functions. Vagal afferents express a

plethora of receptors that detect various molecules such as

nutrients, peptides, cytokines, hormones, and endotoxins (78).

These sensory cues are transmitted rapidly to the nucleus tractus

solitarius (NTS) of the brainstem (78), the primary projection site of

gut-related vagal afferents in the brain (53).

Vagal brainstem nuclei then project to several regions of the

brain, including nuclei involved in stress and cognition (167). For

example, the hypothalamic PVN, an important hub for relaying

signals from the vagus nerve, is involved in stress-induced

gastrointestinal responses, including arousal, anxiety, and

depression (169). Its projections to the pituitary and ventral

tegmental area (VTA) provide the means to directly modulate the

HPA axis and cognition, respectively. Further vagal projections to

the arcuate nucleus integrate endocrine and behavioral aspects of

gastrointestinal function, modulating food intake and satiety (167).

Barrington’s nucleus assimilates cognitive behaviors, while the locus

coeruleus maintains arousal and attention, and integrates stress and

cognitive inputs. In the forebrain, the amygdala integrates

emotional and aversive inputs with learning and memory. The

stria terminalis processes and consolidates emotions and behavior,

and regulates the HPA axis and autonomic responses to stress. The

cortex integrates affect, emotion, and memory with autonomic

functions (167).

The gut is a vital control center for the immune system, and the

vagus nerve displays immunomodulatory properties in the complex

relationship between the gut, brain, and inflammation (170). In

response to cytokines and endotoxins, the vagus nerve signals the

brainstem, affecting fever and sickness behavior, as well as appetite

and mood (171–174). The HPA axis reacts by providing a

modulatory anti-inflammatory response (175–177). Moreover, the

cholinergic anti-inflammatory pathway primarily signals through

vagal efferents, serving as the effector limb of the “inflammatory

reflex” and interfacing the nervous and immune systems (50, 170,

178–182) (Figure 1).

Animal studies have shown that disrupting the vagus nerve can

lead to abnormalities in neurogenesis, stress reactivity, cognition,

and anxiety- and fear-related behavior (183). On the other hand,

stimulating the vagus nerve has been found to enhance memory
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(184, 185), facilitate hippocampal neurogenesis, increases

expression of brain-derived neurotrophic factor (BDNF) (186,

187), and enhance synaptic plasticity (188). BDNF is an

important plasticity-related protein that promotes neuronal

growth, development, and survival, and plays a key role in

learning, memory and mood regulation. Altered BDNF

expression is associated with disruptions in cognitive function

(189). These findings suggest that the vagus nerve promotes

neurogenic and neurotrophic signaling. Indeed, vagal nerve

stimulation is used to treat refractory epilepsy, Crohn’s disease,

refractory depression, chronic pain, and other conditions in

humans (159).

This section highlights the role of the GM in regulating brain

function through the vagus nerve. Animal and human studies have

demonstrated that the vagus nerve serves as the primary and most

direct signaling pathway between the GM and the brain (60, 78, 115,

190). The GM can activate vagal afferents directly or indirectly by

releasing neuroactive mediators or by influencing the luminal

concentration of molecules that vagal afferents detect (28, 78).

Specific bacterial strains have been shown to influence vagus

nerve signaling, to communicate with the brain, and alter

cognition. For example, administration of Citrobacter rodentium,

a pathogen, increased anxiety-like behaviors in mice, while

Bifidobacterium longum (NC3001) produced anxiolytic effects in a

vagus-dependent manner (191, 192). Similarly, Campylobacter

jejuni administration resulted in increased levels of anxiety-

related behavior and activation of vagal afferents (178).

Additionally, studies have shown that vagotomy prevented the

positive effects of administration of a human milk oligosaccharide

on long-term potentiation, learning, and memory in rats (193).

3.2.2 Neurotransmitters
Neurotransmitters provide additional communication

mechanisms between the GM and nervous system (Figure 2).

Microbes synthesize and metabolize several neurotransmitters,

including dopamine, noradrenaline, serotonin, acetylcholine,

histamine, and GABA (28). However, these neurotransmitters do

not seem to cross the BBB and likely act indirectly to modulate brain

function via the vagus nerve or ENS (78). Some neurotransmitter

precursors synthesized in the gut may reach the CNS via the

circulation and are able to cross the BBB via active transporters (194).

Animal studies provide evidence that microbial modulation of

these neurotransmitters may impact host physiology, and

preliminary human studies demonstrate that microbiota-based

interventions can alter neurotransmitter concentrations (28).

Germ-free mice studies have shown significant alterations in

multiple neurotransmitter systems and their receptors in several

brain regions (124). Similarly, antibiotic administration to deplete

the GM can change the levels of neurotransmitters in the gut and

blood (195, 196). Furthermore, microbial abundance has been

shown to alter the expression of neurotransmitter receptors in the

brain (51, 189, 191). Therefore, there is a growing body of evidence

suggesting that the GM can ultimately influence the levels of

neurotransmitters in the brain and alter brain function

and cognition.
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3.2.2.1 Tryptophan metabolism

Tryptophan is an essential amino acid. Its synthesis by microbes

has been well described (197). In the gut, it may be further

metabolized under direct or indirect control by the GM, giving

rise to several compounds, such as serotonin, kynurenines,

tryptamine, and indolic compounds, which participate in MGB

communication (197, 198).

Although tryptophan is essential for serotonin synthesis, the

dominant physiological pathway is the kynurenine pathway

(Figure 3). Kynurenine is produced from tryptophan by the

action of the hepatic enzyme, tryptophan-2,3-dioxygenase (TDO),

or the ubiquitous indoleamine-2,3-dioxygenase (IDO) (199).

Glucocorticoids and tryptophan induce TDO, while cytokines

induce IDO (200). Kynurenine can cross the BBB, and is further

metabolized along two separate arms to either kynurenic acid or

quinolinic acid, and further, niacin and nicotinamide adenine

dinucleotide (NAD+) (197). The balance between these two

metabolites appears important in neural health and disease (31),

as kynurenine pathway end-products are implicated in the

regulation of biological processes involving neurotransmission,

inflammation, and immunity (197). Moreover, kynurenic acid

appears to exert mucosal protective and immunoregulatory effects

in the gut (201). Activation of stress-responsive TDO or immune-

responsive IDO can limit the availability of tryptophan for

serotonin synthesis and increase the downstream production of

neurotoxic or neuroprotective metabolites (31).

In a recent study, the importance of the GM’s ability to

metabolize tryptophan into aryl hydrocarbon receptor ligands

and, therefore, modulate gut inflammation, was demonstrated in

patients with celiac disease (202). Several bacterial taxa can also

affect tryptophan levels by direct utilization for growth or via

tryptophanase expression (28, 203, 204), and these bacteria have

been associated with the development of neuropsychiatric

disorders, including autism spectrum disorders (205). Mounting

evidence suggests that the GM modulates the tryptophan and

kynurenine pathways and is a humoral route through which the

GM may influence cognition at the level of the CNS (206–210).

3.2.2.2 Serotonin

Serotonin regulates pleiotropic physiological processes,

including cognition, circadian rhythm, nociception, blood

coagulation, cardiovascular homeostasis, and gastrointestinal

secretion and peristalsis (211). Serotonin effects are mediated by

the family of serotonin G-protein-coupled receptors (GPCRs)

(212). Serotonin exerts both central and peripheral control. The

vast majority of serotonin is found outside of the CNS, with 90-95%

located in the gut, mostly within enterochromaffin cells (213, 214).

Serotonergic neurons have a significant influence on

neuroendocrine function, and there is a dynamic interplay and

extensive crosstalk between the serotonergic system and HPA axis

(215). Serotonin has complex effects on the overall stress response,

depending on the target cell and receptor type (216). Serotonin

regulates upstream CRH signaling systems via the activation of

serotonin 2C receptors of the hypothalamic PVN (217). Pre-

gestational and early-life stress, with activation of the HPA axis,
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have been linked with an altered serotonergic system, leading to

interruptions in brain development and cognition (218–220).

Indeed, the development of the serotonergic system within the

MGB axis depends on a low-stress environment and early life events

may be critical.

The GM can further regulate serotonin availability by signaling

enterochromaffin cells to produce serotonin via expression of

tryptophan hydroxylase, and by altering levels of SCFAs and BAs

which can influence serotonin production (46, 164, 221–223).

Germ-free mice exhibit reduced colonic serotonin production and

decreased levels in the blood, which normalize with microbial

colonization (164, 223). Moreover, male germ-free mice have

increased hippocampal serotonin levels, which colonization

immediately post-weaning does not reverse (124). When
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administered to rats, B. infantis results in reduced 5-HIAA

(serotonin metabolite) concentrations in the frontal cortex, and a

marked increase in blood concentrations of tryptophan and

kynurenic acid (224). Thus, the GM can indirectly influence the

activity of the serotonergic system, which in turn can affect the HPA

axis and stress response.

3.2.2.3 Catecholamines

Catecholamines, such as dopamine and noradrenaline, regulate

various body functions, including cognition, mood, and gut motility

and integrity (225). Dopamine is a major neurotransmitter in

reward-motivated behavior and is a precursor for other

catecholamines, like noradrenaline and adrenaline. Noradrenaline

is involved in arousal, alertness, sensory signal detection, behavior,
FIGURE 2

Signalling mechanisms – microbial products, metabolites, and neurotransmitters. Cells of the gut express a variety of receptors which are able to
sense and transmit signals from the intestinal lumen and mucosa. To communicate, the GM uses factors which include several microbial products,
eCBs, BAs, SCFAs, and neurotransmitters. PAMPs, such as LPS and PG, are small molecular microbial motifs that are recognized by TLRs, while this
signal is transferred to intracellular signaling pathways (for e.g., immune cell activation) by MYD88. The eCB system is not limited to the activity of
CB1 and CB2, and eCBs can also interact with other GPCRs, TRPV1, and the nuclear receptors PPAR-a and PPAR-g. To modulate gut function, BAs
interact with two main receptors, the GPCR named TGR5, and the nuclear receptor FXR. In the gut, SCFAs can activate FFA2, FFA3, GPR109a and
Olfr78, but may also enter the cell via transporters or via passive diffusion where they modulate the activity of several enzymes and transcription
factors or provide a source of energy for the cell. Small amounts of SCFAs are taken up into circulation where they may be transported to target
tissues such as the liver, pancreas and brain. The binding of these GM-derived molecules with their respective receptors leads to the activation of
cellular signaling pathways which then leads to alterations in cellular activity and gene expression, with downstream effects on host physiological
processes. AhR, aryl hydrocarbon receptor; AMPK, AMP-activated protein kinase; BA, bile acid; CB1 and CB2,, cannabinoid receptor type 1 and 2;
eCB, endocannabinoid; ENS, enteric nervous system; FFA2 and FFA3, free fatty acid receptor 2 and 3; FXR, farsenoid X receptor; GABA, g-
aminobutyric acid; GLP-1, glucagon-like peptide 1; GNG, gluconeogenesis; GPR119 and GPR109a, G-protein coupled receptor 119 and 109a; HDAC,
histone deacetylase; LPS, lipopolysaccharide; MCT, monocarboxylate transporter; MYD88, Myeloid differentiation primary response 88; Olfr78,
Olfactory receptor 78; PAMP, Pathogen-associated molecular pattern; PG, peptidoglycan; PPARa/g, peroxisome proliferator-activated receptors a/g;
PRRs, pattern recognition receptors; PYY, Peptide YY; SCFA, short chain fatty acid; SMCT, sodium-dependent monocarboxylate transporter; TGR5,
Takeda G protein-coupled receptor 5; TJPC, tight junction protein complex; TLR, toll-like receptor; TPRV1, transient receptor potential cation
channel subfamily V member 1. Figure created with BioRender.com.
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cognition, and the acute stress response (226). It is well established

that brainstem catecholaminergic centers play an important role in

the regulation of the HPA axis (227) and noradrenergic neurons are

required for normal activation in response to a variety of stressors.

Noradrenaline, released within the intestinal wall during activation

of the sympathetic nervous system in acute stress, has a wide variety

of actions at the intestinal mucosa, such as modulating intestinal

motility and transepithelial ion transport (228).

The GM also synthesize and respond to catecholamines. For

example, bacteria produce noradrenaline as a quorum sensing

molecule, and noradrenaline and adrenaline can promote

pathogenesis and growth (229, 230) Germ-free mice show

decreased noradrenaline in the cecal lumen and tissue, which is

restored with colonization (231). Additionally, they have increased

turnover rates of dopamine, noradrenaline, and serotonin in the

brain (124).

3.2.2.4 g-aminobutyric acid

g-aminobutyric acid (GABA) is an inhibitory neurotransmitter

synthesized from glutamate by GABAergic neurons in the brain.

GABA regulates various physiological processes and has been

shown to play a central role in cognition by regulating and

synchronizing neuronal signaling in the hippocampus (232). The

HPA axis is also regulated by GABAergic signaling at the level of

CRH, and nearly 50% of all synapses in the PVN are GABAergic

(233). Although CRH neurons integrate information from many

different brain regions involving several neurotransmitter systems,

the activity of CRH neurons is ultimately regulated by GABAergic

inhibition, mediated by GABAA receptors (234). The HPA axis can

also influence GABA production and signaling. Altered GABAergic
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profiles are associated with multiple diseases with cognitive

dysfunction, such as dementia and depression.

The GM can metabolize GABA and recent research has shown

that certain microbes can produce GABA, required for their growth

(235). In addition, changes in GM composition have been associated

with alterations in GABA receptor expression and GABA levels in the

brain (191). Germ-free animals demonstrate decreased GABA

concentrations in stool and blood, while fecal GABA levels can be

modified with antibiotics. Remarkably, in a study of healthy women,

levels of Bacteroides, identified as the major microbial producers of

GABA, were associated with increased grey matter in the cerebellum,

hippocampus, and frontal regions of the brain, as well as reduced

levels of anxiety, distress, and irritability (236). GABA does not cross

the BBB and somicrobial-derived GABAwould need to act locally on

the ENS or vagus nerve to influence the CNS. However, SCFAs such

as acetate can cross the BBB and be incorporated into the GABA

metabolic cycle (237).

3.2.3 The endocannabinoid system
The endocannabinoid system (ECS) is a complex signaling

system found throughout the body. The ECS is composed of

endocannabinoids (eCBs), cannabinoid receptors, and enzymes

involved in the synthesis and degradation of endocannabinoids.

The two primary endocannabinoids are anandamide (AEA) and 2-

arachidonoylglycerol (2-AG) (238). These bioactive lipid mediators

are produced from the common phospholipid precursor

arachidonic acid and released by various cell types in the body,

including neurons, immune cells, and adipocytes (239). They bind

high-affinity GPCRs, including cannabinoid receptors type 1 (CB1)

and type 2 (CB2) (238). As neuromodulators, eCBs often act in
FIGURE 3

Tryptophan metabolism. Tryptophan metabolism occurs via the serotonin or kynurenine pathways to produce bioactive products. In the serotonin
pathway, tryptophan is converted to 5-HTP by TPH1 in enterochromaffin cells, or TPH2 in neurons of the ENS or CNS. AAAD converts 5-HTP to
serotonin, which can be further metabolized to melatonin, via a series of steps. The vast majority of tryptophan is, in fact, utilized in the kynurenine
pathway, where tryptophan is converted to kynurenine by TDO in the liver (majority), or ubiquitously via IDO (including gut, brain, liver). Kynurenine
can be converted to kynurenic acid by the KAT enzymes, quinolic acid and further NAD+, or XA. In the indole pathway, microbes of the gut
metabolize tryptophan into indole and indole derivatives. 3-HAA, 3-hydroxyanthranilic acid; 3-HK, 3-hydroxykynurenine; 5-HIAA, 5-
hydroxyindoleacetic acid; 5-HT, 5-hydroxytryptamine; 5-HTP, 5-hydroxytryptophan; AAAD, aromatic amino acid decarboxylase; IA, anholocyclic
acid; IAA, indole-3-acetic acid; IAAld, indole-3-acetaldehyde; IAld, indole-3-aldehyde; IAM, indole-3-acetamide; IDO, indoleamine 2,3-dioxygenase;
ILA, indole-3-lactic acid; IPA, indole-3-propionic acid; IPYA, indole-3-pyurvic acid; KAT, kynurenine aminotransferase; MAO, monoamine oxidase;
NAD+, nicotinamide adenine dinucleotide; TDO, tryptophan 2,3-dioxygenase; XA, xanthurenic acid. Figure created with BioRender.com.
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retrograde, released from postsynaptic cells and traveling backward

across synapses, where they transiently inhibit the release of either

inhibitory GABA or excitatory glutamate from presynaptic

terminals (240) (Figure 4).

The ECS modulates a multitude of physiological processes,

including the HPA axis (241), cognition, learning and memory

(242), intestinal-barrier function (243), inflammation (244), energy

metabolism (245), among others (reviewed recently (239)). In

response to stress, eCB signaling modulates glucocorticoid and

CRH signaling in the brain and is crucial in recovering

homeostasis (241, 246, 247). The ECS is also widely expressed in

neural tissue of the gut and is critically involved in the maintenance

of intestinal homeostasis. It regulates barrier function and

permeability through the immune system, epithelial tight junction

proteins, and mucous secretion (248). Furthermore, it modulates

myenteric neuron activity, SNS and vagal nerve function, and the

release of neuropeptides such as ghrelin, leptin, and orexin (249).

The ECS and GM interact to regulate intestinal homeostasis

resulting in relevant functional effects in the gut and CNS (238, 246,

248, 250). Dysbiosis affects eCB signaling, and vice versa (243).

Germ-free animals demonstrate significant changes in the

expression of CB1 and CB2, and synthetic and degradative

enzymes throughout the gut (251). Vijay et al. studied the

relationships between the ECS, inflammatory cytokines, and the
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GM using a six-week exercise intervention in humans (252).

Changes in eCBs correlated with increased butyrate levels, and

decreased TNF, IL-6 and IL-10. Hence, the anti-inflammatory

effects of SCFAs may be partly mediated by the ECS. Healthy

mice colonized with Candida albicans showed marked anxiety-like

behavior and increased corticosterone concentrations that were

inversely correlated with forebrain AEA, demonstrating

disruption of the HPA axis through dysregulation of the ECS

(253). Both animal and human studies have shown that the ECS

and GM play a role in cognitive decline (254). Although microbes

secrete eCBs, their role in host physiology remains unclear (255).
3.3 The immune system

The immune system’s primary responsibility is to distinguish

between “harmful” and “harmless” signals and respond

appropriately. This is especially important in the gut, where

immune cells are constantly in contact with microbes. The GM is

therefore closely linked to the immune system, and they interact in

several ways [reviewed recently (256, 257)]. Additionally, the immune

system, HPA axis and CNS, and GM are closely interlinked.

One critical interaction involves the activation of pattern

recognition receptors (PRRs), including TLRs, by microbial
FIGURE 4

Endocannabinoid system. In the nervous system, presynaptic electrical impulses lead to calcium entry into the cell which drives the release of
neurotransmitters into the synapse. Neurotransmitter receptors on the postsynaptic neurons are then activated and drive the action potential
forward. The eCB system is a ubiquitous neuromodulatory system that functions throughout the body, including the nervous system to modulate
cell signaling. DAG and NAPE are produced from phospholipid precursors, and are converted to the endocannabinoids (eCB) 2-AE and AEA by DAGL
and NAPE-PLD, respectively. In retrograde signaling, these eCBs are mobilized from postsynaptic neurons and target presynaptic CB1 receptors to
suppress neurotransmitter release by inhibiting AC, decreasing cAMP and therefore decreasing calcium ion flow into the cell, or alternatively
influence receptor sensitivity and internalization via b-arrestin. eCB signaling in the CNS can also affect the functioning of microglia and astrocytes,
with modulation of the release of cytokines and neurotransmitters, respectively. In the gut, eCBs secreted by certain microbes (or host cells) interact
in microbiota-epithelial crosstalk, and include the immune and nervous systems, and metabolic, endocrine and barrier functions. 2-AG, 2-
Arachidonoylglycerol; AA, arachidonic acid; AEA, N-arachidonoylethanolamine (aka anandamide); AC, adenylate cyclase; CNS, central nervous
system; cAMP, cyclic AMP; DAG, diacylglycerol; DAGL, diacylglycerol lipase; EA, ethanolamine; FAAH, Fatty acid amide hydrolase; GLP-1, glucagon-
like peptide 1; GPCR MAGL - monoacylglycerol lipase; MGB, microbiota-gut-brain; NAPE, N-Acyl-phosphatidylethanolamine; NAPE-PLD, NAPE
phospholipase D; PIP2, Phosphatidylinositol 4,5-bisphosphate; PLC, phospholipase C; PYY, Peptide YY; TPRV1, transient receptor potential cation
channel subfamily V member 1. Figure created with BioRender.com.
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associated molecular patterns (MAMPs) (54). These molecular

signatures consist of microbial products such as the endotoxins

LPS and polysaccharide A (on the cell surface of gram-negative

bacteria) and PG (on gram-positive bacteria) (258). Each MAMP is

detected by a specific PRR expressed on various cell types, including

cells of the immune system (macrophages and natural killer cells)

and nervous system (myenteric neurons and enteric glial cells) (53).

Cytokines and chemokines are another mechanism by which

the immune system, GM, and CNS (including HPA axis) interact

(259). Immune cells in the gut produce cytokines to maintain

intestinal homeostasis, which in turn affects local microbial

concentrations (260). Cytokines may also be produced locally in

the CNS, or they may cross the BBB from the systemic circulation,

and directly affect brain function.

Epithelial integrity is a crucial feature of gastrointestinal and

nervous system homeostasis. It is essential to prevent the

unregulated leakage of products across the barrier while allowing

the transport of essential molecules. Furthermore, gut epithelial

integrity is critical for maintaining the symbiotic relationship with

the commensal microbes of the GM. This physical barrier includes the

mucosa, epithelial cells, as well as tight junction proteins, such as

occludin, claudins and zonula occludens (261). These tight junction

protein complexes are dynamically modulated by intracellular

signaling transduction systems and several extracellular stimuli,

including cytokines, small GTPases, and post-translational

modifications. When these regulatory mechanisms break down,

barrier integrity may be compromised. Injury, infections and

autoimmune diseases can influence the permeability of the gut and

BBB (262). Microbes and microbial products then gain access to the

circulation and may gain easier access to the CNS (262). Moreover,

microbial products, cytokines, and other immune molecules released

under the influence of the GM may further influence the BBB’s

integrity, alter BBB transport rates, and promote the release of

neuroimmune molecules from the cells of the BBB (262). The GM

can also alter BBB permeability by changing the expression of occludin

and claudin 5 (263). These factors may lead to neuroinflammation,

which is an important process shaping brain function.

Crosstalk between the GM and CNS is also essential for normal

development and homeostatic functioning of the immune system,

both innate and adaptive (256). While immune cell activation and

cytokine production have a minor impact on the CNS during

physiological perturbations, chronic systemic inflammation,

mainly in the form of infections, has long been associated with

behavioral alterations and cognitive dysfunction (264–266).

Antibiotic-treated and germ-free mice have pro-inflammatory

systemic and CNS immune system responses (120, 267).

Perturbations in microbial diversity, secondary to antimicrobials,

have been shown to influence pro-inflammatory cytokine secretion

in the CNS and alter microglial morphology (268–270).
3.4 Microbial metabolites

In addition to the complex communication pathways between

the GM and the host immune and nervous systems that have been

described, there are several other mechanisms involving the
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production of small molecules that impact human function

(271, 272).
3.4.1 Short chain fatty acids
Short chain fatty acids (SCFAs) are small organic

monocarboxylic acids produced by bacterial fermentation of non-

digestible polysaccharides in the large intestine. The main SCFAs

are butyrate (C4), propionate (C3), and acetate (C2) (132). SCFAs

are absorbed by colonocytes via monocarboxylate transporters

(MCTs) or via non-ionic diffusion across the epithelium (131, 273).

SCFAs are a source of energy and trophic factors for cells of the

colon and liver (274). Additionally, they can bind GPCRs,

specifically the free-fatty-acid receptors FFA2, FFA3, Olfr78, and

GPR109a, located throughout the body, including enteroendocrine,

immune, and neural cells (275–278). This suggests that SCFAs play

a key role in neuro-immuno-endocrine regulation (279–282)

(Figure 4). Indeed, extensive evidence supports pleiotropic roles

of SCFAs, which affect several host organs and systems, including

the gut and CNS (127, 131, 132). SCFAs have several local effects

that improve intestinal health, including the maintenance of

intestinal barrier integrity, mucus production, and protection

against inflammation (250). These processes are crucial to the

gut’s first line of defense. SCFAs promote immunity and suppress

inflammatory responses in the intestine and other organs by

regulating immune cells such as lymphoid cells, T cells, and B

cells (283–285).

By inhibiting histone deacetylase (HDAC) activity, SCFAs also

regulate systemic functions, promoting histone acetylation and gene

expression in host cells (250). This epigenetic mechanism has been

described in gastrointestinal, immune and neurological cells

[reviewed (131)].

SCFAs appear to play a significant role in MGB communication

(286). Research indicates that SCFAs can indirectly modulate the

PNS through expression of FFA3 in the enteric neural plexus, portal

nerve, and autonomic and sensory ganglia (131). Activation of

FFA3 receptors on vagus nerve cells can result in the activation

of various neurons in the CNS, including dynamic regulation of

hypothalamic neuronal circuitry (287).

SCFA-induced activation of receptors on enteroendocrine cells

can promote gut-brain signaling by inducing hormones such as

glucagon-like peptide 1 (GLP1) and peptide YY (PYY), as well as

neurotransmitters like GABA and serotonin (276). SCFA-signaling

can also induce other hormones, including leptin from adipocytes,

and insulin from pancreatic b-cells (288). Additionally, SCFAs can
modulate the levels of neurotransmitters and neurotrophic factors

and regulate the expression of tryptophan 5-hydroxylase, the enzyme

involved in the synthesis of serotonin, and tyrosine hydroxylase, the

enzyme involved in the rate-limiting step in dopamine,

noradrenaline, and adrenaline synthesis (18, 132, 164, 222).

Moreover, the abundant expression of MCTs on endothelial

cells suggests that SCFAs can cross the BBB, which is supported by

the presence of SCFAs in human cerebrospinal fluid (CSF) and in

brain uptake studies (286). Accumulating evidence supports the

idea that SCFAs are necessary for the maintenance of CNS

homeostasis, learning and cognition, and reward-associated
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behaviors (25). SCFAs also influence the integrity of the BBB by

upregulating the expression of tight junction proteins (263).

SCFAs may also improve neuronal homeostasis and function by

influencing neurotrophic factors such as nerve growth factor, glial

cell line-derived neurotrophic factor, and BDNF (119–122). These

factors regulate the growth, survival, and differentiation of neurons

and synapses in the CNS, and are important for learning and

memory. SCFAs can modify neuroinflammation by affecting the

morphology and function of glial cells (120, 286, 289, 290). By

administering SCFAs to germ-free mice, Erny et al. were able to

rescue deficits in microglial immaturity and morphology (120).

There is also evidence to suggest that SCFAs can modulate the

HPA axis. In stressed mice, SCFA administration reduced HPA axis

hyperactivity and intestinal permeability (291). In humans, a recent

triple-blind, randomized, placebo-controlled intervention trial

examined the effects of colonic SCFA-mixture delivery in men on

responses to psychosocial stress and fear tasks (292). SCFA

supplementation was shown to downregulate the HPA axis by

significantly attenuating the cortisol response.

Altered SCFA production has also been demonstrated in a

variety of neuropathologies (42, 116, 127, 130, 132, 292–295). These

findings suggest that SCFAs regulate CNS processes through both

direct and indirect mechanisms and may ultimately affect host

cognition and response to stress.

3.4.2 Bile acids
Bile acids (BAs) are products of cholesterol metabolism

primarily produced in the liver as primary BAs and modified by

the GM into secondary BAs through processes such as

deconjugation, dihydroxylation, dehydrogenation, and

isomerization (Figure 5) (30, 296, 297). While their role in

enterohepatic circulation as detergents for lipid digestion is well

established, recent studies have also revealed their function as

hormones via receptors such as farnesoid X receptor (FXR) and

Takeda G protein-coupled receptor 5 (TGR5), with significant

regulatory and signaling activities (298). BAs can also activate

pregnane X receptors, vitamin D receptors, and glucocorticoid

receptors (299). Their functions encompass regulation of motor,

sensory, and secretory functions of the gut, intestinal barrier

permeability, inflammatory response, and several metabolic

processes, including lipid and glucose metabolism, and hepatic

gluconeogenesis (300).

The effects of BAs extend beyond the gut, impacting various

tissues throughout the host. BA receptors are present in the brain,

and BAs can either be synthesized locally or actively transported

across the BBB by BA transporters from circulation (297, 301, 302).

Consequently, circulating BA levels significantly influence the

CNS’s BA profile (303). FXR knockout mice exhibit abnormal BA

and neurotransmitter concentrations, resulting in impaired

cognition and motor coordination (304). TGR5, expressed in

brain and peripheral neurons, as well as glial and microglial cells,

can be activated by several neurosteroids (305). Specific BAs

demonstrate neuroprotective effects in cellular and animal

models, with human clinical trials underway (306–308).
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BAs play a role in regulating the HPA axis. BAs modulate HPA

axis activity by inhibiting CRH release through FXR activation,

expressed in the hypothalamus (309). Additionally, BAs can

interact with TGR5, expressed in the hypothalamic PVN,

stimulating the HPA axis by increasing CRH (310, 311).

Cholestasis, associated with suppression of the HPA axis, likely

due to BA interactions with glucocorticoid receptors in the brain

(299, 312). The discovery of FXR and TGR5 receptors in the adrenal

gland further connects BAs with glucocorticoid metabolism (311,

313–315). BAs might act via TGR5 in a cAMP/protein kinase A

(PKA)-dependent fashion phosphorylating and thus activating

steroidogenic acute regulatory protein (StAR) and hormone

sensitive lipase (HSL) (316). FXR activation is known to regulate

lipoprotein receptors and transporters, as well as enzymes in the

steroidogenic pathway, and has been shown to increase

corticosterone levels in mice (311).

The GM influences BA metabolism, and BAs affect the GM’s

composition (296). Specific microbes directly contribute to BA

transformation, impacting the BA pool’s composition and size

(317). Some BAs serve as substrates for gut microbes, while

others exhibit antimicrobial properties, actively shaping the GM

at the highest taxonomic levels (318). The BA-microbiota axis

modulates the immunoregulatory environment along the gut

(303). Given this close bidirectional relationship between BAs and

the GM, these metabolites have emerged as important modulators

of the MGB axis, functioning directly via BA receptors in the ENS

and brain or indirectly via GLP-1 or the FXR-FGF15/19 axis (297,

319). Changes in the GM’s composition correspond to changes in

blood and brain BA profiles, which are essential because specific BA

ligands’ distinct physicochemical properties determine the potency

of BA receptor activation (320–323).

Altered BA profi les have been observed in several

neuropathologies associated with cognitive decline, such as

Alzheimer’s disease (302, 324). BA disorders are also associated

with neural symptoms (300). BAs may substantially affect cognitive

function by their affinity to muscarinic receptors, as well as GABA

and NMDA receptors (325). Germ-free mice excrete less fecal BAs,

have a larger BA pool, and have different gene expression profiles

involved in BA metabolism, than wild-type mice (323). Postnatal

maturation of the GM in newborn mice was shown to be dependent

on BAs and neonatal cholestasis is associated with dysbiosis in

infants (326, 327). Bile duct ligation alters the GM composition, and

increases the permeability of the BBB (328, 329). In a study of

patients with depression and anxiety, BA profiles associated with

altered GM composition were significantly different in those with

more severe symptoms, and specific BA parameters were able to

distinguish treatment failures from remitters (330).

3.4.3 Branched-chain amino acids
Branched-chain amino acids (BCAAs) are essential amino acids

including leucine, isoleucine, and valine, which participate in

various biochemical functions, including energy production,

protein synthesis, insulin secretion, brain amino acid uptake, and

immunity (331). The GM produces higher proportions of specific
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BCAAs (valerate, isobutyrate, and isovalerate) relative to other

amino acids, which have been shown to influence epithelial and

mucosal homeostasis (332). Additionally, BCAAs can be utilized by

microbes, potentially regulating intestinal microbial species,

diversity, and metabolism (333, 334).

BCAAs regulate key signaling pathways, most notably the

activation of mechanistic target of rapamycin (mTOR), which

serves as the master regulator of cell growth and proliferation

(331). Mice supplemented with a BCAA-enriched cocktail

exhibited improved physical endurance and an extended

lifespan (335).
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In the CNS, BCAAs play roles in protein synthesis, food intake

regulation, and serve as nitrogen donors involved in intercellular

shuttling and the synthesis of the neurotransmitters glutamate and

GABA (both modulate the HPA axis) (336). Mice deprived of

leucine had increased HPA axis activation via CRH expression

(337). Excessive BCAA concentrations are considered toxic and can

cause tissue damage, particularly in the CNS (338). Although

exploratory studies remain in their infancy, evidence suggests that

BCAA modulation may be useful in cognition disorders (339–341).

Further research is required to determine the relationship between

the GM, BCAAs, HPA axis, and cognition.
FIGURE 5

Bile acids, BA receptors, and signaling pathways. In the liver, the classical pathway of bile acid (BA) synthesis begins with the conversion of
cholesterol into 7a-hydroxycholesterol by the rate-limiting enzyme cholesterol 7a-hydroxylase (7a-OHase; CYP7A1). The 7a-hydroxycholesterol is
then further metabolized into cholic acid (CA) and chenodeoxycholic acid (CDCA) through a series of enzymatic reactions. Once synthesized, BAs
are conjugated with either glycine or taurine, which increases their solubility and reduces their toxicity. The conjugated BAs are then secreted into
bile canaliculi, stored in the gallbladder, and released into the small intestine following a meal. After completing their role, approximately 95% of BAs
are reabsorbed in the ileum and transported back to the liver via the enterohepatic circulation. As BAs pass through the gastrointestinal tract, they
encounter a diverse population of gut bacteria and the synthesis of secondary BAs occurs in the large intestine as a result of microbial
biotransformation. Secondary BAs are important for maintaining the overall BA pool in the body and contribute to the regulation of cholesterol
homeostasis, energy metabolism, and the immune system. BAs can also act as signaling molecules, interacting with specific receptors such as the
nuclear receptor FXR and the cell membrane receptor TGR5 (expressed in various tissues, including the liver, gut, enteric nervous system, CNS, and
adrenal glands) which are involved in the modulation of numerous physiological processes, including glucose metabolism, lipid metabolism, and the
regulation of the gut-brain axis. In the gastrointestinal tract, BAs bind FXR in enterocytes and this activates the expression of FGF19, which is then
secreted into the bloodstream and plays a crucial role in MGB communication. FGF19 acts as an endocrine signal crossing the BBB to reach the CNS
and then binding to its cognate receptor, FGFR4, and co-receptor b-Klotho. This interaction leads to the activation of intracellular signaling
cascades, such as the MAPK pathway and the PI3K/Akt pathway. These signaling pathways regulate various processes, including cell growth,
differentiation, and metabolism, and contribute to the modulation of the gut-brain axis. Additionally, activation of TGR5 by BAs can lead to the
release of GLP-1, an incretin hormone that modulates insulin secretion and glucose homeostasis. In the CNS, TGR5 activation has been implicated in
the regulation of energy balance, neuroinflammation, and neuroprotection. BAs can influence the HPA axis through both direct and indirect
mechanisms involving signaling pathways in the CNS and the adrenal glands. In the CNS, BAs can modulate the HPA axis by interacting with FXR and
TGR5, which are expressed in various brain regions, including the hypothalamus and the hippocampus. Activation of these receptors by BAs can
influence the release of CRH from the hypothalamus and ACTH from the pituitary gland, leading to the modulation of cortisol secretion from the
adrenal cortex. Furthermore, BAs can directly affect the adrenal glands, influencing the release of cortisol. BA can alter adrenal steroidogenesis by
modulating the expression and activity of key enzymes involved in the biosynthesis of cortisol, including HSL, StAR, and cytochrome P450 enzymes
(e.g., CYP11A1, CYP11B1, and CYP11B2). Additionally, BAs can influence adrenal cell function by activating FXR and TGR5, which may regulate
intracellular signaling pathways and gene expression patterns related to steroid hormone production, inflammation, and oxidative stress. Primary bile
acids: CA, cholic acid; CDCA, chenodeoxycholic acid; GCA, glycocholic acid; TCA, taurocholic acid; GCDCA, glycochonedeoxycholic acid; TCCDA,
taurochenodeoxycholic acid. Secondary bile acids: DCA, deoxycholic acid; G/T-DCA, glyco/tauro-deoxycholic acid; G/T-LCA, glyco/tauro-
lithocholic acid; G/T-UDCA, glyco/tauro-ursodeoxycholic acid; UDCA, ursodeoxycholic acid; LCA, lithocholic acid; UDCA, ursodeoxycholic acid.
ACTH, adrenocorticotropic hormone; Akt, protein kinase B; BA, bile acid; BBB, blood brain barrier; CNS, central nervous system; CRH,
corticotrophin-releasing hormone; FGF19, fibroblast growth factor 19; FGFR1-4, fibroblast growth factor receptors 1 to 4; FXR, farnesoid X receptor;
GLP-1, glucagon-like peptide 1; GLP-1R, glucagon-like peptide 1 receptor; HSL, hormone sensitive lipase; MAPK, mitogen-activated protein kinase;
MGB, microbiota-gut-brain; PI3K, phosphatidylinositol 3-kinase; StAR, steroidogenic acute regulatory protein; TGR5, Takeda G protein-coupled
receptor 5. Figure created with BioRender.com.
frontiersin.org

https://www.BioRender.com
https://doi.org/10.3389/fendo.2023.1130689
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Rusch et al. 10.3389/fendo.2023.1130689
4 The relationship between the
microbiota, HPA axis, and cognition

4.1 Stress-related interactions between the
HPA axis and gut microbiota

4.1.1 Evidence from animal studies
The microbiota and HPA axis develop rapidly and profoundly

in the first years of life, and environmental stressors can affect both

(146–148). Stress experienced during different periods of life can

have varying physiological consequences. Early life stressors, and in

utero stressors, can impact the development and function of the

HPA axis (149). Stress during pregnancy disrupts the vertical

transmission of microbes from mother to offspring, leading to

alterations in the maternal microbiota, which are then transferred

to the offspring (342). Jasǎrević et al. demonstrated changes in the

microbiome of these offspring, as well as alterations in the

metabolome of the gut and brain (343). In a subsequent study, it

was shown that FMT from stressed dams into stress-naïve germ-

free mice was sufficient to instill the phenotype observed in stress-

exposed offspring (344).

Early life stress, such as maternal separation, activates the HPA

axis with associated changes to the developing microbiota,

ultimately leading to an imbalance in the GM and an

inappropriate stress response (18). Several studies have

demonstrated that neonatal stress can lead to short- and long-

term alterations in the diversity and composition of the GM (345–

347). Interestingly, these consequences appear to be age-dependent.

In response to early life stress, younger rats had increased

neurogenesis, decreased BDNF IV promoter histone methylation,

with a complementary increase in hippocampal BDNF

concentration, and associated improvements in spatial and non-

spatial learning (348). In contrast, middle-aged rats demonstrated

opposing changes, concomitant with impairments in hippocampal-

dependent cognitive tasks. These discordant results illustrate the

biphasic consequences of early life stress and indicate a role for

epigenetic modification of BDNF expression. Furthermore, chronic

antidepressant treatment post-exposure was able to rescue the

neurological decline observed in the middle-aged rats (348).

A landmark paper by Sudo et al. provided evidence for the

essential role of the GM in programming the stress response by

illustrating the differences in HPA axis hormones and receptors in

germ-free mice when compared to specific pathogen free (SPF)

mice (51). Germ-free mice had increased acetylcholine, ACTH, and

corticosterone responses following acute stress, indicative of

enhanced HPA axis activity. Moreover, these animals showed

decreased expression of NMDA receptor subunits (NR-1) in the

cortex, and of NR-2a in the cortex and hippocampus, while BDNF

levels were lower in the cortex and hippocampus. Following chronic

restraint stress, germ-free mice showed significantly greater HPA

axis activity, whereas the SPF mice exhibited more anxiety-like

behaviors under the same stress (349). These findings have

subsequently been reproduced, with both male and female mice

demonstrating enhanced stress reactivity to a novel environmental

stressors (189, 350, 351). Indeed, germ-free animals show
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widespread neurodevelopmental changes, associated with

alterations in monoaminergic neurotransmission in the CNS (189).

Animal models of chronic stress demonstrate altered intestinal

physiology and GM composition, with an increased secretory state

and permeability (352–355). Alterations in gut barrier integrity

enable bacteria (and microbial-products) to translocate across the

mucosa and epithelium, interfacing with immune and neuronal

cells (356, 357). Mounting evidence suggests that chronic

interactions can lead to systemic, low-grade inflammation

contributing to the development of autoimmune, metabolic, and

cognitive disorders (358). Moreover, exposure to chronic stress and

the subsequent disruption of GM stability has been shown to

increase host susceptibility to infection. Mice exposed to

prolonged restraint stress demonstrated changes in GM

composition, such as bacterial overgrowth and reductions in

diversity and richness (359). When challenged orally with the

enteric murine pathogen C. rodentium, chronically stressed mice

had an increased pathogen load and increased colonic TNF-a
expression. Probiotics rescued these changes in the GM and the

associated host-microbe interactions. A study by Allen et al.

demonstrated that the GM is necessary for stress-induced

immunomodulation, with enhancement of splenic macrophage

reactivity occurring in colonized controls but not in germ-free

mice, in response to social disruption stress (360).

The impact of the GM on the HPA axis can further be

interrogated following deliberate interventions. Chronic antibiotic

treatment led to a decrease in CRH receptor mRNA levels in the

brains of rats (361). The introduction of pathogenic bacteria reduced

cognitive abilities and heightened anxiety-like behaviors (362, 363).

Exposure of neonatal animals to low-dose endotoxins resulted in the

activation of TLRs (364, 365). In addition, they showed long-term

HPA axis alterations in activity, as evidenced by increased mean

glucocorticoid concentrations resulting from an increase in

glucocorticoid pulse frequency and amplitude. In an animal model

of diet-induced obesity, anxious and depressive-like behaviors were

associated with decreased hippocampal levels of glucocorticoid

receptors and an exaggerated HPA axis-mediated stress response to

acute physical and social stress (366). The probiotic B.

pseudocatenulatum (CECT 7765) reversed the glucocorticoid

receptor and stress response abnormalities, along with the neuro-

behavioral phenotype. Probiotic treatment with Lactobacillus sp.

concurrent with early life maternal separation stress could

normalize HPA activity (346). Similarly, pre-treatment with L.

farciminis reduced HPA hyper-reactivity, intestinal permeability,

and neuroinflammation resulting from restraint stress (367). When

L. rhamnosuswas administered tomice, region-dependent alterations

in GABA receptor expression in the brain were found to parallel the

reduction in stress-induced glucocorticoid levels (191). Notably, the

neurochemical effects were not found in vagotomised mice,

implicating the vagal pathway. Recently, the GM was shown to

influence the expression of genes encoding proteins that participate

in the HPA axis and the peripheral metabolism of glucocorticoids

(368). A study by Mudd et al. reported a predictive relationship

between levels of fecal Ruminococcus, serum cortisol, and brain N-

acetylaspartate in young pigs (126).
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4.1.2 Evidence from human studies
Although there remains a dearth of evidence from human

studies, a recent pilot study of 34 healthy infants found that GM

composition at one month (measured as alpha diversity) was

positively associated with HPA axis reactivity following a painful

stressor (369). In a larger cohort of 193 babies (aged 2.5 months),

the cortisol stress response was weakly associated with alpha

diversity (370). In healthy adults, the experimental administration

of LPS in a randomized control trial (RCT) caused a transient

physiological stress response, with dose-related increases in cortisol,

noradrenaline, body temperature, pulse rate, and cytokines (371).

This stress response was associated with increased anxiety and

depressed mood. Alterations in cognition occurred both in the

short- and long-term, confirming mechanisms for both the

promotion and inhibition of cognitive performance during acute

inflammatory stress.

In another RCT, a combination probiotic (L. helveticus (R0052)

and B. longum (R0175)) administered to healthy volunteers was

associated with beneficial psychological effects in participants and a

decrease in 24-hour urinary cortisol, suggesting attenuation of the

HPA axis in response to stressors (372). A recent meta-analysis of

RCTs focusing on the efficacy of probiotics on stress in healthy

individuals showed that probiotic use generally reduced subjective

stress levels and appeared to alleviate stress-related sub-threshold

anxiety and depression (373). However, cortisol levels were not

significantly altered. In a small but detailed four-week study

investigating the role of dietary fibre and fermented foods on the

GM profile and function, including stress and overall health, subtle

GM composition changes were associated with significant changes

in several faecal lipids and urinary tryptophan metabolites (374).

Participants reported reductions in perceived stress, but these were

not significantly different to controls, and markers of stress were

unaffected. However, the reduction in perceived stress was dose-

dependent, with higher dietary adherence resulting in larger

reductions in stress.
4.2 HPA axis-related interactions between
the gut microbiota and cognition

4.2.1 Cognition
Cognition is defined as the complex mental process of

acquiring, understanding, and storing information through

thought, experience, and the senses. Essentially, it is the ability to

perceive and react, process and understand, store and retrieve, and

make decisions and produce appropriate responses. Cognition is

not a singular concept, and various ‘domains’ (functions) with

several components have been identified. Cognitive dysfunction

typically manifests as impairment in one or more aspects of

memory, language, visuospatial, execution, computation,

understanding, or judgment, amongst others. An increasing body

of preclinical and human evidence demonstrates that the MGB axis

plays important roles in the development and maintenance of

various components of cognition (191, 362, 375).
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4.2.2 Evidence from animal studies
Studies in germ-free mice have shown that, in the absence of

microbes, the brain is markedly affected, exhibiting deficits in

learning, memory formation and recognition, and social and

emotional behaviors (58, 123, 124, 362). Gareau et al.

demonstrated impaired short-term recognition and working

memory in 5 to 6-week-old germ-free mice when compared to

conventionally reared counterparts (362). Behavioral differences in

germ-free mice include their anxiolytic-like manner when

compared to SPF controls, although some studies report increased

anxiety-like behavior in different species (124, 189, 351, 376).

Microbial colonization has been shown to rescue these elements

of cognition, but only if administered during early stages of life (124,

350). Germ-free mice present with social cognitive deficits, which

may be associated with biochemical changes, such as decreased

hippocampal BDNF and c-FOS expression, important in memory

(124, 362, 376, 377). Further studies have demonstrated that

reduced cognitive function is inversely associated with BDNF

mRNA levels (124, 350).

Several metabolomic studies show alterations in the dopamine

and serotonin systems (124, 189, 350, 378–380). These

changes include increased hippocampal dopamine D1 receptor

mRNA levels and decreased dopamine D1 receptor in the

striatum and nucleus accumbens, as well as increased serotonin in

the blood and hippocampus, with decreased serotonin receptor

expression, respectively.

The role of sexual dimorphism must be noted, as several studies

have documented sex-specific differences in the serotonergic system

of germ-free animals (350). Female offspring displayed increased

cognitive deficits and anxiety-like behavior following prenatal

stress, which were associated with GM alterations in the pregnant

females and increased IL-1b and decreased BDNF levels in utero

(381). In contrast, male offspring presented with deficits in social

cognition only, without disturbances in the other behavior or

cognitive parameters measured (146).

The use of broad-spectrum antibiotics provides another

modality to study the cognitive deficits induced by dysbiosis.

Administration has been shown to alter tryptophan metabolism

and BDNF, NMDA receptor subunit 2B, serotonin transporter,

neuropeptide Y, oxytocin, noradrenaline, and vasopressin

expression (382, 383). Möhle et al. administered long-term

antibiotics to adult mice, resulting in a decrease in hippocampal

neurogenesis and memory retention (384). Confirming a role for

the GM, these deficits were reversed by a combination of gut flora

reconstitution with probiotics and voluntary exercise. The function

of the GM was further demonstrated in a recent study comparing

antibiotic-treated and germ-free mice with regards to fear

extinction learning (385). Without a complex microbiota, both

types of mice exhibited altered fear-associated behavior, changes

in gene expression in brain cells, and alterations in the firing

patterns and rewiring ability of neurons. Selective colonization

revealed a critical developmental period, indicating that

microbiota-derived signals were required during early post-natal

and adult life for normal learning. Given the well-established
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relationship between glucocorticoids and memory formation,

studies like this suggest a complex relationship between the GM,

HPA axis and cognitive processes (386).

Animal models can be further used to explore the role of

prebiotics and probiotics on cognition and behavior, including

changes in depression, anxiety, and stress associated with changes

in immune markers, hippocampal synaptic efficacy, and tryptophan

metabolism (376, 387). Administering Mycobacterium vaccae, a

transient commensal microbe, as a probiotic or vaccine to young

adult mice improved behavior, learning, and memory during

cognitive testing, confirming the role of the immune and

serotonergic systems in MGB pathways (388, 389). The probiotic

B. longum (NCC3001) demonstrated vagal pathway-mediated

anxiolytic effects in mice and B. longum (1714) showed improved

learning and memory after 11 weeks of supplementation (192, 390).

Supplementation with various Lactobacillus species resulted in

improvements in cognitive abilities and social deficits and these

changes were shown to occur alongside altered GABA expression in

the brain, as well as significant changes in the oxytocin and vagus

nerve pathways (191, 391). Six weeks of administration with the

probiotic Clostridium butyricum restored cognitive function in a

mouse model for vascular dementia, which was associated with

increased butyrate levels in fecal and brain samples, and activation

of the hippocampal BDNF-PI3K/Akt pathway (392).

Infection studies are another useful modality. Administration of

C. rodentium, combined with acute stress, led to memory

dysfunction in young adult germ-free mice (362). This deficit was

prevented by daily administration of a Lactobacillus sp. probiotic

combination before infection. Humann et al. showed that microbial

PGs can traverse the mouse placenta, such that maternal

administration of PGs could be detected in the fetal brain (64).

The offspring exhibited decreased cognitive function related to

TLR-2-mediated neuroproliferation via FoxG1 induction in the

cortex. Neonatal LPS exposure leads to similar cognitive deficits

(393). Bilbo et al. revealed that neonatal E. coli infection could

impair memory in adult rats (394). Intriguingly, the deficit was only

observed if an LPS challenge was administered at the time of

learning and could be prevented by daily handling of the neonatal

rats, which significantly altered their basal HPA axis activity (395).

Animal and human studies indicate an association between

prenatal bacterial or viral exposure and the subsequent

development of various disorders. Mid-gestation injection of

maternal mice with low-dose immunostimulatory polyinosinic:

polycytidylic acid (poly I:C) to mimic viral infection significantly

impaired non-spatial memory, learning, and motor activity in the

offspring at 3 and 9 weeks of age (396). Infection and/or the

immune response to mimetics of infectious agents potentially

have long-lasting effects on the cognitive abilities of offspring. In

humans, the consequences of maternal infection for the microbiota

of the offspring, and related cognitive abnormalities, remain unclear

and warrant further investigation. These data highlight the

interrelatedness of the microbes, the HPA axis, and cognition.
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4.2.3 Evidence from human studies
4.2.3.1 Microbial colonization and
microbiota development

Previously, cognition was thought to be regulated solely by the

CNS. However, it has become clear that many other non-CNS

factors, including the GM, also regulate and influence cognitive

function (397). Indeed, it has been postulated that the development

of higher cognition in humans may not have evolved in the absence

of microbes (398). Considerable attention has recently been paid to

unravelling the mechanisms by which the GM, human brain and

cognition interrelate (Figure 6). Carlson et al. assessed microbiota

composition in three groups of one-year-olds, characterized by

global and regional brain volume using magnetic resonance

imaging (MRI), and cognitive outcome tests, using cluster

analysis (399). The group with the greatest abundance of

Bacteroides outperformed the other two groups using the Mullen

Scales of Early Learning assessment. They were also less likely to

have been delivered by Caesarean-section. Other studies have also

linked delivery mode with neurocognitive development and long-

term poor immune and metabolic health outcomes, highlighting the

importance of microbial colonization at birth (400, 401). New

research suggests that the HPA axis may also be important for

linking delivery by C-section to poor health outcomes later in life.

In a longitudinal study of 136 infants, those delivered by C-section

had lower cortisol concentrations at baseline and in response to a

painful stress test at six-month follow-up, signifying an altered HPA

axis (402). In a cohort of more than 7,000 neonates, Kiilerich et al.

found that levels of inflammatory and stress markers were lower,

and growth factor levels higher, in infants delivered via pre-labor C-

section when compared to those delivered vaginally (403).

Interestingly, these differences were not significant if C-section

was performed during labor, suggesting that the labor process

itself initiates important endocrine, physiological, and

biochemical processes relevant to the neonatal immune system

and stress response.

4.2.3.2 Antibiotic use

It is well established that the use of antibiotics is critical and

necessary when warranted. However, inappropriate use is

associated with several negative health outcomes, including the

emergence of antimicrobial resistance. Certainly, the MGB axis has

multiple sites for off-target activity, which may lead to positive or

negative neurocognitive effects downstream, emphasizing the

importance of antibiotic stewardship (404–407). Antimicrobial

administration in high doses or for long periods can induce

severe or irreversible alterations at both the intestinal and brain

level (408, 409).

The infant microbiota is highly sensitive to various

perturbations like stress and antimicrobials (408). Studies show

that perinatal exposure to the various classes of antibiotics

substantially alters the establishment of the neonate and infant

microbiota, and antimicrobial prophylaxis for C-section delivery is
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routine. In a RCT of 40 mother/infant pairs in which prophylactic

antibiotics were administered before versus after clamping of the

cord, the timing of the exposure was found to be critical for

microbiota development (410). In a study of over 800 children,

antibiotic use in the first year of life was associated with subsequent

diminished neurocognitive outcomes (411). Indeed, behavioral

difficulties associated with GM composition may persist to at

least ten years of age (412). Early-life antibiotic exposure,

therefore, appears to disrupt microbiota colonization and

maturation, resulting in adverse child health outcomes (413).

Not only infants and children are at risk. In a large prospective

cohort of 14,542 participants, chronic antibiotic use in midlife was

associated with cognitive impairment later in life, such that

antibiotic use was associated with an additional three years of

aging, compared to those with no antibiotic exposure (407).

On the other hand, in certain conditions antibiotics may be

useful in the treatment of symptoms related to a dysbiotic GM. For

example, it is well established that the cognitive impairment arising

due to hepatic encephalopathy is mediated by microbial

disturbances and can be reversed with oral antibiotic treatment

(414–417). Administration of non-absorbable antibiotics in patients

with hepatic encephalopathy and mild cognitive impairment

improves cognitive performance, subcortical brain activity,

fronto-parietal connectivity, and serum metabolomic profile

(418, 419).

4.2.3.3 Exogenous glucocorticoids and other drugs

While antibiotics are well known to alter GM composition and

function, there are several other types of drugs that influence the GM
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and may place an individual at risk for cognitive dysfunction (420,

421). Exogenous glucocorticoids are frequently prescribed to treat a

multitude of disorders, because of their ability to suppress the immune

system and decrease inflammation (422). While we have a cursory

understanding of their impact on the GM, and their short- and long-

term cognitive effects, a more thorough understanding is critically

needed. Several studies have highlighted the deleterious effects of these

drugs on cognition (423–428). Both endogenous and exogenous

glucocorticoid excess on MR and GR expressed by neurons in the

CNS have been shown directly alter the structure and functioning of

the brain (429–431). Furthermore, glucocorticoids may modulate the

brain indirectly through their effects on the immune system,

metabolism, sleep, other hormones, and the GM (432, 433).

Regarding the effects of glucocorticoids on the composition and

functioning of the microbiota, some studies have indicated

microbiota disruption, while others have shown beneficial effects,

which likely depend on the degree of exposure (dose and period)

and the type of glucocorticoid studied (434–437) Furthermore, the

use of exogenous corticosteroids is not always associated with

deleterious effects on cognition, and some studies in animals and

humans have failed to demonstrate an association, while some

provide evidence of corticosteroid-induced cognitive enhancement

(438–443). It appears that the physiological effects of

glucocorticoids act in a curvilinear, or ‘inverted U-shaped’,

manner on several cognitive systems, where moderate levels are

optimal, while very low or high concentrations have distinct adverse

cognitive outcomes (444, 445). More research is needed to clarify

the deleterious effects and potential usefulness of corticosteroid

treatment in MGB-related disorders.
FIGURE 6

The gut microbiota, HPA axis and cognition. Schematic summary representation of the relationship between the gut microbiota, HPA axis, and
cognition. The gut microbiota influences the HPA axis and cognition through the production of metabolites (e.g., SCFAs, and bile acids),
neurotransmitters (e.g., serotonin, GABA, catecholamines), and immune system modulation. The HPA axis, comprising the hypothalamus, pituitary
gland, and adrenal glands, regulates cortisol release, which in turn affects both gut microbiota and cognitive function. Cognitive processes involve
various brain regions (e.g., hippocampus, amygdala, and prefrontal cortex), neurotransmitters, and plasticity, and are modulated by the interplay
between the gut microbiota and HPA axis. ACTH, adrenocorticotropic hormone; CRH, corticotrophin-releasing hormone. Figure created with
BioRender.com.
frontiersin.org

https://www.BioRender.com
https://doi.org/10.3389/fendo.2023.1130689
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Rusch et al. 10.3389/fendo.2023.1130689
Another group of drugs that has been shown to cause dysbiosis

and is associated with cognitive decline is the proton pump

inhibitors (PPI) (446, 447). Outcomes vary, with some studies

showing no association. Intriguingly, gastric acid suppression by

histamine-2 receptor antagonists has more reliably demonstrated

associations between chronic use, dysbiosis, and cognitive

decline (448).

The gut is often an unwarranted target of chemotherapeutic

agents, with mucositis being a common complication (449).

Women diagnosed with breast cancer undergoing chemotherapy

experience disruption in GM diversity and composition, cognitive

impairment, and symptoms of stress, such as anxiety and

depression (450).

4.2.3.4 Exposure to Infection

Unsurprisingly, both bacterial and viral infections have been

associated with cognitive impairment and functional decline in

humans (451–453). C. difficile infection is an important example

demonstrating these adverse health consequences, beyond acute

intestinal dysbiosis (454). Evidence is emerging regarding the

potential involvement of C. difficile in brain pathologies such as

neurodegenerative diseases (e.g. Parkinson’s disease, Alzheimer’s

disease), multiple sclerosis, and autism spectrum disorder (455). C.

difficile has been shown to alter the metabolism of dopamine and

interfere with cognitive functions that involve the neuromodulatory

action of dopamine, such as motivation and memory consolidation

(456). In two case reports in humans, FMT improved

gastrointestinal symptoms, cognition, and mood, along with the

eradication of C. difficile in patients with Alzheimer’s disease

(457, 458).

Evidence suggests that the cumulative effect of exposure to

multiple infectious pathogens, both bacterial and viral, over several

years is associated with changes in cognition, as well as multi-

system biological dysfunction before clinical disease is apparent

(459, 460). In a large multi-ethnic cohort, an elevated infectious

burden, defined as a composite serologic measure of exposure to

five specific common pathogens (e.g. cytomegalovirus, Helicobacter

pylori and herpes simplex virus), was associated with cognitive

impairment as assessed by the mini-mental state examination (461,

462). Thus, there appears to be a cumulative effect whereby past

infections may contribute to later cognitive impairments.

Furthermore, there is extensive evidence in humans showing that

prenatal infectious exposure is associated with cognitive and other

neurodevelopmental impairments (463, 464).
4.2.3.5 Probiotics and prebiotics

Over time, there has been an increasing recognition of the

potential value of probiotics, prebiotics, and combinations thereof.

These interventions may be beneficial for patients with dysbiosis, as

well as for individuals presenting with other specific complaints or

those taking them prophylactically.

Several studies in healthy participants have demonstrated

reduced stress-induced cortisol levels and pro-inflammatory

cytokines, along with improved cognitive test performance,

perceptions of stress, anxiety, and mood (465–469). In a group of
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healthy women consuming a fermented milk product containing

several probiotics, brain activity was found to be enhanced in

specific regions associated with cognition (470). In a RCT,

multispecies probiotic supplementation protected against the

neurocognitive effects of acute stress in healthy women, as

measured by neural changes in the frontal cortex using fMRI

(471). These findings have been replicated and expanded upon,

with studies exploring the relationships between stress, cognition,

and the MGB axis. These studies have identified compositional and

functional changes in the intestine and brain, along with distinct

changes in brain morphology, resting-state brain function, brain

activity and functional connectivity in regions known to regulate

stress (472, 473). Mechanistic studies have further linked the stress

response, cognition, and MGB axis, demonstrating a relative

abundance of fibre-degrading bacteria that produce SCFAs, as

well as changes in the serotonin and dopamine-norepinephrine

pathways (474, 475).

Probiotics have been shown to improve cognitive symptoms

and biochemical markers in participants with various dysbiosis-

related disorders, including Alzheimer’s disease (476), fibromyalgia

(477, 478), and irritable bowel syndrome (IBS) (479). Clinical

studies have also suggested that probiotics may decrease anxiety

and depression (480). In a study of non-obese and obese

individuals, GM composition was found to be associated with

scores of cognitive speed, attention, and flexibility, along with

significant changes in neural activity in specific brain regions

(thalamus, hypothalamus, and amygdala) (481) . Co-

administration of a probiotic containing L. rhamnosus, B.

animalis, and magnesium chloride for nine weeks to obese male

and female participants with depression did not rescue their altered

cognition, mood, and intestinal integrity, but did decrease CRP

levels (482). Administration of heat-killed M. vaccae to terminal

lung cancer patients was shown to improve emotional health and

cognitive function, thought to be as a result of the enhanced release

of neurotransmitters such as serotonin, as part of the immune

response to the microbial products (483).

In a study where healthy individuals were given the prebiotic

inulin, subjective improvements in mood were noted, along with

improved scores on a set of memory tasks (484). In another study,

B-GOS supplementation was compared to placebo in healthy

participants and found to decrease waking salivary cortisol

concentrations and increase the positive processing of

information in a dot-probe task (485). Therefore, prebiotics may

modulate the HPA axis and benefit cognition.

Barrio et al. reviewed the association between the GM and

conditions with neurocognitive impairment, finding that dysbiosis

can predict the development of these disorders and influence their

pathogenesis (486). Additionally, interventions such as dietary fiber

supplementation or probiotics (Lactobacillus sp.) have been shown

to improve cognitive function and modulate HPA axis activity

(reducing cortisol response).

It is important to note that many probiotic trials show no

significant effect, especially when performed in healthy populations.

For instance, L. rhamnosus was not found to be superior to placebo

in modifying stress, HPA response, inflammation, or cognitive

performance, and the authors highlighted the challenges
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associated with advancing promising preclinical studies in animals

to the clinic (487). Notably, the participants were healthy adult

males and not patients with stress-related disorders. A recent

systematic review of interventions in children and adolescents to

enhance cognitive functioning and emotional behavior found

limited consistent effects in these developing populations,

although study heterogeneity was seen as a major factor (488).

Another systematic review evaluating the utility of prebiotics,

probiotics, and fermented food interventions on cognitive

performance had negative findings, possibly due to the limited

number of small and short-term studies, as well as clinical

heterogeneity relating to the population, cognitive tests, and

interventions (489). Therefore, further clinical research using

adequately powered samples and standardized protocols

is warranted.

4.2.3.6 Stress

Chronic stress is associated with various cognitive deficits,

systemic inflammation, premature aging, immune system

dysfunction, and a higher likelihood of suffering from metabolic

disorders such as diabetes, cardiovascular disease, and IBD (490–

492). Stress is considered a trigger in patients with functional

gastrointestinal disorders, such as IBS and functional dyspepsia,

as well as IBDs like ulcerative colitis and Crohn’s disease (493).

These conditions exhibit cognitive and behavioral alterations, along

with dysbiotic GM profiles.

A study using 3T MRI technology found thalamic volume to be

smaller in the IBD group, when compared to healthy controls (494).

Yamaoka et al. recently examined the relationship between the GM

and stress-related brain functions in healthy subjects, using

functional near-infrared spectroscopy (495). They found that the

prefrontal cortex stress response correlated with the relative

abundance of GM microbes, and that healthy participants with

higher stress responses had an increased abundance of microbes

found to be associated with depression.

Cognitive alterations may be present in individuals with IBS,

and evidence is emerging that specific changes relate to

hippocampal-mediated visuospatial memory deficits, which are

linked to indices of HPA axis function (20, 496–498). IBS patients

also show impairments in tests of cognitive flexibility and have

abnormal brain activity in frontal regions of the brain (499).
4.3 The relationship between the gut
microbiota and cognition, independent of
the HPA axis

It is evident that the GM has a significant and profound

influence on cognition. Although the HPA axis is centrally placed

in linking the various components of the MGB axis with cognitive

function, research has demonstrated GM effects on cognition that

are independent of the HPA axis. Additionally, while GM signaling

pathways and mechanisms involving the vagus nerve, immune
Frontiers in Endocrinology 19
system, microbial metabolites, hormones, and neurotransmitters

may impact cognition either directly or indirectly through the HPA

axis, their involvement might not always require the HPA

axis (223).

For example, Gareau et al. demonstrated a lack of memory in

germ-free mice in the T-maze test and novel object test in situations

with or without stress (362). Frohlich et al. administered antibiotics

to adult mice and demonstrated that the resultant cognitive deficits

were associated with brain region-specific changes in BDNF,

NMDA receptor subunit 2B, serotonin transporter, and NPY

(383). Vagus nerve stimulation has been shown to improve

cognitive processes and has been attributed to modulation of

central noradrenergic and GABA systems, as well as neuronal

adaptations within the amygdala, hippocampus, and prefrontal

cortex (500). Microbes also create neurotoxic substances such as

D-lactate, homocysteine, and ammonia, which can pass through the

BBB and affect cognition (321).

Animal models of neurodegenerative diseases have

demonstrated associations between the MGB axis and cognition

that are likely independent of the HPA axis. In Alzheimer’s disease,

CCAAT/enhancer binding protein b/asparagine endopeptidase (C/
EBPb/AEP) signaling mediates disease progression by cleaving both

b-amyloid precursor protein and Tau. A recent study demonstrated

that gut dysbiosis was positively associated with C/EBPb/AEP
messaging in the brain of a 5xFAD mouse model of Alzheimer’s

disease, concomitant with age-related progression of disease

severity (501). Chronic antibiotic treatment subdued C/EBPb/
AEP signaling and diminished amyloidogenic processes, rescuing

cognitive functions. In a D-galactose/aluminum chloride-induced

model of Alzheimer’s disease, selenium nanoparticles-enriched L.

casei (ATCC 393) administered for thirteen weeks significantly

improved cognitive dysfunction and minimized b-amyloid

aggregation, hyperphosphorylation of Tau protein, and prevented

neuronal death by modulating the Akt/cAMP-response element

binding protein/BDNF signaling pathway (502). The intervention

was shown to mitigate intestinal barrier dysfunction, inhibit the

activation of microglia, and protect brain neurons from oxidative

stress and neuroinflammation. Several microbial species can

produce amyloid proteins, which can cross the intestinal and BBB

when permeable due to inflammation, and promote b-amyloid

protein formation and accumulation in the brain, thereby

enhancing Alzheimer’s disease pathogenesis in the elderly (503).

In a mouse model that overexpresses the protein a-synuclein,
resulting in Parkinsonism, Sampson et al. were able to

show that MGB axis signaling is required for motor deficits,

microglia activation, and synucleinopathies (75). Oral

administration of SCFAs to germ-free a-synuclein mice

promoted neuroinflammation and motor dysfunction, and FMT

with Parkinson’s disease-affected patients enhanced the

Parkinsonism compared to FMT from healthy human donors. In

a study by Liu et al., administration of the SCFA butyrate improved

cognitive impairments in a mouse model of vascular dementia

(392). Huntington’s disease is another neurodegenerative disorder

involving psychiatric, cognitive, and motor symptoms. FMT from
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wild-type mice into a mouse model of Huntington’s disease

improved cognitive outcomes, particularly in females (504).

Interestingly, simply transplanting the GM of aged rats into

young rats induced structural and functional alterations in the

brain, as well as behavioral changes indicative of cognitive

decline (505).

The influence of diet and dietary habits on the GM is an

extensive topic and a primary determinant of GM composition

and function. A comprehensive review of this topic is beyond the

scope of this review, however, a significant body of evidence

demonstrates that consuming a GM-favorable diet can positively

influence the GM, improve health status, and enhance cognitive

function (506–510). This is likely due to the availability of

prebiotics, probiotics, SCFAs, and polyphenols. Conversely, a

poor diet and obesity are associated with GM alterations,

cognitive dysfunction, and an increased risk for dementia

[reviewed in (511)]. Proposed mechanisms include changes in

GM composition and function, alterations in microbial

metabolites, compromised barrier integrity, and peripheral and

central inflammatory processes, as well as hormonal,

glucoregulatory, and cardiovascular changes (502, 511, 512).

In obesity, dysbiosis has been associated with cognitive

alterations such as hippocampal dysfunction, impaired memory,

and reductions in attention and executive function (513). Notably,

weight gain and obesity do not appear to be necessary for diet-

induced cognitive impairment and age-related cognitive decline

(514, 515). Mice colonized with GM from donors fed a high-fat diet

demonstrated compositionally distinct microbiota, altered

biochemical markers, and developed impairments in exploratory,

cognitive, and stereotypical behaviors, in the absence of significant

differences in body weight (516). In mice with diet-induced obesity,

antibacterial treatment improved metabolic parameters, insulin

signaling in the brain, and neurobehavioral changes indicative of

anxiety and depression (517). These changes were associated with

altered levels of tryptophan, GABA, BDNF, amino acids, and

acylcarnitines, while these effects were transferable to germ-free

mice by FMT. In this way, FMTs have provided more direct

evidence for the role of dysbiotic microbiota in cognitive

dysfunction, independent of the HPA axis.

Besides diet, other environmental factors can alter GM

composition and heterogeneity, as well as behavioral phenotype

and cognition. Jaric et al. showed that even subtle environmental

variation, such as the rearing facility of the mice, significantly

influenced epigenetic patterns in neuronal genes at the level of

chromatin organization, with effects on nucleosome assembly,

neuronal differentiation, synaptic plasticity, and regulation of

behavior (518). Guo et al. showed that mice exposed to

environmental low-dose radiation demonstrated long-term

impairments in cognitive function, hippocampal synaptic

ultrastructure, and signaling through the Akt/mTOR pathway

(519). Indeed, abnormal GM composition may contribute to

radiotherapy-induced cognitive decline seen in cancer

treatment (520).
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5 Future perspectives

It is clear that the development and maintenance of higher

cognitive function in humans are influenced and modulated by

bidirectional HPA axis and GM mechanisms in the complex

interplay of the MGB axis. Recognizing these connections opens a

plethora of opportunities for novel mechanisms and potential

avenues for GM-based diagnostics and therapeutics. While the

current evidence is promising, it is essential to acknowledge the

need for more research to better understand the underlying

mechanisms and the potential for clinical applications in treating

conditions with cognitive impairments.

Although GM-based therapeutics are an exciting field and

receive much attention, it is vital that rigorous consideration be

paid to understanding the mechanistic pathways, as well as the

critical window for the development of the GM, HPA axis, and

neurological system. Possible therapeutic strategies that could

modulate GM and potentially improve cognitive function in

different neurological disorders include FMT, prebiotic and

probiotic supplementation, and dietary interventions.

While the GM plays an important role in shaping brain

function, including the activity of the HPA axis, its role with

regards to the distinct structures of the HPA axis remains

understudied. Only recently have a small number of studies

begun to provide detailed mechanistic insights. Xiang et al.

showed that nucleotide-binding oligomerization domain 1 (Nod1)

ligands, derived from the GM, modulate catecholamine storage and

secretion, and therefore intestinal bacteria modulate the adreno-

medullary response through Nod1 sensing in chromaffin cells (521).

Extra-adrenal glucocorticoid production is known to occur in

the gut and other tissues, and these glucocorticoids play a highly

specific role in regulating local homeostasis, cell development, and

immune activation (522–526). However, there is only preliminary

evidence available demonstrating that under basal conditions the

GM contributes to the regulation of intestinal glucocorticoid

production (527, 528).

Furthermore, GM-based studies of adrenal insufficiency and

Cushing’s syndrome are also severely lacking, although, as has been

demonstrated throughout this review, there are mechanistic reasons

to believe that important associations may be uncovered. The most

common cause of adrenal insufficiency is autoimmune Addison’s

disease, which is thought to be a hapless combination of susceptible

genetics and environmental factors. Whether the GM influences the

development or pathogenesis of autoimmune Addison’s disease is

currently unknown. Many pathogens are known to infect the

adrenal cortex, and some of them (e.g., M. tuberculosis) can cause

adrenal insufficiency (529). A study of chronic adrenal insufficiency

patients highlighted that 30% of the participants suffered frequent

and incapacitating gut symptoms, consistent with the Rome IV

criteria for IBS, and that they had a decreased quality of life (530).

However, no evaluation of the GM was performed in this study.

Further GM-based research should be prioritized for these two

HPA axis conditions.
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Finally, a plethora of human diseases have increasingly been

associated with changes in the GM. However, whether these

changes are causal, consequential, or co-incidental remain

unresolved. While animal models have been critical to our

understanding of how microbes influence host development and

function, and germ-free models are a cornerstone for studying

alterations that arise from microbial perturbations, they may not be

directly transferable to models of human function. Introducing

human microbial communities into germ-free animals may

represent a more clinically relevant model. If the field is to move

forward, it is necessary that the focus shifts towards determining

causal relationships in humans through rigorous and critical

approaches and to further advance the translatability of animal

and pre-clinical studies to human trials.

In conclusion, this review confirms that the interaction between

microbes and the endocrine and neural systems, including the HPA

axis, is essential for optimal cognitive function in humans.
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