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Cellular aging is the most severe risk factor for neurodegenerative disease.

Simultaneously, oxidative stress (OS) is a critical factor in the aging process,

resulting from an imbalance between reactive oxygen and nitrogen species and

the antioxidant defense system. Emerging evidence indicates that OS is a common

cause of several age-related brain pathologies, including cerebrovascular diseases.

Elevated OS disrupts endothelial functional ability by diminishing the bioavailability

of nitric oxide (a vascular dilator), induces atherosclerosis, and impairs vasculature,

which are all common characteristics of cerebrovascular disease. In this review, we

summarize evidence supporting an active role of OS in cerebrovascular disease

progression, focusing primarily on stroke pathogenesis. We briefly discuss

hypertension, diabetes, heart disease, and genetic factors that are often linked to

OS and are considered associated factors influencing stroke pathology. Finally, we

discuss the current pharmaceutics/therapeutics available for treating several

cerebrovascular diseases.
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1 Introduction

Cerebrovascular diseases (CeVDs) are diverse and multifactorial diseases that include

stenosis (stenosis of the carotid, vertebral stenosis, or intracranial stenosis) and aneurysms;

these conditions generally result from the blockage (embolism) or rupture (hemorrhage) of

blood vessels, ultimately leading to stroke (ischemic or hemorrhagic, respectively) (1–4).

There are several well-known risk factors for stroke, including hypertension, obesity, high

cholesterol, dyslipidemia, and diabetes; however, high levels of cellular reactive oxygen/

nitrogen species (ROS/RNS) also contribute significantly to stroke/cardiovascular disease

(CVD) pathogenesis. In healthy cells, ROS/RNS is maintained at a low concentration. It is

important for normal cellular metabolism and contributes to normal physiological processes,

including cell proliferation, differentiation, and apoptosis. However, elevated ROS/RNS,

referred to as oxidative stress (OS), promotes many pathological conditions, including CVDs
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(2, 3). In the last decade, it has been repeatedly reported that

increasing free radical activity plays an important role in the

pathogenesis of vascular disorders, aging processes, and

neurodegenerative diseases (5, 6).

As the brain is susceptible to OS, increasing amounts of ROS/

RNS, impaired oxidants/antioxidant systems, and mitochondrial

dysfunction together initiate neurodegenerative processes. In

contrast, a lack of blood circulation (ischemia) to the brain (or any

other region) limits the energy supply, which further elevates free

radical concentrations and leads to neuron death (7). Additionally, a

state of high OS induces several cellular and biochemical reactions, for

example endothelial dysfunction, vasculitis (vascular inflammation),

arterial remodeling, and blood–brain barrier impairment (8). Further

consequences can include cerebral reperfusion injury, the blockage of

cerebral blood flow, and cerebral bleeding or blood spillage.

Considerable progress has been made in understanding brain

functionality, and the importance of a balanced oxidant/antioxidant

system for brain function is well-understood; however, how exactly

elevated free radicals or OS cause CeVDs is ambiguous. Several

studies have reported that ischemic stroke is a result of increased

levels of cellular ROS, such as superoxide anions (O2−), hydrogen

peroxide (H2O2), and hydroxyl radicals (OH−) (9–13). Here, we

review the evidence on the contributions of free radicals/OS to

stroke pathology. Additionally, we briefly discuss other associated

factors and their relationships with stroke. Lastly, we review currently

available pharmaceutic/therapeutic agents used to treat stroke.
2 Epidemiology of stroke

On average, approximately 85% of strokes are ischemic and 15%

are hemorrhagic. Ischemic strokes can be classified into large-artery

atherosclerosis, small-vessel occlusion, cardioembolism, or

cryptogenic ischemic stroke, among others. Hemorrhagic strokes

can be classified into two groups: intracerebral hemorrhage or

subarachnoid hemorrhage (Figure 1) (13, 14). CeVD has a severe

impact on a patient’s quality of life, often resulting in long-term

disability or death. For this reason, CeVD is listed as the second

leading cause of death worldwide (15, 16). In 2019, 6.6 million deaths

were caused by CeVD worldwide. Of these, 3.3 million were
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attributable to ischemic stroke, 2.9 million to intracerebral

hemorrhage, and 0.4 million to subarachnoid hemorrhage (13). A

previous study demonstrated that a total of 12.2 million stroke

incidents and 6.55 million resulting deaths were recorded globally

between 1990 and 1990 (17). In the United States alone, more than

795,000 people suffer stroke annually, resulting in a mortality rate of

48.6 deaths per 100,000 persons (18). According to an estimate

(Centers for Disease Control and Prevention, U.S.A.), a 20.5%

increase in the number of adults in the United States who will

experience stroke is expected by 2030. A recent study demonstrated

that type 2 diabetes mellitus and hypertension increase stroke

occurrence by about 12.1% in patients with no stroke history.

Moreover, recurrence of stroke within the 1 year follow-up period

increased by 26.5% in patients with a history of stroke (19). High rates

of ischemic stroke have been reported in North America, Southeast

Asia, southern sub-Saharan Africa, North Africa, and the Middle East.

Intracerebral hemorrhage shows a high prevalence in Oceania and

Southeast Asia, while subarachnoid hemorrhage is prevalent in high-

income regions of the Asian Pacific, North America, parts of Eastern

Europe, and Oceania (13).
3 Oxidative stress in the progression
of stroke

3.1 Oxidants and the antioxidant
defense system

In a healthy brain cell, up to 1% of mitochondrial electron flow

generates O2
−, which is consumed by a variety of superoxide

dismutases (SOD1, SOD2, and SOD3) to produce H2O2 molecules

(20). H2O2 is less toxic than O2
− but can react to generate even more

dangerous compounds; for example, H2O2 can generate hydroxyl

radicals (−OH) by reacting with Fenton’s reagent, and peroxynitrite

anions (ONOO–) by reacting with nitric oxide (11). Several

components of the antioxidant defense system, such as glutathione

(non-enzymatic), thioredoxin, a-tocopherol (vitamin E), carotenoids,

and ascorbic acid (vitamin C), interact with ROS to detoxify cells.

Furthermore, the critical intracellular antioxidant enzymes
FIGURE 1

Stroke and associated risk factors. Oxidative stress plays a central role in stroke pathogenesis (ischemic and hemorrhagic) and is implicated in
hypertension, heart disease, genetic factors, and diabetes.
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glutathione peroxidase-1 and catalase convert H2O2 to water (11, 21,

22). Failure of this antioxidant defense system is the leading cause of

aging and neurodegeneration and has been reported in all types of

stroke (23–26).
3.2 The compromised antioxidant defense
system in stroke

Increased levels of OS (free radicals) in the brain lead to

cerebrovascular and neurodegenerative diseases. The mechanism of

OS elevation often results from a compromised antioxidant defense

system. In the brain’s blood vessels, endothelial cells make up the

innermost layer and are tightly surrounded by pericytes, followed by

the basement membrane and astrocytic endfeet (27). Emerging

evidence suggests that OS plays a central role in endothelial

dysfunction and inflammation. The mechanism of ROS formation

can be described as the blockage of cerebral blood flow that generates

oxygen/glucose deficiency in neurons, with hypoxia ultimately

triggering the decoupling of mitochondrial respiration (28, 29).

This decoupling results in the production and accumulation of ROS

and RNS products and the activation of xanthine oxidase. The

increase in ROS/RNS products and ATP deficiency combine to

initiate neurodegeneration and tissue oxygenation, leading to

ischemia-reperfusion injury (28, 29). At the cellular level, OS can be

measured by detecting the expression of crucial biomarkers (oxidative

byproducts of different types of molecules); for example, DNA

oxidation generates 8-hydroxydeoxyguanosine (8-OHdG),

polyunsaturated fatty acid oxidation generates malondialdehyde

(MDA), and lipid peroxidation generates 4-hydroxy-2-noneal (26,

30). Marker expression over a particular cellular concentration is

generally estimated as an exalted or low state of OS. Several previous

studies have demonstrated that patients with acute ischemic stroke

express high levels of MDA (31–33). It is important to note, however,

that MDA is not solely an OS marker; it is also a toxic molecule that

can interact with DNA and protein and create mutagenic and

atherogenic environments that can reduce cell survival (reviewed in

(34)). Similarly, in a recent study, Liu Zhihua et al. established a

relationship between high expression of the OS markers 8-OHdG and

MDA and post-stroke cognitive impairment 1 month after acute

ischemic stroke (35). The prolonged elevation of OS subsequently

induces the accumulation of nitric oxide, an important vasodilator

compound and a key player in many physiological processes (36), to a

toxic level, causing inflammation and cytotoxicity and leading to

mitochondrial dysfunction and neuronal death (25, 36). Additionally,

previous studies have demonstrated that NADPH oxidase (NOX)

plays a significant role in generating ROS in the brain. NOX gene

deficiency or the inhibition of NOX activity significantly improves

brain injury and neuronal function [reviewed in (37)].

In the antioxidant system, three SOD isoforms (SOD1, SOD2, and

SOD3) scavenge ROS in different locations: SOD1 is cytoplasmic,

SOD2 is located in the mitochondria, and SOD3 is extracellular.

Combined, SOD1–3 establish the primary defense against ROS and

functionally protect cells from free radicals and OS (38, 39). Recent

studies indicate that SOD loss of function or genetic variation is

associated with severe pathological diseases, including CVD and

CeVDs (stroke) (10). In a previous study, six single-nucleotide
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polymorphisms (SNPs) within SOD genes were investigated to

determine their association with ischemic stroke: rs17880487 and

rs80265967 in SOD1, rs4880 and rs2842960 in SOD2, and rs2695232

and rs7655372 in SOD3. The SNP rs7655372 in the SOD3 gene was

associated with an increased risk of ischemic stroke, and the SNP

rs17880487 in the SOD1 gene was associated with an increased risk of

cardiovascular mortality (10, 40). Furthermore, a mouse model with

depletion of the key metabolic enzyme cystathionine beta-synthase or

SOD1 developed hypertrophy without hypertension (41). Moreover, a

cohort study demonstrated that deletion of 50 bp from the promoter

region of SOD1 increased the risk of CVD and atherosclerotic heart

disorder (42). Thus, taken together, these studies suggest that the

absence or dysfunction of SOD1 disturbs the oxidant/antioxidant

balance, leading to heart disease and CeVDs.

Similarly, Gpx-1, an intracellular antioxidant enzyme, reduces

H2O2 to water and is implicated in neural cell viability in OS-induced

neural degeneration. It has been reported that Gpx-1 knockout mice

(Gpx-1−/−) exhibit a significant reduction in cerebral blood flow that

induces susceptibility to cerebral injury and cerebral ischemia (43).

However, it was previously reported that Gpx-1 knockout mice

displayed a three-fold increase in infarct volume compared to

normal mice. Moreover, pre-activation of the apoptosis marker,

caspase 3, was reported in the stroke model, suggesting that the

neuronal protective activity against the oxidative state and Gpx-1

deficiency may initiate the neuronal apoptosis program (43). This

finding supports the importance of Gpx-1-mediated ROS scavenging,

which is essential for neuronal viability, maintaining cerebral flow,

and reducing microvascular perfusion that can lead to stroke.

It has been reported that oxidative/nitrosative stress is central to

several neurodegenerative diseases (26). Gorg et al. (44) investigated

the post-mortem cortical brain tissues of cirrhosis patients with or

without hepatic encephalopathy (HE) and found that the HE brain

expressed elevated levels of tyrosine-nitrated proteins, heat shock

protein-27, and 8-hydroxyguanosine (a marker of RNA oxidation)

with reduced activity of glutamine synthetase (44). This indicates that

oxidative/nitrosative stress may be involved in HE pathogenesis,

which is another risk factor for CeVDs. However, the authors did

not discover an active association between oxidative/nitrosative stress

and cirrhosis (44).

Additionally, hydrogen sulfide (H2S) is a gaseous signaling

molecule that plays an important role in several physiological and

pathophysiological processes and is a well-known essential protector

against cellular OS (45). H2S is a marker of endothelial inflammation

and dysfunction (reviewed in (46)), and its production in endothelial

cells requires three key enzymes, cystathionine gamma-lyase (CSE),

cys ta th ionine beta-synthase , and 3-mercaptopyruvate

sulfurtransferase. The CSE/H2S pathway has been reported to block

atherosclerosis formation, and CSE-knockout mice exhibit severe

atherosclerosis, supporting an anti-atherosclerosis role of H2S in the

vascular system (45, 47). However, H2S also promotes antioxidant

production by modifying the cysteine residues of upstream signaling

molecules, including keap1/Nrf2, NFkB, and HIF-1a (45). Thus, H2S

plays a dual role in the inhibition of atherosclerosis and induces the

production of oxidant scavengers. Collectively, these findings indicate

that compromised antioxidant defense systems or excessive ROS/RNS

levels drive neuronal degeneration, which further leads to stroke or

other brain-related diseases.
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4 Oxidative stress and other factors
associated with stroke

Risk factors often associated with CeVDs (stroke) are generally

divided into two groups: lifestyle-related risk factors and health/

medical risk factors. Lifestyle-related risk factors may include a lack

of physical exercise, heavy drinking, obesity, and excessive use of

drugs (such as cocaine). Health/medical risk factors include high

blood pressure, high cholesterol, diabetes, CVDs, and a family history

of CeVDs or genetic background. This section briefly summarizes the

four common medical risk factors, in which OS is a common

pathogenetic link.
4.1 Hypertension

High blood pressure can functionally or structurally affect the

arteries of the body; this is known as hypertension. In a healthy adult,

the normal blood pressure range is systolic ≤120 mmHg and diastolic

≤80 mmHg (120/80 mmHg). Hypertension is diagnosed when blood

pressure increases to 130/90 mmHg (48). Hypertension is the number

one risk factor for stroke, accounting for over 50% of ischemic and

70% of hemorrhagic stroke incidents, and is also a leading cause of

dementia (35). Primarily, hypertension alters the structural and

functional capabilities of cerebral blood vessels via hypertrophic

and eutrophic remodeling. Hypertrophic remodeling triggers

hypertrophy or hyperplasia of smooth muscles in an artery, leading

to wall thickening and narrowing of the lumen space, further

impairing essential blood supply (based on new guidelines from the

American Heart Association, 2017) (41). In addition, hypertension

initiates fibrinoid necrosis (lipohyalinosis) of the lenticulostriate

arteries and causes intracerebral bleeding or hemorrhage (49).

Increasing evidence supports the strong involvement of OS in

hypertension and its deleterious effects on individuals’ health, as OS

markers are elevated in hypertension (renovascular or malignant) and

preeclampsia (12, 41, 49).
4.2 Diabetes

Diabetes mellitus (DM), a chronic metabolic disease caused by

insulin resistance, leads to elevated blood glucose levels. An average of

20–40% of patients with diabetes have CeVDs, with asymptomatic

cerebral atherosclerosis being among the most common (50). It has

been reported that human patients and animal models of DM (type 1

or 2) exhibit accelerated atherosclerosis (51). The coronary plaque in

DM patients contains high macrophage counts and larger necrotic

core areas compared with non-DM subjects, which is similar to the

high rate of calcification in DM patients (51). Similarly, these

observations have been further validated in a mouse model that

lacks the insulin receptor (−/−) in macrophages, which caused the

progression of necrotic cores to advanced plaques (52). The larger size

of necrotic cores reduces macrophage efferocytosis in obese (ob/ob)

mouse models of DM (53) (see (51, 54) for targeted articles on the

connections of diabetes in the pathogenesis of atherosclerosis). Thus,
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evidence suggests that DM leads to faster progression of

atherosclerosis and promotes CeVD pathology.
4.3 Heart diseases

CVD is a major cause of death and a major risk factor for human

health worldwide (55). Moreover, CVD has been a leading cause of

death among noncommunicable diseases in the last two decades,

causing 17.9 million deaths in 2019 (55). Several heart-related

problems, such as atrial fibrillation, ischemic heart disease,

cardioembolic infarction, vascular peripheral disease, chronic

obstructive pulmonary disease, and atherothrombotic infarction, are

strongly associated with stroke (or stroke subtypes) (56). This topic

has been discussed in detail in (13, 39, 54–57).
4.4 Genetic factors

Identifying hereditary (genetic) factors underlying stroke

pathology is essential to deciphering the molecular mechanism. In

recent years, progress has been made with modern genotyping

technologies. French et al. (58) postulated the involvement of the

PITX2 locus in stroke pathogenesis; indeed, Pitx2−/− mice exhibited a

severe reduction in smooth muscle in cerebral vessels with increased

vessel density. Similarly, the ABO locus has been associated with

cardioembolic ischemic stroke (59). Several genetic factors have been

identified that contribute to stroke risk at different levels, such as

small-artery disease, large-artery atheroma, cardioembolism,

hypertension, and dyslipidemia (60). For further reading, we direct

readers to targeted articles in which known genetic factors have been

classified and summarized (60, 61).
5 Diagnosis and treatment

The timely management of acute stroke after onset and selecting

appropriate diagnostic/treatment methods are extremely important

factors in stabilizing the patient. The accurate and timely recognition

of stroke symptoms and first aid intervention can have a substantial

impact on the outcome of the patient, potentially reducing mortality

and stroke severity (62, 63). Several medical techniques have been

developed to diagnose severe brain diseases, including stroke. For

rapid clinical assessment, advanced brain scanning/imaging or

neuroimaging tools are promising and required for precise and final

confirmation of stroke after primary symptoms and blood analysis.

Neuroimaging helps physicians develop timely treatment/surgery

strategies. The most common neuroimaging technique is computed

tomography (CT); CT scans can show subtle changes in cytotoxic

edema, alterations in the gray-white matter, the hypoattenuation of

basal ganglion, swelling, and blood vessel occlusion (64, 65).

Advanced CT perfusion requires bolus administration (intravenous

injection) to enhance the tissue visualization output. In addition to

CT, magnetic resonance imaging or its more advanced version,

magnetic resonance perfusion, are also commonly used; we direct

readers to (66) for a review on this topic.
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Modern treatment modalities play an important role in the

management and treatment of stroke. There are several strategies to

prevent or cure stroke in patients. The most effective way to prevent

CeVDs is to control associated diseases, including hypertension,

diabetes, and heart disease (67). Presently available drugs are

classified into five groups based on molecular mechanisms and have

overall effects on inhibiting vascular thrombosis, improving vascular

function (or reducing tone), and lowering blood lipid

concentration; some common drug names are shown in Figure 2

(68). As most of these drugs mechanistically act on blood flow, they

may have several side effects; for example, antiplatelet aggregation can

cause severe bleeding problems (69). Targeting free radicals by

inhibiting their production is an effective strategy. The ideal targets

are ROS-producing enzymes; for example, administration of

allopurinol (metabolite; oxypurinol) to target xanthine oxidase and

NS-398 and nimesulide to target cyclooxygenase2 (COX2) produced

neuroprotective effects in transient and permanent ischemia

(reviewed in (70)). However, herbal medicines (derived from

natural products) offer alternative stroke treatment or prevention

options, typically with fewer side effects (71). Currently, a wide variety

of herbs, including Astragalus membranaceus, Angelica sinensis,

Ligusticum chuanxiong, Paeonia lactiflora, Prunus persica, and

Carthamus tinctorius, may be effective against stroke and CeVDs as

they exhibit solid antioxidant, anti-inflammatory, anti-apoptosis, and

other neuroprotective properties (71–73). Bioactive compounds

isolated from natural sources have been reported to reduce OS via

many pathways. For example, leonurine (from Leonotis leonurus) and

cornin (from Cornus florida) induced SOD1 and GPx activity,

resulting in deceased ROS levels in a stroke model [reviewed in

(74)]. Additionally, in a recent study, Deng et al. (75) investigated the
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the OS and nitric oxide/NOS pathways. PC12 cells treated with

leonurine showed a significant reduction in OS (measured via

MDA expression) and improved activity of the ROS scavenger

enzymes SOD and GSH, indicating that leonurine may be a

promising natural option for protecting neurons against OS.
6 Conclusions and prospects

The prevalence of CeVDs is increasing every year, including in

younger populations, and thus demands urgent and effective

treatment and prevention strategies. The occurrence of different

metabolic diseases, CVDs, and hypertension significantly increases

the life-long disability and death rates. Therefore, targeting a common

cause may represent the most effective way to address this health issue

worldwide. In the present review, we have discussed OS as a common

root cause of pleotropic effects in several life-threatening illnesses,

including stroke.

Significant progress has been made in understanding the

mechanisms and molecular pathways that switch on ROS/RNS

production or negatively regulate the antioxidant defense system.

Over the past couple of decades, several mechanisms have been

discovered to re-establish the antioxidant defense system and

cellular homeostasis using different drugs or genetic manipulations.

However, the exact molecular markers or diagnostic techniques used

to detect mitochondrial dysfunction or OS at an early stage (before

the onset of a severe condition) remain elusive. Further research

efforts are necessary to develop accurate and effective treatment and

prevention strategies for stroke and other diseases.
FIGURE 2

Common drugs for the prevention/treatment of stroke. The background color differentiates the drug class, working mechanism, and drug name
as indicated.
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