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Diabetes mellitus (DM) is a metabolic disease characterized by chronic

hyperglycaemia, with absolute insulin deficiency or insulin resistance as the main

cause, and causes damage to various target organs including the heart, kidney and

neurovascular. In terms of the pathological and physiological mechanisms of DM,

oxidative stress is one of the main mechanisms leading to DM and is an important

link between DM and its complications. Oxidative stress is a pathological

phenomenon resulting from an imbalance between the production of free radicals

and the scavenging of antioxidant systems. The main site of reactive oxygen species

(ROS) production is the mitochondria, which are also the main organelles damaged.

In a chronic high glucose environment, impaired electron transport chain within the

mitochondria leads to the production of ROS, prompts increased proton leakage

and altered mitochondrial membrane potential (MMP), which in turn releases

cytochrome c (cyt-c), leading to apoptosis. This subsequently leads to a vicious

cycle of impaired clearance by the body’s antioxidant system, impaired transcription

and protein synthesis of mitochondrial DNA (mtDNA), which is responsible for

encoding mitochondrial proteins, and impaired DNA repair systems, contributing

to mitochondrial dysfunction. This paper reviews the dysfunction of mitochondria in

the environment of high glucose induced oxidative stress in the DM model, and

looks forward to providing a new treatment plan for oxidative stress based on

mitochondrial dysfunction.
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1 Introduction

DM is characterized by chronic and persistent hyperglycemia

and causes macrovascular and microvascular complications, which is

a major cause of end-stage renal disease, blindness, and amputation

today (1–4). As of 2014, there were approximately 387 million people

with DM worldwide (8.3% of the world’s population) and the

number of people with DM is expected to increase to 640 million

by 2040 (5, 6). The cost of diabetic microvascular complications is a

major component of overall treatment costs and places a heavy

burden on society and families (7).

The development and progression of DM has complex

pathophysiological mechanisms, with inflammation, autophagy

dysregulation, oxidative stress, and hemodynamic dysregulation all

involved in the progression of the disease (8–11). In this regard,

oxidative stress is an important part of disease development, and

chronic hyperglycaemia promotes an imbalance between the

production of free radicals and the scavenging capacity of the

body’s antioxidant system. Mitochondria play an important role in

the process of oxidative stress in cells. Mitochondria are the main site

of cellular respiration in the body and the central organelle for the

production of adenosine triphosphate (ATP) (12). Continuous high

glucose stimulation leads to impaired mitochondrial electron

transport and promotes the production of ROS, which in turn

causes damage to the mitochondria themselves and mitochondrial

DNA (mtDNA), leading to impaired ATP synthesis, apoptosis, and

activation of downstream inflammatory and fibrotic signaling

pathways, contributing to disease progression (13–15). Scientists are

now proposing that improving the antioxidant capacity of cells may

be an important strategy for treating DM and complications, with

some experiments in animals and humans and some results, but the

evidence-based clinical support for anti-oxidative stress therapies is

still insufficient (16–18). Based on this, the aim of this review is to

explore together the important role of mitochondria in the process of

oxidative stress in DM through abnormal mitochondrial oxidative
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phosphorylation (OXPHOS) and mtDNA damage, and to outline the

efforts made by present-day scientists towards repairing

mitochondrial function in the hope of providing new ideas for

future scientific experiments.
2 Oxidative stress and ROS

The concept of oxidative stress was first introduced by the

German scientist Helmut Sies and refered to the imbalance of

oxidants and antioxidants that can cause damage to the organism

(19). The concept of “oxidative stress” was later extended to refer to a

pathological phenomenon resulting from an imbalance between the

production of free radicals and the scavenging function of the

antioxidant system, and is closely linked to the development of

diseases such as chronic obstructive pulmonary disease, Alzheimer’s

disease, cancer, DM, hypertension and age-related diseases (20–26).

Structurally, free radicals are highly reactive substances

containing at least one unpaired electron and are active derivatives

of ROS and reactive nitrogen species (RNS), which are closely

associated with the initiation of oxidative stress (27, 28). Both

endogenous and exogenous stimulation lead to pathological

increases in ROS and promote oxidative stress. Endogenous factors

such as metabolic factors, mitochondrial damage, immune system

dysregulation, and inflammatory products induce the production of

ROS (29–32). Exogenous ionizing radiation, xenobiotics, ultraviolet

light, alcohol abuse and smoking contribute to the onset and

progression of aging and metabolic disease by promoting ROS

production in the body (33–38) (Figure 1).

The intracellular ROS is mainly composed of O2
.- [reduced from

O2 by electrons through the electron transfer chain (ETC)] and its

derivatives. The three main reactive substances of ROS are superoxide

anion (O2
.-), hydroxyl radical (•OH) and hydrogen peroxide (H2O2),

with •OH being the most reactive (39, 40). Superoxide dismutase

(SOD), the first line of defense of the cellular antioxidant defense
FIGURE 1

Endogenous and exogenous factors in ROS production. ROS generation is divided into two aspects: endogenous pathogenic factors and exogenous
pathogenic factors. Endogenous pathogenic factors include mitochondrial disorder, metabolism, inflammatory products, immune system, etc.
Exogenous pathogenic factors include radiation, xenobiotics, smoking, alcohol abuse, etc. ROS, reactive oxygen species.
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system, promotes the production of the superoxide O2
.-

intermediating H2O2: 2O2
.-+2H+!H2O2+O2 (41). Subsequently

reduced by catalase (CAT) to non-toxic H2O: 2H2O2!2H2O+O2;

or catalyzed by glutathione peroxidase (GSH-Px) to produce H2O:

2GSH+H2O2!2H2O+GSSG, all of which complete the antioxidant

scavenging process and constitute the antioxidant enzymatic response

system of the organism, maintaining the intracellular redox balance

(41, 42). Fe2+ and Cu+ are capable of redox reactions with unpaired

electrons, destroying the structure and function of proteins, nucleic

acids and lipids and cross-linking with these macromolecules to

produce toxic substances (19). Activation of mitochondrial

permeability transition pore (MPTP) promotes the release of ROS

(43). Also, the vicious cycle of oxidative stress is facilitated by an

increase in toxic substances such as malondialdehyde (MDA), and 4-

hydroxy-2-nonenal (4-HNE), which are lipid peroxidation products

(44, 45). Likewise, advanced glycosylation end products (AGEs)

further promote ROS production, induce overexpression of

endothelial angiopoietin (Ang)-2, promote cellular sensitivity to

pro-inflammatory factors such as vascular cell-adhesion molecule

(VCAM)-1, and contribute to the progression of diabetes-related

vascular disease (46). AGEs are non-enzymatic glycosylated forms of

free amino acids that result from the interaction of glucose with lipids

or proteins, bind to receptors to promote inflammation and oxidative

stress, and are important in contributing to glomerulosclerosis and

mesangial hypertrophy in DKD (47–49). On the other hand, ROS acts

as an agonist of NF-kB signaling pathway to initiate the activation of

downstream inflammatory signaling pathways and promotes the
Frontiers in Endocrinology 03
release of inflammatory factors such as IL-1b, TNF-a, intercellular
adhesion molecule-1 (ICAM-1) and monocyte chemotactic protein-1

(MCP-1) (50–54).

We know that mitochondria are the main site of ROS production

and a target organelle for oxidative stress (55). The ETC is the central

component of the mitochondria for functional operation, and the

sequential transfer of electrons through the ETC to complex IV

creates an electrochemical proton gradient that drives the F1F0 ATP

synthase to produce ATP for OXPHOS (56). In addition,

mitochondrial ROS production is increased and morphology is

altered in high blood glucose environment of DM. Further,

prolonged high glucose stimulation results in more electron donors

such as NADH and FADH2 being produced in the tricarboxylic acid

(TCA) cycle, and too many electron donors entering the ETC, leading

to a maximum mitochondrial voltage gradient (57). Uncoupling

proteins (UCPs) reduce ROS production by dissipating the proton

motive force and increasing the rate of electron transfer in the ETC

(58). At the same time, molecular oxygen reacts prematurely to

produce superoxide O2
.-, which exceeds the antioxidant scavenging

capacity and leads to oxidative stress, causing impairment of cellular

respiratory function, promoting apoptosis and ultimately leading to

dysfunction of diseased tissues and systems (59, 60) (Figure 2). It is

reported that NADH oxidoreductase (complex I) and cytochrome bc1
oxidoreductase (complex III) are the main sites for the production of

ETC superoxide (61). In addition to this, much of the literature has

further linked mitochondrial OXPHOS function and mtDNA damage

closely to oxidative stress (55, 62). High glucose-induced oxidative
FIGURE 2

Mitochondrial OXPHOS process. Glucose undergoes glycolysis to produce pyruvate, which is oxidized to acetyl-coenzyme A or carboxylated to produce
oxaloacetate, which enters the mitochondrial matrix for the TCA cycle. And finally NADH and FADH2, electron donors, undergo electron transfer by the
ETC to produce H2O from O2 and ATP by the action of ATP synthase, completing OXPHOS process. NADH, nicotinamide adenine dinucleotide; FADH2,
flavin adenine dinucleotide; ETC, electron transfer chain; TCA, tricarboxylic acid; ATP, adenosine triphosphate, ADP, adenosine diphosphate; OXPHOS,
oxidative phosphorylation; Cyt C, cytochrome c; O2

.-, superoxide anion.
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stress and mitochondrial dysfunction interact to promote the

progression of DM and its complications (63). One article focused

on the relationship between diabetic renal tubular injury and

mitochondrial dysfunction, contributing to increased ROS

production and metabolic abnormalities such as abnormal

mitochondrial autophagy, and the article suggested that

mitochondrial dysfunction may contribute to early diabetic

tubulopathy (64). In addition to mitochondria, cytoplasmic

NADPH oxidase (Nox) is the main source of cytoplasmic ROS

(55). Further, cytoplasmic ROS could increase mitochondrial ROS

production by continuously damaging mitochondria (6). Overall,

mitochondria remain the main source of endogenous ROS (43).

Therefore, we will next focus on the relationship between

mitochondria and oxidative stress in the next sub-section.

It is important to note that the physiological level of ROS plays an

important role in signaling, defense against infection and

maintenance of redox homeostasis, only excessive ROS production

leads to adverse effects of oxidative stress (65–67).
3 Physiological functions of
mitochondria and oxidative damage

3.1 OXPHOS

In mitochondria, OXPHOS reactions use over 95% of O2 to

produce ATP, and a small amount of ROS are produced daily as

OXPHOS by-products (68). However, when the production of ROS

exceeds the scavenging capacity of the antioxidant defense system, it

can lead to oxidative stress.

Glucose is one of the main sources of energy for the body and is

glycolysed in the cytoplasm to produce pyruvate, which is oxidized to

acetyl-coenzyme A or carboxylated to produce oxaloacetate, which

enters the mitochondrial matrix for the TCA cycle (69). Subsequent

production of nicotinamide adenine dinucleotide (NADH) and flavin

adenine dinucleotide (FADH2) provides the respiratory substrate for

the ensuing OXPHOS process, which drives ATP production (70).

Mitochondria have a bilayer membrane structure, with the

electron transport chain localized to the inner mitochondrial

membrane (IMM), which is inlaid with four protein complexes,

namely NADH oxidoreductase (complex I) (the largest subunits

enzyme complex in the ETC), succinate dehydrogenase (complex

II), cytochrome bc1 oxidoreductase (complex III) and cytochrome c

oxidase (complex IV) (71). There are also two free-moving electron

transport carriers on the ETC, the lipid-soluble Q and the water-

soluble cyt-c, and these six components together form the ETC

supercomplex (72).

Two electrons from the TCA metabolite NADH in complex I are

passed to Q and reduced to QH2 (73). At the same time, the Fe-S

cluster conformational change induces proton translocation and

pumps four protons into the mitochondria intermembrane space

(IMS) (74). Complex II is also an important carrier for the transfer of

electrons, with FADH2 transferring electrons to Q via the Fe-S cluster.

Protons are required for the reduction of Q, so there is no net proton

increase in the IMS (75). Complex III transfers electrons of QH2 to

cyt-c, cyt-c that gets electrons will be reduced, and the completion of

the Q-cycle requires the pumping of four protons into the IMS (75).
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The reduced cytochrome carries electrons into complex IV, where

they are eventually passed to the binuclear center of complex IV to

complete the reduction of O2, also known as one molecule of O2 to

produce two molecules of H2O (76). Eight protons in the matrix are

consumed in this process, four of which are pumped into the IMS

(77). At this point, the high concentration of protons in the IMS

constitutes the electrochemical gradient responsible for the energy

storage of the mitochondria (78). F1F0 ATP synthase, also known as

complex V, transfers protons from the IMS to the matrix and controls

the threshold of the MMP, at which point ATP synthase undergoes

structural changes that promote ADP phosphorylation to produce

ATP (79, 80). In addition, UCPs lower the membrane potential by

transferring protons from the IMS to the matrix and uncouple from

the ATP synthesis process, forming a switch for ATP synthesis with

ATP synthase (81) (Figure 2).
3.2 Structure and function of mtDNA

mtDNA is a double-stranded circular structure (consisting of

light and heavy strands), localizes in the mitochondrial matrix,

closing to IMM (82). The human mtDNA is 16,569 bp in length

and consists of 37 genes, 22 tRNAs, 2 rRNAs and a non-coding region

displacement-loop (D-loop) (83, 84). However, the non-coding

region controls the transcription and translation of mitochondrial

proteins, but the high sequence mutagenicity in this region makes the

mtDNA mutation rate approximately 10-20 times higher than

nuclear DNA, with relevance to diseases such as aging and cancer

(85–87). Moreover, due to the tight arrangement of genes in the ring

structure of mtDNA, some genes overlap, and lack of histone

protection, it is vulnerable to ROS generated by oxidative stress

process, resulting in persistent damage to mtDNA (88, 89).

Mitochondria have a different DNA genetic system from nuclear

DNA. mtDNA is responsible for encoding some of the mitochondrial

proteins (such as the protein complexes that make up the ETC) and

involved in mitochondrial biogenesis and signaling, with semi-

autonomous genetic characteristics (82, 90, 91). Therefore, mtDNA

is important for OXPHOS. Mutations in mtDNA and epigenetic

changes can lead to blocked electron transport in the ETC, reducing

ATP synthesis and promoting apoptosis.

Further, transcription and packaging factor (TFAM), and

transcription elongation factor (TEFM), essential cofactors for

mtDNA replication and transcription, play an important role in the

assembly and distribution of mtDNA-protein complexes and are

thought to alleviate insulin resistance-induced oxidative stress (90,

92–94).

In addition, the organism equips mtDNA with DNA repair

systems, and base excision repair (BER) is considered to be the

main repair mechanism (95). BER maintains the normal structure

of mtDNA by eliminating base mismatches caused by methylation,

oxidation and alkylation, and by cleaving, gap-filling and connecting

the structure of mtDNA (96). In addition, mismatch repair (MMR),

homologous recombination (HR) and non-homologous end joining

(NHEJ) are also important repair pathways of mtDNA (97). It has

been documented that base mismatches caused by elevated ROS can

be recognized and excised by the BER pathway to maintain the

functional and structural integrity of mtDNA (98–100). Similarly, in
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vitro and in vivo studies of the MMR pathway in high glucose

environments have shown that high glucose environments induce

damage to mtDNA and also impair the repair of the MMR pathway

(101) (Figure 3).
4 The relationship between oxidative
stress-induced mitochondrial
damage and diabetic
microvascular complications

Oxidative stress, an important trigger for the development of DM

and its complications, is characterized by excessive ROS production

and intracellular oxidative damage. Oxidative stress can lead to

alterations in mitochondrial morphology and function, inducing

structural changes and functional abnormalities in macromolecules

such as proteins, lipids and nucleic acids, ultimately leading to

apoptosis and accelerating the progression of diabetic microvascular

complications such as diabetic retinopathy (22, 102–105). In the

following we will focus on mitochondria as an entry point to explore

the impact of oxidative stress-induced mitochondrial dysfunction on

diabetic microvascular complications.
4.1 Impaired OXPHOS and recovery in
diabetic microvascular complications

OXPHOS occurs in mitochondria and is the main process

involved in supplying energy for cellular respiration and ATP

synthesis (106). ETC is the central element of the OXPHOS

process, with the sequence of complexes (I-IV) working to achieve

electron and proton transfer, creating MMP to store energy for the

next work of ATP synthase (75). However, prolonged hyperglycaemic

stimulation leads to abnormal electron transfer, resulting in increased

production of ROS such as superoxide, inducing the onset of
Frontiers in Endocrinology 05
oxidative stress (107). Therefore, excessive ROS is one of the main

factors leading to impaired OXPHOS function.

4.1.1 Diabetes kidney disease (DKD)
In high glucose induced podocytes, the superoxide levels were

found to be increased while MMP expression and mitochondrial

number were found to be decreased. However, overexpression of

SIRT6 was shown to reverse this phenomenon (108). Dioscin

effectively reduced blood glucose and markers of renal impairment

in diabetic rats, reversed mitochondrial respiratory chain disorders,

increased the activity of SOD and CAT antioxidant enzymes and

reduced the level of ROS (109). Jujuboside A modulated

mitochondrial respiratory chain complex protein expression in

T2DM rats, improved respiratory chain function, reduced ROS

levels , increased SOD, CAT and GPX expression, and

downregulated apoptotic protein expression (110). In a study

evaluating Abroma augusta L. (Malvaceae) leaf extract on T2DM-

related nephropathy and cardiomyopathy in experimental rats, it was

observed that redox homeostasis was disrupted, intracellular NAD

and ATP levels were reduced and mitochondria-dependent apoptotic

pathways were activated in T2DM state (111). Studies have shown

that soluble klotho protein (referred to as rKL, known as an inhibitor

of aging) reduced albuminuria, restored mitochondrial function and

reduced ROS production in db/db mice. Moreover, in high glucose-

induced mouse proximal tubular cells, rKL treatment alleviated

OXPHOS impairment and induced mitochondrial repair via the

PGC-1a-AMPK pathway (112). To investigate the effects of a high-

fat diet on oxidative stress in wild-type and RAGE (receptors for

AGEs) deficient mice, it was shown that RAGE can regulate

mitochondrial respiratory chain function and oxidative stress in

flounder muscle (113). Metformin, a classical hypoglycemic agent,

promoted normalization of energy status and biochemical alterations,

elevated ATP and lowered AMP, inhibited TNF-a and IL-6 pro-

inflammatory gene expression, and exerted protective function of

kidney in DKD rats (114). C3a induced mitochondrial fragmentation

in podocytes, promoted mitochondrial depolarization, decreased

SOD expression and increased ROS production, contributing to

abnormal cellular energy metabolism, but this phenomenon could

be inhibited by SS-31 (115). Knockdown of heat shock protein 60

(HSP60) in high-glucose-induced canine renal tubular cells showed

that HSP60 regulated protein aggregation and ATP production in

renal tubular cells (116). In high glucose and angiotensin II (ANG II)-

induced HK-2 cells, increased p66Shc (promoter of apoptosis) and p-

p66Shc were accompanied by increased ROS. The researchers made

in-depth research and concluded that p66Shc mediated high glucose

and ANG II-induced mitochondrial dysfunction via protein kinase C

(PKC)-Β and peptidyl-prolyl isomerase (Pin1) pathways, decreased

MMP, promoted cyt-c leakage and increased the apoptotic protein

caspase-9 (117). In another study, one of the mechanisms by which

p66Shc promoted DKD was that p66Shc promoted disruption of

mitochondrial dynamics, enhanced Mfn1-Bak interactions leading to

loss of mitochondrial voltage potential, cyt-c release, excessive ROS

production and apoptosis (118). In contrast, coagulation protease

activated protein C and normalized MMP through epigenetic

inhibit ion of p66Shc (119) ; also Obacunone exhibited

nephroprotective effects that inhibited oxidative stress and

mitochondrial dysfunction (120). Purple Rice Husk improved
FIGURE 3

Excessive ROS damages mtDNA. ROS drives damage to mtDNA and
the mtDNA repair systems, yet the damage of mtDNA repair systems is
also an important contributor to mtDNA damage, followed by damage
to mitochondrial protein-related transcription and synthesis pathways,
ultimately leading to a vicious cycle of ETC abnormalities and
subsequent the excessive generation of ROS. ROS, reactive oxygen
species; mtDNA, mitochondrial DNA; ETC, electron transfer chain.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1112363
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhang et al. 10.3389/fendo.2023.1112363
mitochondrial function through the PGC-1a/SIRT3/SOD2 signaling

pathway and reduced oxidative damage in renal tissue (121).

Knockdown of the mitochondrial uncoupling protein UCP-2

increased uncoupling through adenine nucleotide transport proteins

and reduced oxidative stress in the diabetic kidney in rat models

(122). In STZ-induced diabetic mice, phillyrin reduced blood glucose

and serum creatinine levels, increased Bcl-2/Bax ratio, reduced cyt-c

leakage into the cytoplasm and inhibited apoptosis through the PI3K/

Akt/GSK-3b signaling pathway (123). Genistein protected podocytes

integrity, increased MMP, improved mitochondrial function and

inflammatory status in rats with diabetic nephropathy by inhibiting

the MAPK/NF-kB pathway (124). Telmisartan increased the MMP of

glomerular endothelial cells induced by high glucose, and reduced the

levels of 8-hydroxy-2-deoxyguanosine (8-OHdG) and MDA to

alleviate oxidative stress (125). The complex I inhibitor rotenone

(ROT) reduced ROS production and increased MMP and PGC-1a-
controlled mitochondrial biogenesis in STZ and different

inflammatory factor-induced mouse pancreatic b-cell line Min6

cells, suggesting that inhibition of complex I might be an effective

strategy to protect b-cells in T1DM (126). Another study had shown

that ROT could also correct over-activated biological processes,

increasing the ratio of reduced glutathione (GSH) and nicotinamide

adenine dinucleotide phosphate (NADPH) to its oxidized form,

leading to redox balance (127). Resveratrol alleviated proteinuria,

reduced ROS and MDA levels, restored SIRT1 and PGC-1a
expression in kidney tissue. Resveratrol inhibited mitochondrial

oxidative stress via SIRT1/PGC-1a, improved podocytes respiratory

chain complex I and III activity, increased MMP and inhibited cyt-c

release from mitochondria to the cytoplasm (128). In palmitic acid

(PA) and oleic acid induced podocytes, PA was found to induce

mitochondrial superoxide and H2O2 production (129). To investigate

the role of SIRT3 deficiency on mitochondrial damage, researchers

fed SIRT3-deficient mice a high-fat diet, resulting in mitochondrial

dysfunction (involving abnormalities in OXPHOS, MMP and energy

metabolism) and ultrastructural changes (130). In addition, a number

of studies had also shown a close pathological link between impaired

OXPHOS process and DKD (131–134).

The selective SIRT1 agonist BF175 was shown to prevent high

glucose-induced mitochondrial damage and reduce superoxide

production (135). Salvianolate effectively inhibited the generation of

superoxide derived from NOX4 (mainly located in IMM) and

reduced podocyte apoptosis (136). In the STZ-induced DKD rat

model, the researchers observed a significant increase in blood

creatinine and urine protein, as well as in ROS and MDA levels in

the model group compared to the control group (137). In H2O2-

induced HBZY-1 cells, Nepeta angustifolia inhibited H2O2 by

increasing MMP, reducing ROS and MDA levels while inhibiting

apoptosis (138). It had been shown that in addition to elevated

biochemical parameters associated with kidney damage, STZ-

induced diabetic rats also increased ROS production, reduced

antioxidant defenses in vivo, and ultimately initiated mitochondria-

dependent apoptosis (139). Increased ROS formation, elevated lipid

peroxidation products and oxidative DNA damage, and

mitochondrial apoptosis were observed in kidney tissue in STZ-

induced diabetic mice, but dietary eicosapentaenoic acid inhibited

this phenomenon by modulating hypoxia-inducible factor (HIF)-1a
(140). Another study showed that Erythropoietin alleviated
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mitochondrial dysfunction, inhibited mitochondrial fragmentation

and ROS production, and promoted autophagic flux in vitro (141).

CAT deficiency increased ROS production and fibronectin expression

in DKD mice and murine mesangial cells, demonstrating that

endogenous catalase played an important role in the maintenance

of mitochondrial function and protected the kidney from oxidative

stress (142). Ferulic acid inhibited ROS production and apoptosis and

induced autophagy in STZ-induced diabetic rats (143). In addition,

other researchers found that Nox4 knockdown reduced NADPH

oxidase activity, accompanied by reduction in high-glucose-induced

superoxide, yet mitochondrial Nox4 expression was increased in the

renal cortex of diabetic rats, demonstrating the role for Nox4 in the

regulation of mitochondrial function (144). Adropin improved lipid

metabolism and renal function in diabetic mice, regulated blood

glucose and lipids, inhibited ROS production, improved lipid

deposition and down-regulated lipoprotein expression (145). G

Protein-Coupled Bile Acid Receptor TGR5 improved indicators of

renal injury in db/db mice, upregulated regulators of mitochondrial

biogenesis, reduced lipid accumulation and H2O2 production and

increased SOD2 activity; similarly, similar results were observed in

high glucose-induced podocytes (146).

4.1.2 Diabetic retinopathy (DR)
In a high glucose-induced retinal ganglion cells (RGC) model,

Hesperidin (Citrus Flavonone) restored mitochondrial function,

prevented loss of MMP and cyt-c release into the cytoplasm,

prevented ROS production, increased intracellular levels of

antioxidant enzymes and inhibited apoptosis (147). A study on

metabolic memory of mitochondrial oxidative damage found that

in primary rat retinal endothelial cells (rRECs) cultured in high

glucose, MMP and cyt-c levels decreased and ROS levels increased

in the model group compared to the control group as the duration of

high glucose culture increased, suggesting that metabolic memory of

mitochondrial oxidative damage can lead to DR (148). Another study

on Berberine (BBR) showed that BBR alleviated oxidative stress

(inhibited cyt-c leakage and ROS production and increased

antioxidant enzyme levels) in diabetic rats and high glucose-

induced Müller cells by inhibiting the NF-kB signaling pathway,

thereby preventing DR (149). Leakage of cyt-c and increased

accumulation of Bax in mitochondria in STZ-induced diabetic rats

and high glucose cultured retinal endothelial cells and pericytes,

which were inhibited by SOD and its mimics (150). In another

study, in addition to demonstrating the protective effect of

manganese superoxide dismutase (MnSOD) on the retina, it was

also demonstrated that complex III might be a more significant source

of superoxide compared to complex I (151). It had been suggested

that MTP-131 (a novel mitochondrial targeting peptide) alleviated

H2O2-induced oxidative stress in RGC-5 (blocking MMP

depolarization and cyt-c release, reducing ROS production and

preventing apoptosis) (152). NaHS (donor of H2S) blocked retinal

abnormalities in diabetic rats and alleviated DR by inhibiting

mitochondrial dysfunction and NF-kB activation (153).

In high glucose-induced and platelet-derived growth factor-

induced retinal pigment epithelial cells, researchers found that

SIRT3 knockdown led to epithelial-mesenchymal transition and

migration of epithelial cells, which was alleviated by overexpression

of SIRT3. Further studies revealed that the cause was knockdown of
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SIRT3 leading to overproduction of mitochondrial ROS, suggesting

the role for SIRT3 in inhibiting mitochondrial oxidative stress (154).

In a vitro study, 670 nm photobiomodulation reduced high glucose-

induced ROS production and maintained mitochondrial integrity in

rat Müller glial cells (155). In an STZ-induced mouse experiment,

STZ induced an increase in cytoplasmic and mitochondrial ROS,

accompanied by lipid peroxidation and apoptosis, and a decrease in

GSH and GSH-Px as well as optic nerve activity and vitamin A levels,

which could be reversed by selenium and resveratrol (156). Some

scientists investigated the mechanism of oxidative stress induced by

high glucose in RGC-5, and concluded that high glucose induced ROS

production, disrupted mitochondrial mechanisms (MMP, mtDNA

and mitochondrial mass damage) and antioxidant mechanisms, and

triggered the production of downstream inflammatory factors and

neurodegenerative markers (157). A study on green tea (Camellia

sinensis) and antioxidant vitamins showed that green tea and

vitamins reduced retinal superoxide production and that green tea

improved inhibition of ETC and complex III activity, but promoted

tissue collagen matrix glyco-oxidation (150).

4.1.3 Diabetic peripheral neuropathy (DPN)
Phosphocreatine (PCr, a high-energy phosphate compound)

prevented oxidative stress and promoted normalization of

mitochondrial function in vivo and vitro experiments: PCr acted on

complex I and complex II of the mitochondrial respiratory chain to

increase cellular respiration and reduce ROS, and might be a potential

drug for the treatment of diabetes-related neurodegenerative diseases

(158). Salvianolic Acid A (SalA) inhibited high glucose-induced

mitochondrial damage in Schwann RSC96 cells by modulating

nuclear factor erythroid 2-related factor 2 (Nrf2): SalA scavenged

mitochondrial ROS, reduced MMP, increased ATP production and

upregulated OXPHOS-related gene expression; and alleviated

abnormal glucolipid metabolism in KK-Ay mice, exerting

peripheral neuroprotective effects (159). In contrast, high glucose

induction led to abnormal changes on mitochondrial superoxide,

MMP and neurosynaptic growth in Neuro2a cells, STZ-induced

abnormalities in motor/nerve conduction and neuroblood supply in

diabetic rats, and polydatin improved mitochondrial dysfunction and

biogenesis via SIRT1/Nrf2 (160). Long chain fatty acids induced

mitochondrial dysfunction of Schwann cells, while overexpression

of long chain acyl CoA synthetase 1 improved mitochondrial

coupling efficiency, reduced proton leakage, and improved

mitochondrial function (161). Human neuroblastoma SH-SY5Y

cells exposed to high glucose levels reduced neuropil numbers,

downregulated uncoupling protein (UCP) 3, increased MMP and

ROS levels, while insulin-like growth factor type 1 normalized these

changes (162).

An in vitro study of quercetin showed that quercetin reduced high

glucose-induced ROS production in RSC96 cells and improved

mitochondrial morphological abnormalities and DNA damage, as

well as peripheral nerve hypofunction in lesioned mice (163). In high

glucose-induced Schwann cells, puerarin inhibited ROS production

and mitochondrial depolarization and prevented apoptosis (164).

Additionally, it had also been shown that Fuzi protected Schwann
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cells induced by high glucose, prevented excessive ROS production

and apoptosis, and had neuroprotective effects (165).
4.2 mtDNA damage and recovery in diabetic
microvascular complications

4.2.1 DKD
Increased urinary 8-OHdG was detected in DKD-sensitive DBA/

2J mice and human DKD specimens and showed a correlation

between glomerular endothelin-1 receptor type A expression and

increased mtDNA damage (166). The combination of dietary

fenugreek (Trigonella foenum-graecum) seeds and onion (Allium

cepa) was effective in reducing STZ-induced oxidative stress, lowering

triglyceride and total cholesterol levels, reducing 8-OHdG and DNA

fragmentation, and eliminating mtDNA deletions (167). In addition,

salidroside alleviated renal fibrosis and kidney damage in DKD mice,

and promoted the increase of mtDNA copy number and

mitochondrial biogenesis (168).

4.2.2 DR
In high glucose-induced retinal endothelial cells, researchers

found increased damage to mtDNA and DNA repair mechanisms

and decreased expression of genes responsible for encoding the ETC

protein complex, however, overexpression of MnTBAP or MnSOD

suppressed this phenomenon (169). Similarly, another study also

pointed out that high glucose-induced mtDNA damage led to

excessive ROS production and further promoted mtDNA damage,

leading to a vicious cycle of oxidative stress (170). Hydrogen sulfide is

an endogenous gastransmitter signaling molecule with antioxidant

properties, and its donor GYY4137 exhibited antioxidant effects in

STZ-induced diabetic mice by resisting mtDNA damage, promoting

Cytb transcription, limiting ROS production and inhibiting increased

mitochondrial membrane permeability (171). An interesting study

found that mtDNA and its repair/replication mechanism were

significantly associated with the course of DM: early mtDNA

repair/replication enzymes increased compensatorily, and as the

disease progressed the repair/replication mechanism was disrupted

and the mtDNA copy number decreased significantly (172).

4.2.3 DPN
A study comparing differences in mtDNA and transcript levels

between diabetic and PGC-1a(-/-) diabetic mice found that PGC-1a(-/-)

exacerbated neurological abnormalities in diseased mice, promoted

mtDNA damage and protein oxidation, and led to more severe

mitochondrial degeneration, demonstrating that modulation of PGC-

1a may be a strategy for treating DPN (173). TFAM overexpression

upregulated mtDNA and total TFAM levels, prevented the reduction of

mtDNA copy number and inhibited motor and sensory nerve

conduction abnormalities in diseased mice (174). A study on the

neurological evaluation of 125 Italian T2DM patients noted that

mtDNA was reduced in T2DM patients, this result was more

significant in DPN patients and was associated with the MIR499A

gene polymorphism (175).
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4.3 Inactivation and recovery of antioxidant
defense systems in diabetic microvascular
complications

4.3.1 DKD
CD38 inhibitor apigenin upregulated NAD/NADH ratio and

SIRT3-mediated mitochondrial antioxidant enzyme activity, while

knockdown of CD38 inhibited SIRT3 activity, suggesting a

correlation between CD38 and SIRT3 in oxidative stress

mechanisms (176). In vitro experiments using high glucose-induced

glomerular mesangial cells revealed that high glucose stimulated ROS

production, decreased SOD and GSH levels, increased NADPH

oxidase activity and promoted an increase in apoptotic factors

which was also verified in diabetic rats (177). Antioxidant peptide

SS31 inhibited the reduction of MnSOD and CAT activity, inhibited

NADPH oxidase and NF-kB p65 activity in db/db mice and high

glucose induced HK-2 cells (178). It had also been shown that exercise

increased the expression of SOD and reduced oxidative damage (179).

In addition, the activity of antioxidant enzymes in the body changed

with the duration of diabetic hyperglycemia. The mRNA expression

and activity of heme oxygenase-1 (HO-1) and MnSOD increased, and

GSH-Px activity increased during short-term hyperglycemia; as the

disease progressed the mRNA expression and activity of both

decreased, accompanied by an increase in MDA and a decrease in

GSH levels (180). The use of fluorofenidone in db/db mice showed

that fluorofenidone alleviated oxidative stress-induced renal injury by

blocking RAGE/AGEs/NOX and PKC/NOX signaling, down-

regulating NADPH oxidase and up-regulating GSH-Px and SOD

(181). In another study using STZ to create a model of DM in rats,

MDA, CAT and GSH-Px were significantly different compared with

the control group and tempol treatment restored GSH-Px levels

(182). Intervention with carnosine in H2O2-induced HK-2 cells

concluded that carnosine increased total SOD activity, decreased

NOX4 expression and ROS levels, and alleviated oxidative stress

(183). The use of honokiol in BTBR ob/ob mice with T2DM resulted

in the conclusion that honokiol ameliorated renal damage and

maintained mitochondrial function by activating SIRT3 and thereby

restoring SOD2 and PGC-1a expression (184). In STZ-induced

diabetic rats, Rap1 significantly ameliorated mitochondrial

dysfunction and oxidative stress injury in renal tubular cells,

modulated C/EBP-b binding to the endogenous PGC-1a promoter,

and the interaction of PGC-1a with CAT or SOD (185).

4.3.2 DR
Exendin-4 (a glucagon-like protein) increased GSH and

magnesium superoxide dismutase levels, decreased NADPH

oxidase levels, inhibited ROS production and cyt-c release, and

prevented apoptosis in high glucose-induced adult human retinal

pigment epithelial-19 cells by inhibiting p66Shc expression and

activation (186). In a study on the relationship between retinal

neuronal apoptosis and MnSOD in diabetic rats, it was noted that

apoptosis increased in diabetic rats at 8 and 12 weeks, and the

number of RGC cells decreased at 12 weeks, while MnSOD activity

and mRNA levels decreased at 4, 8 and 12 weeks, indicating a close

relationship between MnSOD and RGC apoptosis (187). Similarly,

two other studies had shown that MnSOD overexpression
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inhibited the increase in 8-OHdG and nitrotyrosine levels,

prevented the decrease in GSH and total antioxidant capacity

caused by DR (188, 189). An interesting study explored the

response of knockdown of the Sigma 1 receptor (s1RKO) on

primary retinal Müller glial cells, showing that SOD1, CAT and

GPX1 expression and protein levels were reduced in the s1RKO
group, as well as GSH and GSH/GSSG ratios, demonstrating that

the neuroprotective effects of s1R are related to the inhibition of

oxidative stress (190).

4.3.3 DPN
Aldose reductase inhibitors corrected neurological and metabolic

abnormalities, restored GSH and ascorbic acid levels, and inhibited

lipid peroxidation in diabetic rats (191). Berberine (BBR) increased

Nrf-2-mediated antioxidant defense system, ameliorated

mitochondrial damage and neurotransmission abnormalities in

diabetic rats, and upregulated PGC-1a-mediated mitochondrial

biogenesis in high glucose-induced N2A cells, demonstrating the

important role of BBR in DPN treatment (192).
5 Abnormalities in metabolic pathways
of oxidative stress

High glucose-induced activation of the AGE, PKC, polyol and

hexosamine pathways, as well as the formation of ROS in the

mitochondria and cytoplasm, contribute to increased ROS

production, and promote mitochondrial dysfunction and induce

oxidative stress, mediating cellular dysfunction and accelerating the

disease process (32, 193–197) (Figure 4). We have previously addressed

the formation of ROS in the cytoplasm and mitochondria, so the

following section focuses on the other four metabolic pathways.
5.1 AGEs/RAGE pathway

Non-enzymatic glycosylation of proteins and other

macromolecules caused by prolonged high glucose levels, resulting

in a series of dehydration and fracture reactions leading to the

production of AGEs, resulting in abnormal protein structure and

function, and consequently abnormal physiological function (198).

AGEs promote oxidative stress by impairing the ETC to promote ROS

formation (199). At the same time, the production of ROS can in turn

stimulate the production of AGEs, thus creating a vicious circle (200).

In addition, AGEs mediate the activation of downstream

inflammatory and fibrotic signaling pathways by binding to cell

surface receptors (RAGE) (201–203).
5.2 The polyol pathway

High glucose environment promoted activation of the polyol

pathway (204). Glucose is converted to sorbitol by aldose reductase

(AR) and subsequently oxidised to fructose by sorbitol dehydrogenase

(SDH), during which NADPH is consumed as an electron donor

(205). However, the reduction of the antioxidant GSH is dependent
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on NADPH, and the high glucose state accelerates the depletion of

NADPH and reduces the antioxidant capacity of the body (205). At

the same time, sorbitol can increase the osmotic pressure of cells, or

act as a precursor substance for the formation of AGEs to promote the

body’s sensitivity to oxidative stress, leading to DPN or DR (23, 206,

207). In addition to this, some researchers verified the relationship

between AR and NLRP3 inflammasome: AR inhibitors inhibited the

activation of NLRP3 inflammasome, reduced the production of

inflammatory factors and mitigated the production of ROS during

oxidative stress. It proved that AR participated in the innate immune

response induced by NLRP3 inflammasome (208, 209).
5.3 The PKC pathway

High glucose promotes increased glycolysis, leading to greater

diacylglycerol (DAG) production, while inhibition of the glycolytic

enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH)

increases DAG activity and activates the PKC pathway (210).

Activation of the PKC pathway is often accompanied by increased

production of inflammatory factors and vascular endothelial growth

factor (VEGF), and is closely associated with the development of

diabetic complications (193, 211–215).
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5.4 The hexosamine pathway

The hexosamine pathway is one of the pathways that promote the

development of DM and its complications (195). Similarly, high

glucose acts as a trigger switch for ROS production, resulting in the

inhibition of GAPDH activity and the conversion of increased

fructose-6-phosphate to the end product diphosphate uracil-N-

acetylglucosamine (UDP-GlcNAc) (216). This is accompanied by

an increase in ROS and fibrogenic factors downstream of the

pathway, causing oxidative stress in mitochondria and is closely

associated with thickening of the basement membrane of DKD (23,

217, 218).
6 Discussion

Oxidative stress is an imbalance in the redox state of the body,

where excessive production of free radicals or damage to the

antioxidant system, leads to a pathological outcome that is closely

linked to the development of diseases such as cancer and metabolic

disorders (219). ROS is a major component of free radicals, mainly

produced in small amounts during OXPHOS in mitochondria, and
FIGURE 4

Abnormal metabolic pathways caused by hyperglycaemia. Hyperglycemia contributes to ROS production through the AGEs pathway, hexosamine
pathway, PKC pathway, and polyol pathway; meanwhile, mitochondria and cytoplasm are also important sites for ROS production, which ultimately leads
to oxidative stress. At the same time, oxidative stress can contribute to ETC abnormalities, reduce MMP, damage the mtDNA repair system and promote
apoptosis. AGEs, advanced glycosylation end products; RAGE, the receptor for AGEs; NF-ΚB, nuclear factor kappa-light-chain-enhancer of activated B
cells; AR, aldose reductase; SDH, sorbitol dehydrogenase; NADPH, nicotinamide adenine dinucleotide phosphate; GSH, reduced glutathione; GAPDH,
glyceraldehyde-3-phosphate dehydrogenase; DAG, diacylglycerol; PKC, protein kinase C; VEGF, vascular endothelial growth factor; PAI-1, plasminogen
activator inhibitor-1; TGF-Β1, transforming growth factor; ROS, reactive oxygen species; ETC, electron transfer chain; mtDNA, mitochondrial DNA; NOX,
NADPH oxidases; NADP+, nicotinamide adenine dinucleotide phosphate oxidized; O2

.-, superoxide anion; SOD, superoxide dismutase; H2O2, hydrogen
peroxide; •OH: hydroxyl radical.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1112363
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhang et al. 10.3389/fendo.2023.1112363
plays an important role in cell signaling, cell proliferation and

antibacterial immunity (220, 221).

However, the prolonged and persistent hyperglycaemic state of

DM leads to an increase in cellular respiratory substrates entering the

mitochondria, with excess electron donors impairing ETC,

contributing to ROS production, mediating the breakdown of the

proton electrochemical gradient, impaired MMP, increased cyt-c

leakage and inadequate ATP synthesis (56). Due to the lack of

histone protection of mtDNA, the high mutability of the non-

coding region and the restriction of its loop structure, ROS can

further damage mtDNA, leading to a reduction in the copy number of

mtDNA, damage the genes responsible for encoding some

mitochondrial proteins and impair the function of mitochondria

(87, 222, 223). At the same time, the increased ROS can damage

the repair system of mtDNA, further deepening the damage to

mtDNA and causing functional impairment of mitochondria (224,

225). In addition, the instability of ROS encourages cross-linking with

macromolecular proteins, DNA and lipids, altering the structure and

function of macromolecules and having toxic effects, further affecting

cell function (226). However, ROS can also mediate the activation of

downstream signaling pathways such as inflammation and fibrosis,

leading to the progression of diabetic microvascular complications

such as DKD and DPN (227–229).

Studies have shown that some herbal active ingredients (puerarin,

polydatin, quercetin, etc.), vitamin C, vitamin E, a-lipoic acid are

important antioxidant strategies (160, 163, 164, 230–233). Targeting

mitochondria to overexpress catalase in mice extends lifespan and

alleviates oxidative stress in diseases such as metabolic syndrome

(234). A clinical trial of the drug elamipretide (a mitochondrial

tetrapeptide that interacts with cardiolipin) showed that

elamipretide significantly improved clinical symptoms and skeletal

muscle performance in Barth syndrome (235). In addition, animal

models have demonstrated that enzymatic antioxidants mimics (SOD

mimics, GPX mimics and CAT mimics) can scavenge superoxide and

inhibit oxidative stress (236–238). Recent studies have shown that

bioadhesive hydrogel can promote oral wound healing in DM rats;

novel nanoparticle can accelerate wound healing in DM and is an

emerging and effective treatment strategy (239, 240). Some

combinations of antioxidants have also been shown to have

antioxidant effects (241–243). The relevant literatures state that the

combinations of ferulic acid and metformin have been shown to

improve DM (244). And the combinations of superoxide dismutase,

a-lipoic acid, acetyl-L-carnitine, and vitamin B12 have been shown to

improve sural nerve conduction velocity, amplitude and pain in

patients with DPN (233). Therefore, antioxidants play a positive

therapeutic role in the treatment of DM.

However, many antioxidants suffer from poor solubility, unstable

storage and gastrointestinal degradation, thus limiting the use of

oxidants in clinical practice (245). In recent years antioxidant drugs

have mainly focused on animal studies and have not been adequately

tested in clinical trials, therefore, poorly supported by clinical data.

The few drugs that have been clinically studied have not yielded

satisfactory results either, and achieving effective drug concentrations

in the body is an important issue for modern science. In addition to

this, mtDNA, a key structure involved in oxidative stress, is under-

researched for drugs targeting mtDNA, leading to a lack of

development of antioxidant drugs. We hope to be able to
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characterize mitochondrial dysfunction in the high glucose state

and look forward to providing a bit of new ideas for future

experimental studies.
7 Conclusion

Hyperglycemia causes redox imbalance and massive production

of ROS leading to impairment of OXPHOS, mtDNA function,

mitochondrial dysfunction and oxidation of macromolecules and in

turn accelerates apoptosis and disease progression. Therefore,

oxidative stress is an important mechanism that promotes the

development of DM and its complications. Targeted development

of antioxidants and the combination of multiple acting antioxidant

components may be a strategy for the treatment of DM.
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