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Osteoporosis is a systemicmultifactorial bone disease characterized by low bone

quality and density and bone microstructure damage, increasing bone fragility

and fracture vulnerability. Increased osteoclast differentiation and activity are

important factors contributing to bone loss, which is a common pathological

manifestation of bone diseases such as osteoporosis. TNF-a/NF-kB is an

inflammatory signaling pathway with a key regulatory role in regulating

osteoclast formation, and the classical pathway RANKL/RANK/OPG assists

osteoclast formation. Activation of this inflammatory pathway promotes the

formation of osteoclasts and accelerates the process of osteoporosis. Recent

studies and emerging evidence have consistently demonstrated the potential of

probiotics to modulate bone health. Secretions of Bifidobacterium, a genus of

probiotic bacteria in the phylum Actinobacteria, such as short-chain fatty acids,

equol, and exopolysaccharides, have indicated beneficial effects on bone health.

This review discusses the molecular mechanisms of the TNF-a/NF-kB
inflammatory pathway in regulating osteoclast formation and describes the

secretions produced by Bifidobacterium and their potential effects on bone

health through this pathway, opening up new directions for future research.
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1 Introduction

Physiologically and pathologically, bone volume fraction depends mainly on the rate of

bone formation by osteoblasts and the rate of resorption by osteoclasts. In most

pathological bone diseases such as osteoporosis, excessive bone resorption by osteoclasts

is the main cause of bone loss. At present, three main categories of drugs are used for

osteoporosis treatment: anti-resorptive agents (inhibits osteoclasts), bone-forming agents

(boost osteoblasts), and dual-effect drugs (both promote bone formation and inhibit
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osteoclasts) (1). Although they have shown good clinical efficacy,

their side effects cannot be ignored (2–5). For example,

bisphosphonates are a type of anti-bone resorption agent that

increases the survival and activity of osteoclasts mainly by

inhibiting the mevalonate biosynthetic pathway or by binding to

a non-hydrolyzable analogue of ATP (6). As a first-line drug for

osteoporosis, bisphosphonates have demonstrated some beneficial

effects, including increasing bone density and lowering the risk of

fracture (7), particularly hip fracture (8). Bisphosphonates are

commonly well tolerated, but side effects can occur in up to 10%

of patients, mainly including arthralgia, myalgia, and

gastrointestinal discomfort (9). Other negative effects including

uveitis (10), atypical femoral fractures (AFFs) (11), and

osteonecrosis of the jaw (ONJ) (12), are relatively uncommon.

Selective estrogen receptor modulators (SERMs) and anti-RANKL

monoclonal antibodies are the other two classes of anti-resorptive

drugs. SERMs include raloxifene and bazedoxifene, both of which

have been shown to effectively prevent bone loss and reduce bone

turnover (13). However, in a three-year clinical trial, the incidence

of vasodilatation (hot flashes), leg cramps and venous

thromboembolic events was significantly higher in the

bazedoxifene and raloxifene groups compared with the placebo

group (14). The latter is represented by denosumab, a human

monoclonal antibody against RANKL, a key bone resorption

mediator (15). Postmenopausal women treated with the drug

showed a remarkable long-term reduction in the risk of fracture

of up to 10 years (16). But, after treatment was stopped, the rate of

vertebral fractures rose to the equivalent in untreated people (2). As

a potent bone-forming drug, teriparatide is a good candidate for

improving bone microstructure (17). However, it is only used in

patients with grievous osteoporosis because it requires daily

subcutaneous injection and is significantly more expensive than

other osteoporosis medications (18). Romosozumab is a

monoclonal antibody that binds sclerostin and has a dual

regulatory effect of promoting bone formation and suppressing

bone resorption (19). According to the findings of the current study,

romosozumab is contraindicated for individuals with a recent

history of a cardiovascular incident and should only be used with

caution in patients with a high cardiovascular risk (5). The safety

and affordability of the drug are key concerns for patients.

Therefore, how to innovate and optimize the safety and efficacy

of therapeutic drugs, while keeping them affordable to osteoporosis

patients is a practical clinical problem that needs to be addressed.

In recent years, probiotics have become a research hotspot.

Probiotics are described as living microorganisms, which, in

sufficient quantities, provide health benefits to the host (20).

Probiotics have been used as preventive and curative therapy for

multiple illnesses, including diabetes (21, 22), hypothyroidism (23),

Hashimoto’s thyroiditis (24), and osteoporosis (25, 26). In

particular, their effects on osteoporosis are even more far-

reaching (25, 27, 28). Probiotic preparations are live bacterial

preparations composed of probiotics or probiotic growth-

promoting substances that confer health benefits to the host,

us ing microbio logica l pr inciples (29) . Among them,

Bifidobacterium, Lactobacillus, Escherichia, Enterococcus, Bacillus

and Streptococcus are the most commonly bacteria used in
Frontiers in Endocrinology 02
probiotic preparations (30–32). In particular, Bifidobacterium

inhibits osteoclast formation to ameliorate osteoporosis. Several

research and clinical studies have demonstrated that, probiotics,

despite their disease-prevention and treatment effects, are not

absolutely safe or without side effects (33). Probiotics may be an

occasional risk factor for sepsis (34). However, in general, the

benefits of probiotics outweigh the disadvantages, especially the

lower incidence of adverse events in Bifidobacterium therapy (34).

RANKL/RANK/OPG has been extensively corroborated as a

classical pathway for regulating osteoclast formation, but its

relationship with the TNF-a/NF-kB signaling pathway has

elicited great interest in recent years. Bifidobacterium, a probiotic

of the intestine, has profound effects on the TNF-a/NF-kB
inflammatory pathway. Its secretions, including short-chain fatty

acids, equol, and exopolysaccharides have distinct effects on the

aforementioned inflammatory pathway. Among them, short-chain

fatty acids and equol have been extensively demonstrated to exert

inhibitory effects on osteoclast formation independent of this

signaling pathway. This review provides an overview of the

specific mechanisms of Bifidobacterium inhibition of the TNF-a/
NF-kB inflammatory pathway to affect osteoclast formation.

Through this review, we attempt to provide researchers with new

insights into potential targets for the development of effective

therapies for osteoporosis.
2 TNF-a/NF-kB signaling pathway

TNF-a/NF-kB is a well-known inflammatory signaling

pathway (35) that is implicated in the development of endocrine

system illnesses, particularly osteoporosis (36, 37). The tumor

necrosis factor (TNF) superfamily molecules are mostly produced

by macrophages (38). Among them, TNF-a is a vigorous pro-

inflammatory cytokine with a crucial role in immune function,

inflammation, and regulation of cell growth, differentiation, and

apoptosis (39). TNF-a requires cell surface receptors tumor

necrosis factor receptor 1 (TNFR1) and tumor necrosis factor

receptor 2 (TNFR2) to exert its biological effects (40). Whereas

TNFR1 and TNFR2 have extracellular domains enriched with

cysteine, their intracellular domains are structurally very different.

Notably, TNFR1 contains a conserved 80-amino acid sequence

called the cytoplasmic “death domain,” which produces a

characteristic fold (41). Through this death structural domain,

TNFR1 can sequentially recruit tumor necrosis factor receptor-

associated death domain protein (TRADD), TNFR-associated

factor 2 (TRAF2), receptor-interacting protein, and nuclear

factor-kB (NF-kB) kinase inhibitor (IKK), thereby activating NF-

kB (40). Contrarily, TNFR2 does not have a cytoplasmic death

region sequence and recruits TNFR-associated factor 1 (TRAF1)

and TNFR-associated factor 2 (TRAF2), but not TRADD (42).

Despite this difference, the signaling cascades downstream of

TNFR1-TRADD-TRAF2 and TNFR2-TRAF2 are similar.

NF-kB is a homodimeric and heterodimeric complex composed

of five members of the Rel family, including NF-kB1 (p50), NF-kB2

(p52), RelA (p65), RelB, and c-Rel (43). These factors regulate the

expression of several genes involved in immune response and
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numerous other cellular processes, including growth, development,

and apoptosis (44). In most unstimulated cells, IkB proteins are

maintained inactive in the cytoplasm by interacting with NF-kB

dimers (45). Kappa B inhibitor kinase (IKK) is a heterotrimeric

enzyme made up of the kinase subunits IKKa and IKKb as well as

the regulatory subunit IKKg/NEMO (46). When activated, IKK

phosphorylates and degrades two important serine residues in the

N-terminal regulatory domain of the NF-kB inhibitor IkB, releasing

NF-kB (47). After its release, NF-kB generates cytokines such as

p50 and p65, which promote its translocation to the nucleus to

revive transcription (47). When NF-kB p50 and p52 are expressed,

RANKL-RANK induces osteoclastogenesis (36). NF-kB promotes

the activation of c-Fos (48), a member of the Fos gene family, which

together with Jun proteins make up the AP-1 family of

heterodimeric transcription factors (49). Without c-Fos,

osteoclasts cannot develop (50). Boyce et al. demonstrated that c-

Fos primarily generates and interacts with NFATc1 to initiate a

transcriptional regulatory cascade, which results in upregulation of

several target genes involved in osteoclast development and

function (51). The TNF-a/NF-kB signaling pathway is in Figure 1.
3 RANKL/RANK/OPG signaling
pathway

RANKL/RANK/OPG is the predominant signaling pathway

regulating osteoclast differentiation (52). The differentiation of

osteoclasts primarily involves the fusion of monocytes to

multinucleated osteoclasts in response to three cytokines:

macrophage colony-stimulating factor (M-CSF), nuclear factor-kB
Frontiers in Endocrinology 03
(NF-kB) ligand receptor activator (RANKL) and osteoprotegerin

(OPG) (25). M-CSF (also known as colony-stimulating factor-1)

regulates mononuclear phagocyte production, through a process

mediated by CSF-1 receptor (CSF-1R), which is encoded by the c-

FMS proto-oncogene (53). As a dimeric cytokine, it modulates the

formation of many different types of cells, such as trophoblasts,

macrophages, and osteoclasts (54). In the early stage of osteoclast

development, M-CSF binds to c-FMS expressed on precursor cells

activating their proliferation (53). A type II membrane protein with

close homology to the TNFSF members TRAIL, FasL, and TNF-a

(55), RANKL is expressed on osteoblasts as a membrane-associated

cytokine (56). In vitro, RANKL activates mature osteoclasts in a

dose-dependent manner, but can activate pre-existing osteoclasts

quickly to cause bone resorption in vivo (57, 58). Additionally, it has

been demonstrated that M-CSF and RANKL promote the

differentiation of osteoclast precursor cells into mature and

functional osteoclasts (56, 59). Collectively, CSF-1 and RANKL

can stimulate the expression of genes that characterize the osteoclast

lineage, including those that encode tartrate-resistant acid

phosphatase, cathepsin K, and calcitonin receptor, resulting in the

maturation of osteoclasts (60). Through intercellular contacts,

osteoblasts express RANKL, which is recognized and binds to

osteoclast precursors, which then develop into osteoclasts in the

presence of M-CSF (61). Meanwhile, M-CSF strongly promotes the

binding of RANK to RANKL and the formation of osteoclasts (62).

Osteoprotegerin (OPG) is a cytokine receptor protein produced

by osteoblasts (63). It acts as a decoy receptor by binding to RANKL

to block its interaction with its functional receptor RANK, thereby

inhibiting osteoclast formation (64). OPG has also been found to

cause osteoclast pseudopod disassembly and safeguard the bone
FIGURE 1

TNF-a/NF-kB signaling pathway.
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cortex via pathways like the Ca-p38-MAPK signaling pathway,

inhibit RANKL binding to RANK, prevent osteoblast-induced

osteoclast precursor cell differentiation, and control osteoclast

function (65). Li et al. demonstrated that cytokines (such as OPG

and RANKL) directly interact with bone regulating proteins to

enhance bone homeostasis (66). Another study confirmed that

dexamethasone-induced osteoporosis can be improved by

restoring OPG expression by decreasing RANKL expression (67).

Hence, the ratio of OPG/RANKL determines the degree of bone

resorption and the course of bone metabolism.
4 TNF-a/NF-kB signaling pathway and
RANKL/RANK/OPG signaling pathway

Inflammation is closely linked to osteoporosis. TNF-a is a

potent pro-inflammatory cytokine (39), and IL-6 is a “classical”

bone resorption pro-inflammatory cytokine (68). It has been

demonstrated that IL-1, a pro-inflammatory cytokine, promotes

osteoclast production, which in turn stimulates bone resorption

(69). TNF-a stimulates inflammatory cytokine mRNA

transcription, which results in the production of IL-6 (70). It has

been discovered that recombinant human tumor necrosis factor

(rTNF-a) naturally induces IL-1 in the body (71). Furthermore, IL-

1 can induce the expression of TNF-a via an autocrine mechanism

(72) and IL-1 induces the production of IL-6 (73). Thus,

inflammatory cytokines can not only promote bone resorption

alone, but their mutual activation can enhance the activation of

TNF-a/NF-kB signaling pathway, activate osteoclast-related genes,

and enhance bone resorption, which can be seriously detrimental to

osteoporotic patients. The cytokines TNF-a, IL-6, and IL-1 cause a

significant augmentation of osteoclasts and a suppression of

osteoblast activity when RANKL is present (74). IL-17 is an

another pro-inflammatory cytokine that promotes bone

resorption via upregulating RANKL (75). IL-6 trans-signaling

directly increases RANKL on fibroblast-like synovial cells and is

involved in the induction of RANKL by TNF and IL-17 (76). In

addition, IL-6 and TNF-a can synergistically activate NF-kB (77).

Ciucci et al. further ascertained that bone marrow CD4+ T cells

belong to a distinct subpopulation of osteoclastic T cells termed

Th17 TNF-a (+) cells that can generate IL-17 and TNF-a (78).

These cells move to the bone marrow amid chronic inflammation,

where they facilitate the recruitment of inflammatory monocytes

(mainly osteoclast progenitors) (78). In an inflammatory event,

immune system cells, such as T cells, B cells, macrophages, and

dendritic cells, become activated and release inflammatory

cytokines, which are among the most crucial mediators in bone

immunology (74). Activated T cells are particularly significant

mediators because they increase the production of the so-called

bone resorbing cytokines, including TNF- and RANKL (74). Thus,

the formation of osteoclasts is closely associated with chronic

inflammation. In addition to stimulating osteoclast formation

through the NF-kB signaling pathway, TNF-a can also mediate

RANK ligands activation of osteoclast formation via an autocrine
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mechanism (79). The combination of TNF-a and RANKL greatly

stimulated osteoclast formation and significantly up-regulated

osteoclast mRNA markers (37).

To sum up, inhibiting the TNF-a/NF-kB inflammatory

pathway can impede the formation of osteoclasts. Multiple studies

(80, 81) have demonstrated a strong link between inflammation and

osteoclast formation. The important role of the NK-kB

transcription factor family in inflammation and innate immunity

has also been elucidated (82, 83). Inhibition of osteoclast formation

via the NF-kB pathway has also been reported. For example,

preparations of Zanthoxylum piperitum (84), Sophorae flos (85),

and Bajijiasu (86), were shown to inhibit the RANKL-induced NF-

kB/NFATc1 pathway in osteoblasts to hinder bone resorption. As a

pro-inflammatory cytokine, TNF-a promotes the production of

osteoclasts by activating the NF-kB pathway, synergizing RANKL

cytokines, and facilitating and enhancing RANK-RANKL binding.

In periodontitis, down-regulating TNF-a, alveolar bone loss was

delayed (87). In addition, Yao et al. explained the regulation of

TNF-a-induced osteoclast formation (88). The effect of RANKL/

RANK/OPG on osteoclasts has also been confirmed by many

investigators (52, 89, 90). TNF-a/NF-kB signaling pathway and

RANKL/RANK/OPG signaling pathway induced-osteoclast have

been shown in Figure 2.

In recent years, the impact of probiotics on bone health has

become a hotspot of research. Current research suggests that

probiotics regulate bone metabolism through different mechanisms,

including intestinal barrier permeability (91), metabolite production

(92), the immune response (93), and inflammation (94).

Postmenopausal bone mineral density loss, which is associated with

estrogen deficiency (95), was effectively reduced by probiotic

supplementation, which also improved bone turnover in 78

postmenopausal patients with osteoporosis for more than a year

(96). In another trial, probiotics significantly increased total hip bone

density compared with placebo and modulated gut microbiota in

postmenopausal women (97). In response to the aforementioned

pathways, recent reports show that probiotics, particularly

Bifidobacterium, have more benefits for bone health (Table 1).
5 Bifidobacterium

The most prevalent phyla of the human gut microbiota are

Firmicutes, Bacteroidetes, and Actinobacteria (105). The phyla

Firmicutes and Bacteroidetes collectively account for 90% of

colonic microbiota (60–75% and 30–40%, respectively) (106, 107).

By comparison, the phylum Actinomycetes is a smaller but essential

component for preserving intestinal homeostasis (108).

Bifidobacterium, which belongs to the phylum Actinobacteria

(105), was first isolated from the feces of healthy breastfed infants

by a French pediatrician Tissier and named Bifidobacterium

because of its commonly bifurcated ends (109). Bifidobacterium

can produce short-chain fatty acids (SCFA) (110), equol (Eq) (111),

exopolysaccharides (112) and many other substances that can affect

osteoclast formation, which is shown in Figure 3.
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5.1 Short chain fatty acids

SCFAs are molecules less than 6 carbon atoms in size (C1-C6)

(113). Intestinal bacteria degrade dietary fiber into products such as

butyrate, propionate, and acetate so on, which are collectively called

SCFAs (114). Acetate, fructose, and lactate can be produced during

the fermentation of dietary fiber by Bifidobacterium, but not

butyrate (115). However, in hybrid cultures composed of

Bifidobacterium and E. coli or A. caccae, the addition of dietary

fiber results in the production of butyrate (115). This study shows

that SCFAs not only directly affect the TNF-a/NF-kB inflammatory

pathway, but also inhibit TNF-a/NF-kB-mediated inflammation by

promoting the secretion of regulatory T cells and increasing

intestinal tight junction protein expression, thereby controlling

osteoclast formation. In addition, osteoclasts can be regulated by

Treg cells independent of this pathway. Of course, the direct effect

of SCFAs on osteoclasts cannot be ignored.

There are substantial reports on anti-inflammatory properties of

SCFAs, including the results of basic experiments done to inhibit the

TNF-a/NF-kB inflammatory pathway. At low concentrations, acetic

acid, propionic acid, and butyric acid exert potent anti-inflammatory

effects by inhibiting the generation of pro-inflammatory agents, such

as NO, TNF-a, IL-1, and IL-6 (116). Downar et al. showed that
Frontiers in Endocrinology 05
pretreatment of human umbilical vein endothelial cells with butyric

acid suppressed TNF-a-induced activation of NF-kB (117). In

another experiment, all SCFAs dose-dependently decreased NF-kB
reporter activity in Colo320DM cells and 30 mmol/L of acetate,

propionate, and butyrate reduced LPS-stimulated TNF-a release

from neutrophils (118). Certainly, by directly blocking NF-kB,

SCFAs may also alleviate S. aureus-induced inflammatory response

(119). In mice maintained in germ-free environment and fed with

150 mM SCFA via drinking water for three weeks, SCFA, either alone

or in combination (SCFA mixture), was found to increase the

frequency and amount of cTreg (120). Foxp3+ CD4+ regulatory T

cells (Tregs) are a subset of immune cells that regulate tissue

inflammation (121). Treg cells can restrain the function of effector

T cells, thus reducing the output of TNF-a (122). They also produce

interleukin-10 (IL-10), which limits environmental interface

inflammation (123) and inhibits osteoclastogenesis (124). Bogdan

et al. demonstrated that recombinant mouse IL-10 effectively

inhibited the capacity of murine peritoneal macrophages to release

TNF-a (125). The anti-inflammatory properties of Treg cells not only

confer an advantage, but they can also affect osteoclast formation

independent of the TNF-a/NF-kB pathway. Tregs cells can also

inhibit macrophage colony-stimulating factor and RANKL to

promote osteoclast formation in a dose-dependent manner (126).
FIGURE 2

RANKL/RANK/OPG is the most important signaling pathway regulating osteoclasts formation. The interaction between RANK and RANKL (which can
exacerbate this effect in the presence of M-CSF) promotes the recruitment of the TRAF family bridging proteins, one of which TRAF6 contributes to
OC formation and activation of the NF-kB signaling pathway, leading to the transcription of genes involved in OC formation and OC production.
OPG is a decoy receptor that binds RANKL and can block the binding and activation of RANK and RANKL, reducing OC production. TNF-a/NF-kB is
an inflammatory signaling pathway. In the presence of TNF-a, NF-kB pathway is activated, OC production is increased, and the interaction between
RANKL and RANK is enhanced, which results in activation of the downstream signaling pathways. In addition to the above-mentioned effects, TNF-a
also synergizes with RANKL and directly promotes OC production. In the presence of RANKL and M-CSF, the expression of genes involved in OC
formation leading to the development of mature OC.
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Compared with wild-type litter controls, FoxP3-Tg mice had higher

bone mass, indicating that Treg cells can regulate bone resorption in

vivo (127). However, no reduction in osteoclast production was seen

when butyric acid or propionic acid was added 24 or 48 hours after

osteoclast differentiation, and acetate alone had no significant effect

on osteoclast differentiation (128). Thus, SCFAs may inhibitory effect

on osteoclast production but not on osteoclasts that have already

been generated.

TNF-a, which may be linked to pathogenic intestinal

inflammation, can affect the shape and function of tight

junctions, impairing epithelial barrier function (129). Damage to

the intestinal mucosal barrier aggravates the TNF-a/NF-kB-
induced pro-osteoclastogenic pathway, creating a vicious cycle of

inflammation and epithelial injury. Therefore, maintenance of good

integrity and proper permeability of the intestinal mucosal barrier is
Frontiers in Endocrinology 06
crucial to intestinal health and protection from other diseases. In

particular, intestinal permeability is maintained in normally

functioning tight junctions (130). The expression of tight junction

proteins, which are essential for preserving intestinal epithelial

permeability, is elevated in the presence of SCFAs (131, 132).

Damage to the tight junction barrier allows toxic materials to

enter the body, which can cause inflammation and over-

activation of the mucosal immune system (133). Additional

evidence indicates that SCFAs play an important protective role

in the intestinal mucosal barrier. Intestinal development in piglets

may be aided by gastric infusion of SCFAs, particularly at high

SCFAs concentrations, by improving intestinal shape, lowering the

percentage of apoptotic cells, and maintaining intestinal barrier

function (134). Another study demonstrated that oral or direct

enteral drip treatment with SCFAs enhanced the proliferation of
TABLE 1 Beneficial effects of related Bifidobacterium strains on bone health.

Related Bifidobacterium
strains Sex Experiment

model
Duration of inter-

vention Bone effects Reference

Bifidobacterium longum NK49 Female C57BL/6 mice 2 weeks

↑Serum levels of Ca and P
↑Serum levels of Osteocalcin

↑IL-10
↓TNF-a
↓NF-kB

(98)

Bifidobacterium longum ATCC
15707

Male Wistar rats 28 days
↑Tibial Ca, P, and Mg content

↑Fracture strength
↑SCFAs concentration

(99)

Bifidobacterium animalis subsp.
Lactis

Male Wistar rats 15 days

↓TRAP-positive multinucleated cells
↓The number of osteoclastes

↓IL-1b
↑IL-10

(100)

Bifidobacterium longum ATCC
15707

Female
Sprague-Dawley

rats
16 weeks

↑BV/TV
↑Tb.N
↑Tb.Th
↑BMD

↑Serum levels of Osteocalcin
↓Serum levels of C-terminal telopeptide

(101)

Bifidobacterium longum–

fermented broccoli
Male Wistar rats 12 weeks ↓TRAP-positive osteoclasts (102)

Bifidobacterium animalis Subsp
Lactis

Male Wistar rats 2 weeks

↑BV
↑OPG
↑IL-10

↓Bone loss
↓RANKL
↓IL-1b

↓RANKL/OPG ratio
↓IL-1b/IL10 ratio

(103)

Bifidobacterium longum UBBL-64
(M1395)

Female C57BL/6 J mice 6 weeks

↑IL-10
↓The number of multinucleated (>3 nuclei)

TRAP-positive cells
↓The number and area of F-actin rings

↓TNF-a
↓IL-6
↓IL-17

(93)

Bifidobacterium adolescentis Male C57BL/6 J mice 36days
↑Fracture healing

↑Tight junction genes expression
↓Inflammation

(104)
f

↑, means to increase; ↓, means to reduce.
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intestinal epithelial cells (135). As a result, SCFAs play a key role in

maintaining intestinal epithelial stability, reducing inflammation,

and preventing osteoclast formation.

SCFAs have also been shown to directly regulate osteoclasts. By

stimulating human osteoblasts to produce more OPG, sodium

butyrate inhibited the development of osteoclasts (136).

Nonetheless, treatment with butyrate increased cell cycle arrest and

drastically diminished cell proliferation in MG-63 osteoblasts (137).

Therefore, the effect of SCFAs on the formation of osteoblasts are still

inconclusive. However, its inhibitory effect on bone resorption in

cellular experiments or animal experiments is well supported. In

RAW264 cells, sodium butyrate blocks the expression of osteoclast-

specific mRNA and nuclear factor-kB (NF-kB) ligand (RANKL)

receptor activator-stimulated osteoclast formation (138). Mice treated

with SCFAs and fed a high-fiber diet had much more bone mass and

were protected from inflammation-induced bone loss (139).

In summary, SCFAs play an important role in inhibiting the

TNF-a/NF-kB inflammatory signaling pathway, regulates

osteoclast formation in other ways, and exerts a considerable

direct effect on osteoclasts.
5.2 Equol and TNF-a/NF-kB
signaling pathway

Equol, with a chemical formula C15H14O3, was initially

discovered and clarified by Marrian and Haslewood (140). Equol,
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a soy glycosides metabolite, is categorized as a polyphenolic

compound (isoflavone found in plants and foods) (141). In

comparison to soy sapogenins, equol has greater estrogenic

activity and a stronger affinity for estrogen receptors (142).

Soybean isoflavones have been shown to improve ovx-induced

osteoporosis (143). They can generate the metabolite equol in the

intestine, which exerts therapeutic effect on bone metabolism (144).

Equol had been demonstrated to suppress the activation of the

TNF-a/NF-kB inflammatory pathway by several authors. In

addition, like SCFAs, it has been shown to exert anti-

inflammatory effects independent of this pathway, further

supporting its role in the inhibition of osteoclast formation. Equol

dramatically reduces the level of pro-inflammatory cytokine TNF-a
in mice treated with lipopolysaccharide (LPS) (145, 146).

Additionally, in LPS-stimulated murine macrophages, equol dose-

dependently reduced TNF-a production and TNF-a mRNA

expression (146). Moreover, equol may drastically lower NF-kB
P65 protein expression by suppressing the activation of the NF-kB
pathway (147). Subedi et al. showed that treatment with equol

decreased LPS-induced production of pro-inflammatory cytokines

(such as TNF-a and IL-6) and treatment of cells (pretreated with

LPS) with equol at doses of 10 and 20 µM, significantly suppressed

NF-kB activity (148). Among them, IL-6 is a classical factor that

promotes osteoclast formation (68), which further supports the

inhibitory effect of equol on osteoclast formation.

Meanwhile, its direct regulation of osteoclasts has also received

much scholarly attention in recent years. Equol (0.5 mg/day
FIGURE 3

Bifidobacterium mainly produces SCFA, Eq and EPS. These three substances inhibit the TNF-a/NF-kB signaling pathway, reduces the production of
inflammatory mediators, and blocks the activation of inflammatory mediators, thereby preventing the formation of OC. SCFA can promote the
production of Treg cells, indirectly inhibit the TNF-a/NF-kB signaling pathway, and also regulate OC formation through Treg cells. In addition, SCFA
plays a role in the maintenance of the intestinal mucosal barrier, blocking the entry of inflammatory factors into the bloodstream, and reducing
inflammation, leading to the inhibition of OC formation. More importantly, it has been shown that SCFA also increases the production of OPG. Eq
also decreases the production of inflammatory factors, such as IL-6, inhibits RANK and RANKL, and can upregulate OPG expression. EPS mainly
inhibits the production of inflammatory factors.
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subcutaneously) treatment prevented bone loss in the femur and other

bones in body of ovx mice (149). In another study, however, it was

discovered that equol had no particular benefit on whole-body bone

density, but had a special advantage in the femur, where it inhibited

bone loss throughout, proximally and distally (150). The substance

probably works better on some parts of the bone than others. But it is

certain that equol plays a key role in promoting bone healing and

inhibiting osteoclast formation. In severe osteoporosis presenting 10

weeks after oophorectomy, the administration of equol intervention

promoted fracture healing by enhancing bone trabecular structure and

raising endosteal healing tissue (151). More importantly, it reduced

the expression of specific genes (e.g. Fos) in osteoblasts (152). In the

classical pathway of osteoclast formation, qRT-PCR confirmed that

treatment of ovx-induced rats with equol revealed decreased RANKL

and RANKmRNA expression levels and upregulated OPG expression

levels (153). Thus, Eq can regulate the balance between OPG and

RANKL and inhibit bone loss caused by osteoclasts.
5.3 Exopolysaccharides and TNF-a/NF-kB
signaling pathway

Exopolysaccharides (EPS) are lengthy polysaccharide chains

that are loosely linked to the microbial cell wall and thus can

easily be discharged into the nearby local milieu (154). The effect of

exopolysaccharides on this signaling pathway is still relatively

limited, but it has been found that it can exert an inhibitory effect

on osteoclasts to some extent.

The inhibition of inflammation by EPS is bidirectional. Large

molecular weight and neutrally charged EPS exert their

immunosuppressive effects by preventing the release of pro-

inflammatory molecules (112). EPS with small molecular weights

and negative charges can boost the immune system by prompting

immune cells to release cytokines, including IL-10, IL-12, and TNF-a
(155). Bifidobacterium 35624, which produces EPS, more effectively

suppresses the pro-inflammatory response compared with

Bifidobacterium 35624, which is deficient in EPS (156). And, this

study showed that the former can reverse the increase in the pro-

osteoclastogenic cytokine IL-17, which is induced in the absence of EPS

(156). One recent study suggests that EPS acts mainly by preventing

the fusion of early osteoclast precursors, without significantly affecting

the resorptive activity of mature osteoclasts (154). In contrast, mice that

received peroxisulfated exopolysaccharides (OS-EPS) had more

osteoclasts on the surface of their trabecular bones (157). Notably, in

vitro, the early stage of osteoclast precursor adhesion was prevented by

OS-EPS, thereby preventing the cell fusion stage (157). Therefore, the

effects of extracellular polysaccharides on osteoclasts are still

inconclusive, and further research is needed to explain these

relationships and explore the conditions under which extracellular

polysaccharides are beneficial for bone health.
6 Analysis and future outlooks

Osteoporosis has become a major global public health problem,

with a significant economic burden on health care systems. It is a
Frontiers in Endocrinology 08
bone disease that is characterized by low bone mass and

microstructural degradation, which promote bone fragility and,

consequently, increase the fracture risk (158). In previous studies

(25, 159), the therapeutic potential of probiotics in bone health has

been demonstrated, including their positive effect on osteoporosis.

However, few studies have examined the relationship between

specific genera of bacteria and osteoporosis, and certainly even

fewer articles have discussed their specific mechanisms of action.

Therefore, in this paper, we sought to fill this gap by reviewing the

mechanisms of Bifidobacterium inhibition of the TNF-a/NF-kB
inflammatory pathway to prevent osteoclast formation. In germ-

free mice, higher bone mass is linked to changes in the

immunological state, which is reflected by decreased expression of

inflammatory cytokines in bone (25). Bifidobacterium can be used

to inhibit the formation of osteoclasts by altering the inflammatory

immune status of bones through its secretory products.

SCFAs can directly inhibit the classical pathway of

inflammation, the TNF-a/NF-kB signaling pathway, to strongly

inhibit inflammation. It can also promote the secretion of Tregs

cells, regulate inflammation through the immune system, increase

the expression of intestinal tight junction proteins, block the

invasion of harmful substances through the intestinal mucosa,

and effectively control inflammatory response. In the immune

system, regulatory T cells (Treg cells) expressing the transcription

factor Foxp3 have been shown to act as inhibitors of inflammatory

response in the gut, and helper T cells 17 (Th17) are pro-

inflammatory cells (160). Under inflammatory conditions, Foxp3

expression on Treg cells is lost, and this allows transdifferentiate of

the cells into Th17 cells (161). The balance between Th17 cells and

Treg cells influences the pathogenesis of osteoporosis. Increased

Th17 cell frequency has been linked to the occurrence of bone

resorption (162). Th17 also secretes high quantities of IL-17, NF-kB

ligand receptor activator (RANKL), and TNF as well as low levels of

interferon gamma, making it the most osteolytic subpopulation of T

CD4+ cells (IFNg) (163, 164). A subpopulation of immune cells

known as Treg cells inhibits the differentiation and functionality of

Th17 cells (165). In addition, Treg cells can inhibit OC

differentiation and bone resorption by releasing TGF-b1 and IL-

10 (166). It has been reported that enrichment of SCFA-producing

probiotics downregulates intestinal epithelial permeability and

restores the Treg/Th17 cell ratio (27). Butyric acid, in particular,

is implicated in the control of Treg/Th17 balance and prevents the

formation of inflammation in colonic mucosa (167). This protective

effect on the intestinal mucosa contributes to the reduction in

inflammation and formation of osteoclasts. These effects are

mediated by the TNF-a/NF-kB inflammatory pathway. For

instance, Th17 secrete high levels of NF-kB ligand receptor

activator (RANKL) and TNF, and Treg inhibits Th17 cells

thereby indirectly regulating the TNF-a/NF-kB signaling

inflammatory pathway. Treg also inhibits osteoclast formation,

and further studies are needed to expand our understanding on

this. High concentration of SCFAs can inhibit bone growth. By

blocking osteoblast-specific factors, high dose of sodium butyrate

prevents the differentiation and mineralization of the ROS17/2.8 rat

osteoblast line (168). Therefore, further investigations are advocated

to determine the optimal concentration of SCFAs for the treatment
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of osteoporosis. On the side, butyrate also has the ability to

modulate bone anabolic metabolism through Treg cell-mediated

generation of Wnt10b from CD8+ T cells (169). This demonstrates

the ability of short-chain fatty acids in bone formation, and perhaps

Bifidobacterium could be drugs that have the dual effect of

stimulating bone formation and inhibiting bone resorption.

There have been several reports about the effect of SCFAs on

osteoclast formation (128, 136, 139). However, few scholars have

explored the effect of equol and exopolysaccharides on osteoclast

formation. Currently, few microorganisms have been identified to

produce equol, and Bifidobacterium is one of them (111). Equol can

inhibits the TNF-a/NF-kB pathway to exert anti-inflammatory

effects and reduce the pro-osteoclastogenic function of

inflammatory cytokines (145–148, 170). Ovariectomy model

(OVX) mice showed significantly reduced bone mineral density

(BMD) and bone mineral content (BMC) compared with sham-

operated animals, and 0.5 mg/d Eq treatment preserved bone mass

(149). Furthermore, it has stronger estrogenic activity and may be a

potential agent for treatment of postmenopausal osteoporosis (171).

Equol is produced in the gastrointestinal system by soy glycosides,

however, its metabolism in humans differs among individuals (172).

This may alter the efficacy of the drug leading to different responses

in various patients with osteoporosis, but this concept has not been

sufficiently studied. Therefore, further clinical evaluation and

analysis is still needed. In vitro experiments have demonstrated

that EPS can potentially prevent osteoclast formation, however, the

optimal way to use EPS in humans that guarantees stable inhibition

of osteoclast formation needs to be further explored (154).

Currently, Bifidobacterium is now an important product in the

market. Compared with other microbial workhorses, engineered

Bifidobacterium’s produces numerous bioproducts with additional

benefit while using fewer resources (173). The Bifid shunt, which

generates higher number of CoA predecessors for the

bioproduction of polyketide products and fatty acid biosynthesis,

is one of the crucial metabolic processes in Bifidobacterium (174).

Although clostridia can also produce SCFAs and Eq (111, 175), it is

thought to cause pathogenicity (176). Safety assessment of

Bifidobacterium species identified only 2 cases of mild functional

intestinal obstruction (177) and 1 case of sepsis (178), and these

results demonstrate that probiotic preparations possess pathogenic

risks. Therefore, there is need to balance between the risk and the

cost-benefit and safety in the clinical treatment of patients to reduce

the incidence of adverse events.

Inflammatory bowel disease (IBD) has been linked to increased

risk of bone mineral loss and osteoporosis (179). Bifidobacterium

lactis BL-99 can be used to prevent the development of osteoporosis

in patients with ulcerative colitis (UC) by shaping the intestinal

flora and inhibiting the production of inflammatory cytokines

(180). Probiotics have shown potential for the treatment of IBD,

and therefore, the authors suggest that fecal transplants could be

used in the future to regulate intestinal flora to improve the

symptoms of IBD (181).. Studies have demonstrated that
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extensive changes occur in the structure of the intestinal flora of

rats after ovariectomy (182). Compared with healthy individuals,

patients with osteoporosis or bone loss showed significant changes

in gut microbial species (183). This suggested a correlation between

osteoporosis and the constitution as well as functionality of the

intestinal flora. It is possible that fecal colony transplantation

technique may be an effective treatment for patients with

osteoporosis. However, FMT is processed by collecting

therapeutic stools from normal individuals and its treatment

success depends largely on the quality of the donor’s gut

microbes. Therefore, appropriate selection of donors is crucial.

Nevertheless, there are many challenges affecting the adoption of

this technology (184). Further animal experiments and clinical

studies are needed to clarify this.
7 Conclusion

In this review, we summarized the mechanisms by which

Bifidobacterium bifidum regulates osteoclast formation by

inhibiting the TNF-a/NF-kB inflammatory pathway. Its effects

are mediated by its secreted products, including short-chain fatty

acids, equol, and exopolysaccharides.

The role of probiotics in osteoporosis is increasingly being

studied. Activation of inflammatory factors associated with

osteoporosis such as TNF-a, NF-kB, IL-1, IL-6, and IL-17 has been

to be involved in the physiology of pro-osteoclast formation.

Inhibition of the TNF-a/NF-kB signaling pathway prevented

nuclear transfer of NF-kB and blocked the transcription of

regulatory proteins associated with osteoclasts. Bifidobacterium

secretions block the initiation of inflammation and inhibits

osteoclast formation to improve osteoporosis symptoms. In

addition, the Bifidobacterium secretions can regulate RANKL/

RANK/OPG, the most important signaling pathway of osteoclasts,

via the TNF-a/NF-kB signaling pathway, which block the synergistic

effect of TNF-a on RANKL and reduce the binding of RANK to

RANKL to regulate the formation of osteoclasts. In this way, it

prevents bone loss caused by the bone resorption induced by

osteoclasts. Although clinically effective osteoporosis treatment

drugs are available, their safety and efficacy are not satisfactory,

especially in patients with severe osteoporosis. Therefore, there is a

need to actively search for more effective treatments with fewer side

effects and more cost-effective. The data described in this review

demonstrated that Bifidobacteriummight be a good treatment agent.
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78. Ciucci T, Ibáñez L, Boucoiran A, Birgy-Barelli E, Pène J, Abou-Ezzi G, et al.
Bone marrow Th17 tnfa cells induce osteoclast differentiation, and link bone
destruction to ibd. Gut (2015) 64(7):1072–81. doi: 10.1136/gutjnl-2014-306947

79. Zou W, Hakim I, Tschoep K, Endres S, Bar-Shavit Z. Tumor necrosis factor-
alpha mediates rank ligand stimulation of osteoclast differentiation by an autocrine
mechanism. J Cell Biochem (2001) 83(1):70–83. doi: 10.1002/jcb.1202

80. Zeng XZ, Zhang YY, Yang Q, Wang S, Zou BH, Tan YH, et al. Artesunate
attenuates lps-induced osteoclastogenesis by suppressing Tlr4/Traf6 and Plcg1-Ca(2
+)-Nfatc1 signaling pathway. Acta Pharmacol Sin (2020) 41(2):229–36. doi: 10.1038/
s41401-019-0289-6

81. Wu L, Luo Z, Liu Y, Jia L, Jiang Y, Du J, et al. Aspirin inhibits rankl-induced
osteoclast differentiation in dendritic cells by suppressing nf-kb and Nfatc1 activation.
Stem Cell Res Ther (2019) 10(1):375. doi: 10.1186/s13287-019-1500-x

82. Hoesel B, Schmid JA. The complexity of nf-kb signaling in inflammation and
cancer. Mol Cancer (2013) 12:86. doi: 10.1186/1476-4598-12-86

83. DiDonato JA, Mercurio F, Karin M. Nf-kb and the link between inflammation
and cancer. Immunol Rev (2012) 246(1):379–400. doi: 10.1111/j.1600-
065X.2012.01099.x
frontiersin.org

https://doi.org/10.1093/annonc/mdu106
https://doi.org/10.1038/s41598-018-38174-2
https://doi.org/10.1359/jbmr.2002.17.7.1200
https://doi.org/10.1359/jbmr.2002.17.7.1200
https://doi.org/10.3892/mmr.2018.8698
https://doi.org/10.1073/pnas.72.9.3666
https://doi.org/10.1016/s0962-8924(01)02064-5
https://doi.org/10.1038/nri1184
https://doi.org/10.1242/jcs.01610
https://doi.org/10.1038/nri3834
https://doi.org/10.1016/s1097-2765(02)00697-4
https://doi.org/10.1101/gad.1228704
https://doi.org/10.1101/cshperspect.a000034
https://doi.org/10.1101/cshperspect.a000034
https://doi.org/10.1016/S0092-8674(02)00703-1
https://doi.org/10.1006/smim.2000.0210
https://doi.org/10.1006/smim.2000.0210
https://doi.org/10.1074/jbc.M610701200
https://doi.org/10.1038/ncb0502-e131
https://doi.org/10.1038/360741a0
https://doi.org/10.1074/jbc.M313973200
https://doi.org/10.1007/s11914-007-0024-y
https://doi.org/10.1182/blood.v99.1.111
https://doi.org/10.1073/pnas.84.17.6179
https://doi.org/10.1073/pnas.84.17.6179
https://doi.org/10.1084/jem.186.12.2075
https://doi.org/10.1073/pnas.95.7.3597
https://doi.org/10.1083/jcb.145.3.527
https://doi.org/10.1210/endo.143.3.8701
https://doi.org/10.1016/s0092-8674(00)81569-x
https://doi.org/10.1038/nature01658
https://doi.org/10.1210/edrv.20.3.0367
https://doi.org/10.1210/edrv.20.3.0367
https://doi.org/10.1084/jem.190.12.1741
https://doi.org/10.1016/s0092-8674(00)80209-3
https://doi.org/10.1038/36593
https://doi.org/10.1016/j.cyto.2014.10.007
https://doi.org/10.1074/jbc.M204004200
https://doi.org/10.2147/DDDT.S225516
https://doi.org/10.4049/jimmunol.145.10.3297
https://doi.org/10.1002/jbmr.5650040116
https://doi.org/10.1101/cshperspect.a016295
https://doi.org/10.1101/cshperspect.a016295
https://doi.org/10.1084/jem.163.6.1433
https://doi.org/10.1007/s00011-013-0633-0
https://doi.org/10.1007/s00011-013-0633-0
https://doi.org/10.1210/jcem.74.6.1317386
https://doi.org/10.1159/000431091
https://doi.org/10.5483/BMBRep.2013.46.10.141
https://doi.org/10.1093/rheumatology/ken363
https://doi.org/10.1093/rheumatology/ken363
https://doi.org/10.1038/onc.2014.286
https://doi.org/10.1038/onc.2014.286
https://doi.org/10.1136/gutjnl-2014-306947
https://doi.org/10.1002/jcb.1202
https://doi.org/10.1038/s41401-019-0289-6
https://doi.org/10.1038/s41401-019-0289-6
https://doi.org/10.1186/s13287-019-1500-x
https://doi.org/10.1186/1476-4598-12-86
https://doi.org/10.1111/j.1600-065X.2012.01099.x
https://doi.org/10.1111/j.1600-065X.2012.01099.x
https://doi.org/10.3389/fendo.2023.1109296
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Wu et al. 10.3389/fendo.2023.1109296
84. Kim MH, Lee H, Ha IJ, Yang WM. Zanthoxylum piperitum alleviates the bone
loss in osteoporosis Via inhibition of rankl-induced c-Fos/Nfatc1/Nf-kb pathway.
Phytomedicine (2021) 80:153397. doi: 10.1016/j.phymed.2020.153397

85. Kim JM, Lee JH, Lee GS, Noh EM, Song HK, Gu DR, et al. Sophorae flos extract
inhibits rankl-induced osteoclast differentiation by suppressing the nf-kb/Nfatc1
pathway in mouse bone marrow cells. BMC Complement Altern Med (2017) 17
(1):164. doi: 10.1186/s12906-016-1550-x

86. Hong G, Zhou L, Shi X, He W, Wang H, Wei Q, et al. Bajijiasu abrogates
osteoclast differentiation via the suppression of rankl signaling pathways through nf-kb
and nfat. Int J Mol Sci (2017) 18(1). doi: 10.3390/ijms18010203

87. Garcia VG, Knoll LR, Longo M, Novaes VC, Assem NZ, Ervolino E, et al. Effect
of the probiotic saccharomyces cerevisiae on ligature-induced periodontitis in rats. J
Periodontal Res (2016) 51(1):26–37. doi: 10.1111/jre.12274

88. Yao Z, Getting SJ, Locke IC. Regulation of tnf-induced osteoclast differentiation.
Cells (2021) 11(1). doi: 10.3390/cells11010132

89. Boyce BF, Xing L. Functions of Rankl/Rank/Opg in bone modeling and
remodeling. Arch Biochem Biophys (2008) 473(2):139–46. doi: 10.1016/j.abb.2008.03.018

90. Hofbauer LC, Schoppet M. Clinical implications of the Osteoprotegerin/Rankl/
Rank system for bone and vascular diseases. JAMA (2004) 292(4):490–5. doi: 10.1001/
jama.292.4.490

91. Li JY, Chassaing B, Tyagi AM, Vaccaro C, Luo T, Adams J, et al. Sex steroid
deficiency-associated bone loss is microbiota dependent and prevented by probiotics. J
Clin Invest (2016) 126(6):2049–63. doi: 10.1172/JCI86062

92. Kwon Y, Park C, Lee J, Park DH, Jeong S, Yun CH, et al. Regulation of bone cell
differentiation and activation by microbe-associated molecular patterns. Int J Mol Sci
(2021) 22(11). doi: 10.3390/ijms22115805

93. Sapra L, Shokeen N, Porwal K, Saini C, Bhardwaj A, Mathew M, et al.
Bifidobacterium longum ameliorates ovariectomy-induced bone loss Via enhancing
anti-osteoclastogenic and immunomodulatory potential of regulatory b cells (Bregs).
Front Immunol (2022) 13:875788. doi: 10.3389/fimmu.2022.875788

94. Ohlsson C, Engdahl C, Fåk F, Andersson A, Windahl SH, Farman HH, et al.
Probiotics protect mice from ovariectomy-induced cortical bone loss. PloS One (2014) 9
(3):e92368. doi: 10.1371/journal.pone.0092368

95. McClung MR, Pinkerton JV, Blake J, Cosman FA, Lewiecki M, Shapiro M, et al.
Management of osteoporosis in postmenopausal women: The 2021 position statement
of the north American menopause society. Menopause (2021) 28(9):973–97.
doi: 10.1097/gme.0000000000001831

96. Lambert MNT, Thybo CB, Lykkeboe S, Rasmussen LM, Frette X, Christensen
LP, et al. Combined bioavailable isoflavones and probiotics improve bone status and
estrogen metabolism in postmenopausal osteopenic women: A randomized controlled
trial. Am J Clin Nutr (2017) 106(3):909–20. doi: 10.3945/ajcn.117.153353

97. Takimoto T, Hatanaka M, Hoshino T, Takara T, Tanaka K, Shimizu A, et al.
Effect of bacillus subtilis c-3102 on bone mineral density in healthy postmenopausal
Japanese women: A randomized, placebo-controlled, double-blind clinical trial. Biosci
Microbiota Food Health (2018) 37(4):87–96. doi: 10.12938/bmfh.18-006

98. Kim DE, Kim JK, Han SK, Jang SE, Han MJ, Kim DH. Lactobacillus plantarum
Nk3 and bifidobacterium longum Nk49 alleviate bacterial vaginosis and osteoporosis in
mice by suppressing nf-kb-Linked tnf-a expression. J Med Food (2019) 22(10):1022–
31. doi: 10.1089/jmf.2019.4419

99. Rodrigues FC, Castro AS, Rodrigues VC, Fernandes SA, Fontes EA, de Oliveira
TT, et al. Yacon flour and bifidobacterium longum modulate bone health in rats. J Med
Food (2012) 15(7):664–70. doi: 10.1089/jmf.2011.0296

100. Ricoldi MST, Furlaneto FAC, Oliveira LFF, Teixeira GC, Pischiotini JP,
Moreira ALG, et al. Effects of the probiotic bifidobacterium animalis subsp. lactis on
the non-surgical treatment of periodontitis. a histomorphometric, microtomographic
and immunohistochemical study in rats. PloS One (2017) 12(6):e0179946. doi: 10.1371/
journal.pone.0179946

101. Parvaneh K, Ebrahimi M, Sabran MR, Karimi G, Hwei AN, Abdul-Majeed S,
et al. Probiotics (Bifidobacterium longum) increase bone mass density and upregulate
sparc and bmp-2 genes in rats with bone loss resulting from ovariectomy. BioMed Res
Int (2015) 2015:897639. doi: 10.1155/2015/897639

102. Tomofuji T, Ekuni D, Azuma T, Irie K, Endo Y, Yamamoto T, et al.
Supplementation of broccoli or bifidobacterium longum-fermented broccoli
suppresses serum lipid peroxidation and osteoclast differentiation on alveolar bone
surface in rats fed a high-cholesterol diet. Nutr Res (2012) 32(4):301–7. doi: 10.1016/
j.nutres.2012.03.006

103. Oliveira LF, Salvador SL, Silva PH, Furlaneto FA, Figueiredo L, Casarin R, et al.
Benefits of bifidobacterium animalis subsp. lactis probiotic in experimental
periodontitis. J Periodontol (2017) 88(2):197–208. doi: 10.1902/jop.2016.160217

104. Roberts JL, Liu G, Darby TM, Fernandes LM, Diaz-Hernandez ME, Jones RM,
et al. Bifidobacterium adolescentis supplementation attenuates fracture-induced
systemic sequelae. BioMed Pharmacother (2020) 132:110831. doi: 10.1016/
j.biopha.2020.110831

105. Hidalgo-Cantabrana C, Delgado S, Ruiz L, Ruas-Madiedo P, Sánchez B,
Margolles A. Bifidobacteria and their health-promoting effects. Microbiol Spectr
(2017) 5(3). doi: 10.1128/microbiolspec.BAD-0010-2016

106. Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GAD, Gasbarrini A,
et al. What is the healthy gut microbiota composition? a changing ecosystem across age,
Frontiers in Endocrinology 12
environment, diet, and diseases. Microorganisms (2019) 7(1). doi: 10.3390/
microorganisms7010014

107. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al.
Enterotypes of the human gut microbiome. Nature (2011) 473(7346):174–80. doi:
10.1038/nature09944

108. Binda C, Lopetuso LR, Rizzatti G, Gibiino G, Cennamo V, Gasbarrini A.
Actinobacteria: A relevant minority for the maintenance of gut homeostasis. Dig Liver
Dis (2018) 50(5):421–8. doi: 10.1016/j.dld.2018.02.012

109. Oyetayo VO, Oyetayo FL. Potential of probiotics as biotherapeutic agents
targeting the innate immune system. Afr J Biotechnol (2005) 4(2):123–7.

110. Tsukuda N, Yahagi K, Hara T, Watanabe Y, Matsumoto H, Mori H, et al. Key
bacterial taxa and metabolic pathways affecting gut short-chain fatty acid profiles in
early life. ISME J (2021) 15(9):2574–90. doi: 10.1038/s41396-021-00937-7

111. Setchell KD, Clerici C. Equol: History, chemistry, and formation. J Nutr (2010)
140(7):1355S–62S. doi: 10.3945/jn.109.119776
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