
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Prem P. Kushwaha,
Case Western Reserve University,
United States

REVIEWED BY

Jayadev Joshi,
Cleveland Clinic, United States
Rahul Shubhra Mandal,
University of Pennsylvania, United States

*CORRESPONDENCE

Jing Zhou

zhoujinggmubme@163.com

Yan Ouyang

ouyangyan@gmc.edu.cn

Shichao Zhang

zhangshch08@lzu.edu.cn

†These authors have contributed
equally to this work and share
first authorship

SPECIALTY SECTION

This article was submitted to
Cancer Endocrinology,
a section of the journal
Frontiers in Endocrinology

RECEIVED 16 November 2022

ACCEPTED 13 January 2023

PUBLISHED 27 January 2023

CITATION

Tang F, Liu Y, Sun Y, Xiong Y, Gu Y, Zhou J,
Ouyang Y and Zhang S (2023) Construction
of a serum diagnostic signature based on
m5C-related miRNAs for cancer detection.
Front. Endocrinol. 14:1099703.
doi: 10.3389/fendo.2023.1099703

COPYRIGHT

© 2023 Tang, Liu, Sun, Xiong, Gu, Zhou,
Ouyang and Zhang. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 27 January 2023

DOI 10.3389/fendo.2023.1099703
Construction of a serum
diagnostic signature based
on m5C-related miRNAs for
cancer detection
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Currently, no clinically relevant non-invasive biomarkers are available for screening

of multiple cancer types. In this study, we developed a serum diagnostic signature

based on 5-methylcytosine (m5C)-related miRNAs (m5C-miRNAs) for multiple-

cancer detection. Serum miRNA expression data and the corresponding clinical

information of patients were collected from the Gene Expression Omnibus

database. Serum samples were then randomly assigned to the training or

validation cohort at a 1:1 ratio. Using the identified m5C-miRNAs, an m5C-

miRNA signature for cancer detection was established using a support vector

machine algorithm. The constructed m5C-miRNA signature displayed excellent

accuracy, and its areas under the curve were 0.977, 0.934, and 0.965 in the training

cohort, validation cohort, and combined training and validation cohort,

respectively. Moreover, the diagnostic capability of the m5C-miRNA signature

was unaffected by patient age or sex or the presence of noncancerous disease. The

m5C-miRNA signature also displayed satisfactory performance for distinguishing

tumor types. Importantly, in the detection of early-stage cancers, the diagnostic

performance of the m5C-miRNA signature was obviously superior to that of

conventional tumor biomarkers. In summary, this work revealed the value of

serum m5C-miRNAs in cancer detection and provided a new strategy for

developing non-invasive and cost effective tools for large-scale cancer screening.

KEYWORDS
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Introduction

Most cases of cancer are initially diagnosed at an advanced stage, thus missing the

optimal opportunity for therapy and resulting in a dismal prognosis (1). Great efforts have

been made in the identification of early diagnostic markers to decrease cancer-specific

mortality rates, prolong the survival of patients with cancer, and reduce the societal burden
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(2). However, the current methods for cancer screening have several

disadvantages, such as high costs, poor patient compliance, strong

invasiveness, and low accuracy, which limit their feasibility for clinical

use in mass cancer screening (3). Given that early diagnosis is a key

factor for reducing cancer-related mortality, there is an urgent need to

identify a novel biomarker with greater validity and lower

invasiveness for large-scale cancer screening.

RNA modifications, which are mediated by different types of

regulators (“writers,” “readers,” and “erasers”), carry significant gene

regulation-related information, and they play critical roles in tumor

occurrence and progression and immune dysregulation (4). 5-

Methylcytosine (m5C) modification, an important type of RNA

modification, is widely detected in messenger RNAs, transfer RNAs,

ribosomal RNAs, long non-coding RNAs, small nuclear RNAs, and

microRNAs (miRNAs) (5). The dysregulation of m5C levels was

reported to be associated with tumorigenesis and tumor progression.

Sun et al. reveled that NSUN2, an m5Cmethyltransferase, is significantly

upregulated in hepatocellular carcinoma (HCC), and it promotes tumor

progression by catalyzing the H19 lncRNA methylation-mediated

recruitment of the G3BP1 oncoprotein (6). Chen et al. indicated that

m5C drives the pathogenesis of bladder urothelial carcinoma (BLCA) by

inducing oncogene (e.g., HDGF) activation (7).Moreover, m5C levels can

characterize the immune microenvironment infiltration patterns of

multiple tumors, and m5C regulators can serve as prognostic and

diagnostic markers of cancer (8–10). Recent studies illustrated that m5C

acts as a key posttranscriptionalmodification that facilitates the processing

of primary miRNAs. miRNA dysregulation induced by m5C is closely

associated with many pathological processes that result in cancer. Zhuo

et al. found that m5C could induce an interaction between miR-200c-3p

and Argonaute protein, affecting the development of pancreatic cancer

(11). Cheray et al. discovered thatmiR-181a-5p loses its tumor suppressor

function upon cytosine methylation in glioblastoma multiforme (12). Liu

et al. suggested that zinc-finger E-box binding homeobox 1, an m5C

“reader,”promotes tumorprogressionby suppressingmiR-205/miR-200b

maturation in HCC (13). Considering the high stability of circulating

miRNAs in serum, the identification of novel diagnostic biomarkers for

mass tumor screening based onm5C-relatedmiRNAs (m5C-miRNAs) is

a promising strategy.

In this study,weused16,902serumsamples containing12 tumor types

(n = 6607) and 10295 non-tumor serum controls to construct an m5C-

miRNA signature for cancer detection. The m5C-miRNA signature both

displayed high diagnostic power and presented excellent accuracy in

distinguishing tumor types. More importantly, in the detection of early-

stage cancers, the diagnostic performance of the m5C-miRNA signature

was obviously superior to that of conventional tumor biomarkers. This

work revealed the value of serumm5C-miRNAs in tumor detection, and a

novel biomarker with excellent accuracy, great effectiveness, less

invasiveness, and lowcost for large-scale cancer screeningwasconstructed.
Methods

Data acquisition and pre-processing

Serum miRNA expression data and the corresponding clinical

information (such as age, sex, and TNM stage) were acquired from

the Gene Expression Omnibus (GEO) repository (GSE164174,
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GSE113740, GSE137140, GSE139031, GSE122497, GSE112264,

GSE113486, GSE106817, GSE124158, and GSE73220). To eliminate

the differences between different platforms, all serum samples were

based on the 3D-Gene Human miRNA V21_1.0.0 (GEO accession

number GPL21263) platform. We excluded data for patients who

received any prior anticancer treatment (such as chemotherapy,

radiotherapy, and surgery). The “ComBat” algorithm of the sva

package was adopted to remove batch effects (14). In total, 16,902

serum samples covering 12 tumor types [gastric cancer (GC), HCC,

lung cancer (LC), glioma, esophageal carcinoma (ESCA), prostate

adenocarcinoma (PRAD), BLCA, ovarian cancer (OV), sarcoma

(SARC), invasive breast carcinoma (BRCA), colorectal cancer

(CRC), and pancreatic adenocarcinoma (PAAD); n = 6607] and

non-tumor controls (n = 10,295) were collected.
Gene ontology enrichment analyses of
target m5C-miRNAs

Based on previously published studies, 104 m5C-miRNAs were

extracted for subsequent analysis (15–18). GO functional annotation

was conducted using the clusterProfiler R package to explore the

biological processes and biological functions related to these m5C-

miRNAs. FunRich 3.1.1 software was used to identify miRNAs, and

then GO enrichment analysis was conducted by utilizing the

predicted target genes (19). Remarkably enriched GO terms were

determined on the basis of false-discovery rate (FDR) < 0.05.
Establishment of a diagnostic signature for
large-scale cancer screening

To construct a serum diagnostic signature for large-scale cancer

detection, 16902 serum samples from microarray data were first

randomly assigned to the training or validation cohort at a 1:1 ratio.

Randomization was performed using the createDataPartition function

of caret R package. The training cohort included 3318 tumor samples

and 5173 non-tumor samples, whereas the testing cohort contained

3289 tumor samples and 5122 non-tumor samples. Moreover, we

constructed an external validation cohort consisting of 268 tumor

samples and 410 non-tumor samples from the combined training

and testing cohort. In the training cohort, we used the limma

package to evaluate differences in the expression of m5C-miRNAs

between tumor and non-tumor samples. Next, differentially expressed

m5C-miRNAs (p < 0.05 and |fold change| > 1) were selected for further

analysis. Finally, 14 candidate m5C-miRNAs were identified by least

absolute shrinkage and selection operator (LASSO) regression analyses,

and then the diagnostic signature was established using a support

vector machine (SVM) algorithm based on these miRNAs (20, 21). The

codes for the final model were shown in Supplementary Code. The

SVM algorithm was used to classify binary samples (tumor samples vs.

non-tumor samples) via the “kernlab” R package in R software. Briefly,

according to the SVM algorithm, the high-dimensional spatial locations

of all samples were determined, for which the expression of each

miRNA was indicated by its location on the axis. During training, a

hyperplane that best distinguished the two classes was drawn on the

basis on the distance between the hyperplane and the nearest sample for
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each class. Samples from different classes were on different sides of this

hyperplane. The diagnostic performance of the m5C-miRNA signature

was determined by the predicted strength of the SVM classifier output.

The m5C-miRNA signature performance was calculated using the R

function “predict” to quantify the output intensity of the samples.
Statistical analysis

The association between the output intensity of the m5C-

miRNA signature and the expression of each individual miRNA

was analyzed using Spearman’s correlation analysis. The statistical

significance of the differences between two groups was evaluated by

the Wilcoxon test. All statistical tests were performed using R

version 4.1.2. All P values were two-sided, and p < 0.05 indicated

statistical significance.
Results

Identification of the candidate m5C-miRNAs
in serum

The workflow of this study was presented in Supplementary

Figure 1. The extracted samples included 1507 GC, 260 GBM, 90

PAAD, 395 HCC, 49 BRCA, 442 BLCA, 90 SARC, 140 CRC, 1656 LC,

384 OV, 888 PRAD, and 706 ESCA samples together with 10295

normal samples. Next, all serum samples were randomly assigned to

the training (3318 tumor samples and 5173 normal controls) or

testing cohort (3289 tumor samples and 5122 normal controls). In the

training cohort, subject age ranged 7–96 years (mean, 62.67 years),

and 60.17% of the subjects were male. Participants in the validation

cohort ranged in age from 7 to 100 years (mean, 62.47 years), and

59.28% of the subjects were male.

Based on previously published studies, 104 m5C-miRNAs from

the 10 serum miRNA cohorts were selected for follow-up analyses. To

explore the potential regulatory role of these m5C-miRNAs, we first

performed GO enrichment analysis, and the results are presented in

Figure 1A. These m5C-miRNAs were mainly enriched in signal

transduction, regulation metabolism, cell growth and/or

maintenance, apoptosis, and regulation of gene expression, and they

were involved in RNA modification and tumor progression.

Afterward, 43 m5C-miRNAs with differential expression between

patients with tumors and normal controls in the training cohort were

selected using the criteria of p < 0.05 and |fold change| > 1 (Figure 1B).

Interesting, all of these m5C-miRNAs were upregulated in tumor

samples. Finally, 14 candidate m5C-miRNAs were selected by LASSO

regression analysis to construct the diagnostic signature. A

remarkable separation between each tumor type and normal

controls was observed on the basis of the unsupervised hierarchical

clustering for 14 m5C-miRNAs (Figure 1C). Using principal

component analysis for these miRNA profiles, we found that these

miRNA signature displayed some capacity to differentiate between

tumor and normal samples (Figure 1D). The results indicated that the

identified miRNAs had distinct expression patterns between tumor

and normal samples, facilitating the construction of the diagnostic
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signature. Then, the diagnostic capability of each candidate m5C-

miRNA for tumor detection was evaluated. We discovered that the

areas under the curve (AUCs) for individual m5C-miRNAs ranged

from 0.677 to 0.800, revealing these miRNAs had certain ability to

distinguish tumor samples from normal samples (Figure 1E). The

diagnostic performance of the miRNAs was further confirmed in

the testing cohort (Figure 1E). Collectively, these findings suggest that

the 14 candidate m5C-miRNAs had promise as diagnostic biomarkers

for tumor detection.
Construction of the diagnostic model based
on the candidate m5C-miRNAs

According to the expression profiles of the 14 identified m5C-

miRNAs, a diagnostic model (m5C-miRNA signature) was

established for tumor detection by adopting the SVM method. As

presented in Figure 2A, the ability of the m5C-miRNA signature to

discriminate tumor and normal samples was significantly better than

that each candidate miRNA alone in the training cohort [AUC =

0.977, 95% confidence interval (CI) = 0.974–0.979]. The diagnostic

accuracy, specificity, and sensitivity were 93.2%, 92.2%, and 93.8%,

respectively. High diagnostic performance was confirmed in the

testing cohort, with accuracy of 87.0%, specificity of 89.6%, and

sensitivity of 82.8%. The AUC of the diagnostic model in this

cohort was 0.934 (95% CI = 0.927–0.941; Figure 2B). In the

combined and testing cohort, the AUC (0.965), diagnostic accuracy

(91.3%), specificity (92.5%), and sensitivity (89.4%) also revealed that

the m5C-miRNA signature had satisfactory diagnostic utility

(Figure 2C). We further validated the diagnostic ability of this

model in an external validation cohort (AUC = 0.976, accuracy =

94.1%, specificity = 92.9%, sensitivity = 94.9%; Supplementary

Figure 2A). The output intensity of the m5C-miRNA signature was

remarkably higher in tumor groups than in the control group in the

training cohort (Figure 2D). We also evaluated the output strength of

the m5C-miRNA signature between different cancer types and

observed the highest median value for the LC group (1.29278;

Supplementary Figure 2F). Given that BRCA, OV, and PRAD were

included in this work, we next examined the diagnostic power of the

m5C-miRNA signature based on patient sex. No significant

discrepancy regarding the output intensity of the signature was

observed between male and female patients with tumors

(Figure 2E). The m5C-miRNA signature also exhibited excellent

diagnostic accuracy for both male and female patients (Figures S2B,

C). We further performed correlation analysis to unravel the impact

of age on the diagnostic performance of the m5C-miRNA signature.

The results indicated no significant association of patient age with the

m5C-miRNA output intensity (r = 0.032; Figure 2F). Therefore, the

established m5C-miRNA signature appears to be a novel and

independent biomarker for discriminating patients with cancer

from healthy controls that is not affected by patient sex or age.

Additionally, in both the training and testing cohorts, calibration

curve analysis revealed that the predicted probability of cancer

generated by the m5C-miRNA signature was nearly identical to the

actual observed probability (Figures S2D, E). Using Pearson’s

correlation analysis, the relationships of the m5C-miRNA signature
frontiersin.org

https://doi.org/10.3389/fendo.2023.1099703
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Tang et al. 10.3389/fendo.2023.1099703
with each candidate miRNA were assessed. Strikingly, there were

significant positive associations between the output intensity of the

signature and the expression of each candidate miRNA (Figure 2G).

Moreover, decision curve analysis demonstrated that the m5C-

miRNA signature had a net gain with absolute dominance over a

wide range of decision threshold probabilities compared to previously

reported miRNAs with great value in tumor diagnosis and prognosis

(Figures 2H). Together, these results revealed that the m5C-miRNA

signature constructed using 14 candidate miRNAs had excellent

diagnostic performance for large-scale cancer detection.
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Evaluation of the diagnostic performance of
the m5C-miRNA signature in different tumor
types and clinical conditions

In an analysis of samples of each tumor type combined with normal

samples, the obtained m5C-miRNA signature displayed powerful ability

to distinguish the cancer population from healthy people (Figure 3A).

The m5C-miRNA signature also presented significantly high detection

sensitivity when discriminating each tumor type from pooled serum

samples of all tumor and normal controls (Figure 3B). This implies that

the m5C-miRNA signature could accurately recognize the particular
B

C D

E

A

FIGURE 1

Determination of the candidate serum m5C-miRNAs. (A) GO analysis of 104 m5C-miRNAs. The number in the circle indicates the enriched gene count.
BP, biological process; CC, cellular component; MF, molecular function. (B) Volcano plot presenting differentially expressed m5C-miRNAs between
tumor and non-tumor samples (FDR < 0.05 and |fold change| > 1). (C) Expression heatmap of 14 candidate m5C-miRNAs in tumor and non-tumor
samples. Red, upregulated miRNAs; blue, downregulated miRNAs. (D) Principal component analysis for 14 candidate m5C-miRNAs in tumor and non-
tumor control. Red and blue dots represent tumor and non-tumor samples, respectively. (E) Diagnostic performance of each miRNA alone for identifying
tumor samples in the training and testing cohorts. The AUC ranged from 0.673 to 0.804.
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tumor type in more than 80% of patients. The m5C-miRNA signature

also displayed satisfactory performance (AUC > 0.800) for differentiating

LC, GC, and ESCA. Notably, the signature displayed excellent validity for

the early diagnosis of some tumor types, including BLCA (AUC = 0.966),

CRC (AUC = 0.910), ESCA (AUC = 0.977), GC (AUC = 0.983), OV

(AUC = 0.963), and PRAD (AUC = 0.937; Figure 3C). Because hepatitis

and liver cirrhosis are closely linked to the onset and progression of HCC

and they frequently disturb the diagnosis of HCC, thereby delaying and

treatment, the capability of the m5C-miRNA signature to differentiate

hepatitis/liver cirrhosis samples from HCC samples was evaluated. As

presented in Figure 3D, the diagnostic performance of the signature was

not apparently affected by hepatitis or liver cirrhosis (HCC vs. hepatitis/

liver cirrhosis: AUC = 0.996, specificity = 0.942, sensitivity = 0.998,

accuracy = 0.986), which was further confirmed using the output

intensities of the m5C-miRNA signature between patients with

hepatitis/liver and those with HCC (Figure 3E). Cumulatively, these
Frontiers in Endocrinology 05
findings indicate that the m5C-miRNA signature has promise for

distinguishing tumor types and detecting early-stage tumors, and its

diagnostic performance was not affected by chronic diseases.
Discussion

Despite exponential growth in our understanding of the

pathogenesis of cancer and substantial investment in the

development of effective treatments, cancer-specific mortality rates

for most solid tumor types have barely changed for decades (22). At

present, early cancer detection is the most effective and cost effective

strategy for decreasing cancer-specific mortality (23, 24). However,

clinically feasible non-invasive molecular markers for mass cancer

screening are lacking. In this work, we developed an m5C-miRNA

signature for large-scale cancer diagnosis based on the identified 228
B C

D E F

G H

A

FIGURE 2

Development of the serum m5C-miRNA signature. (A–C) The diagnostic performance of the m5C-miRNA signature in discriminating tumor and normal
samples in the training cohort (A), testing cohort (B), and combined training and testing cohort (C). The AUC, specificity, sensitivity, and accuracy were
calculated. (D, E) Differences in the output intensity of the m5C-miRNA signature between tumor and normal samples (D), as well as between samples
from male and female patients (E). (F) Association between the output intensities of the m5C-miRNAs and the age of patients using Spearman’s
correlation analysis. Yellow and blue represent the density of patients at different output intensities and different ages, respectively. (G) Association
between the output intensities of the m5C-miRNA signature and 14 candidate m5C-miRNAs using Spearman’s correlation analysis. (H) Decision curve
analysis revealed the difference of the net benefit between the m5C-miRNA signature and other serum miRNA biomarkers in the combined training and
testing cohort.
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FIGURE 3

Evaluation of the diagnostic ability of the m5C-miRNA signature. (A–B) The diagnostic performance of the m5C-miRNA signature for discriminating each
tumor type from non-tumor controls (A), as well as each tumor type from all mixed samples of tumor and normal tissues (B). (C) The early diagnosis
capability of the m5C-miRNA signature in BLCA, CRC, ESCA, GC, OV, and PRAD. (D) The ability of the m5C-miRNA signature to discriminate patients
with HCC from those with hepatitis/liver cirrhosis. (E) The sample densities of the HCC and hepatitis/liver cirrhosis groups at different m5C-miRNA
output intensities.
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target m5C-miRNAs and subsequently demonstrated its power for

detecting tumors and discriminating tumor types.

Machine learning “learns” a model from past data in order to predict

future data.Anumber ofmachine learning approaches such as the decision

trees (DT), artificial neural networks (ANN), support vector machine

(SVM), Naive Bayes (NB), and logistic regression (LR) have been

developed to implement it (25). The current study revealed that SVM

algorithm exhibited better performance in cancer genomic classification or

subtyping thanother algorithm (26). Thus, SVMalgorithmwasused in this

study.Moreover, tomitigate thepossibilityofoverfitting,we tuned theSVM

parameters (C and gamma) in the case of nonlinear SVM. The parameters

C (100, 101, and102) andgamma (101, 100, 10-1, 10-2, 10-3, 10-4, 10-5, and10-

6) in SVM were set, respectively. A total of 24 different parameter

combinations were obtained. An optimal parameter combination (C: 10,

and gamma: 0.1) was selected using 10-fold cross-validation.

Both genetic and epigenetic alterations are key factors that contribute

to cancer progression, whereas aberrant epigenetic changes usually occur

at the initial stage of tumordevelopment (27, 28).m5C, as a commonRNA

modification type,hasdisplayedsignificantvalue in thediagnosisof several

cancers (9, 29). miRNAs have been identified as excellent candidate non-

invasivebiomarkersbecauseof theirhigh stability andabundance inserum

(30, 31). Therefore, numerous studies have evaluated the diagnostic

potential of various miRNAs, such as miR-320b, miR-125b, miR-221-

3p, and miR-124-3p (32–35). However, the diagnostic performance of a

single circulating miRNA is limited. The use of multiple miRNAs to

construct an miRNA-based tumor diagnostic panel has outstanding

advantages. Zekri et al. reported the high diagnostic accuracy (AUC = 1)

of a three-miRNApanel consisting ofmiR-122,miR-885-5p andmiR-29b
Frontiers in Endocrinology 06
combined with alpha-fetoprotein for the early detection of HCC (36).

Zhang et al. established a two-miRNA panel (miR-185-5p and miR-362-

5p) that displayed better potential than each miRNA alone in

distinguishing patients with breast cancer from normal controls (37). In

this study, we used 12 m5C-miRNAs to build a diagnostic model and

discovered that this model possessed strong ability to discriminate tumor

and non-tumor samples. The constructed m5C-miRNA signature

exhibited excellent accuracy for large-scale cancer screening. The output

intensity ofm5C-miRNAswas positively associatedwith the expression of

each candidate miRNA. Existing evidence suggests that these m5C-

miRNAs, especially miR-221-3p, play key roles in tumorigenesis and

tumor growth, metastasis, and prognosis. Zhou et al. found that miRNA-

221-3p promoted the progression of head and neck squamous cell

carcinoma and represent a non-invasive biomarker for diagnosis (38).

miRNA-221-3p can serve as a biomarker for breast cancer prognosis (39).

Kan et al. identified miRNA-221-3p as a serum marker of esophageal

squamous cell carcinoma (40). Therefore, the m5C-miRNA signature

constructed using these miRNAs had reliable diagnostic performance.

Subsequent analysis revealed that the diagnostic performance of them5C-

miRNA signature in pan-cancer was unaffected by patients’ age and

gender, and it had superior performance to previously reported miRNAs

(e.g., miR-93, miR-122) (41, 42). Moreover, the m5C-miRNA signature

displayed satisfactory specificity, sensitivity, andaccuracy indistinguishing

cancer types, especiallyLC,GC,andESCA. Importantly, in thediagnosisof

early-stage cancers, the m5C-miRNA signature had significantly better

detection ability than traditional biomarkers, such as prostate-specific

antigen, carcinoma antigen 125, carbohydrate antigen 72-4,

carcinoembryonic antigen, and carbohydrate antigen 19-9 (43, 44).
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This paper has some limitations that further experimental verification

areneeded tovalidate thesefindings.Although them5C-miRNAsignature

had promising performance for the early diagnosis of six tumor types, this

study was limited by the lack of corresponding staging information for

other cancers, which prevented us from evaluating the diagnostic utility of

the signature for these cancers in the early stage. Accordingly, the

performance of the m5C-miRNA signature in the diagnosis of other

early-stage cancers remains to be further assessed.
Conclusions

This study is the first to establish a novel m5C-miRNA signature

with high accuracy and sensitivity for pan-cancer diagnosis and

cancer type discrimination and to unveil the value of serum m5C-

miRNAs in tumor detection. Furthermore, the diagnostic ability of

the developed m5C-miRNA signature in pan-cancer was not affected

by patients’ age or gender or by the presence of noncancerous

diseases. More importantly, the m5C-miRNA signature displayed

superior sensitivity in early-stage tumor diagnosis. To conclude, the

m5C-miRNA signature highlights the feasibility of identifying non-

invasive and cost effective biomarkers for mass cancer screening.
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