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Objective:We used machine-learning (ML) models based on ultrasound radiomics

to construct a nomogram for noninvasive evaluation of the crescent status in

immunoglobulin A (IgA) nephropathy.

Methods: Patients with IgA nephropathy diagnosed by renal biopsy (n=567) were

divided into training (n=398) and test cohorts (n=169). Ultrasound radiomic

features were extracted from ultrasound images. After selecting the most

significant features using univariate analysis and the least absolute shrinkage and

selection operator algorithm, three ML algorithms were assessed for final radiomic

model establishment. Next, clinical, ultrasound radiomic, and combined clinical

−radiomic models were compared for their ability to detect IgA crescents. The

diagnostic performance of the three models was evaluated using receiver

operating characteristic curve analysis.

Results: The average area under the curve (AUC) of the three ML radiomic models

was 0.762. The logistic regression model performed best, with AUC values in the

training and test cohorts of 0.838 and 0.81, respectively. Among the final models,

the combined model based on clinical characteristics and the Rad score showed

good discrimination, with AUC values in the training and test cohorts of 0.883 and

0.862, respectively. The decision curve analysis verified the clinical practicability of

the combined nomogram.

Conclusion: ML classifier based on ultrasound radiomics has a potential value for

noninvasive diagnosis of IgA nephropathy with or without crescents. The

nomogram constructed by combining ultrasound radiomic and clinical features

can provide clinicians with more comprehensive and personalized image

information, which is of great significance for selecting treatment strategies.
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Introduction

Immunoglobulin A nephropathy (IgAN) is the most common

primary glomerulonephritis worldwide (1). Approximately 40% of

patients with IgAN will develop end-stage renal disease within 10−20

years (2). To determine the appropriate treatment for prevention of

disease progression, pathological results are often required. At

present, the Oxford classification is the global standardized

pathological classification of IgAN, which aims to predict renal

results at biopsy and during follow-up according to the MEST-C

criteria (3, 4). Among these, the presence of crescents is a new

indicator proposed in 2017 (4).

The formation of crescents is a common histopathological change

in IgAN, which occurs in approximately 20−60% of patients. Patients

with crescentic IgAN have more serious clinical and pathological

findings (5, 6). In addition, the presence of crescents is usually related

to rapid renal function decline and indicates an increased risk of poor

renal prognosis (4, 7, 8). Thus, the crescent status is an independent

predictor of IgAN progression; however, it may change over time (9–

11). Importantly, in addition to its value as a marker of disease

progression, it also indicates responsiveness to immunosuppressive

therapy (8).

Currently, renal biopsy is the only way to confirm the crescent

status in IgAN, but it is an invasive examination that may lead to

bleeding, fistula formation, and other complications, and even death

(12, 13). Furthermore, some patients decline undergoing renal biopsy

due to fear. Therefore, although the crescent status of IgAN change

over time, it is difficult to repeat renal biopsy (14).

Ultrasound is a relatively cheap and widely used imaging

technique, and is used as a first-line means for renal disease

examination (15, 16). However, the information obtained by

sonographers with naked eyes is limited. Radiomics can extract and

quantify high-throughput imaging biomarkers beyond the human

perceptible range. Combining these biomarkers with various machine

learning (ML) technologies allows to effectively identify subtle and

complex changes in tissues (17–19). To the best of our knowledge, no

studies to date have documented the use of ultrasound radiomics for

noninvasive assessment of the crescent status in IgAN.

Therefore, the purpose of this study was to develop and validate a

nomogram combining an ML model based on ultrasound radiomics

with clinical factors for personalized noninvasive assessment of the

crescent status in patients with IgAN.
Methods

Study design and population

The study was approved by the Institutional Review Committee of

the First Affiliated Hospital of Anhui Medical University (approval

number PJ2022-11-29). The requirement for informed consent was

waived due to the retrospective study design and use of deidentified data.

We retrospectively reviewed the records of patients with IgAN

who underwent renal biopsy at the First Affiliated Hospital of Anhui

Medical University from January 2019 to May 2022. The inclusion

criteria were as follows: 1) IgAN confirmed by renal puncture biopsy;

and 2) more than 10 glomeruli were observed under light microscope.
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The following were the exclusion criteria: 1) acute renal damage and

valvular heart disease; 2) renal artery stenosis or urinary tract

obstruction; 3) renal cysts or tumors; and 4) Doppler ultrasound

finding indicating renal artery stenosis (20).

The enrolled patients were randomly divided into training and

test cohorts at a ratio of 7:3. The following baseline data were

collected: sex, age, systolic blood pressure, diastolic blood pressure,

platelet count, hemoglobin, creatinine, urea, and uric acid levels,

estimated glomerular filtration rate, urine protein level, 24-h urine

protein level, 24-h urine volume, presence of occult hematuria, and

number of urinary red blood cells. The study flowchart is shown

in Figure 1.
Ultrasound examination

Renal ultrasound examination was performed by four

sonographers with 5, 6, 8, and 10 years of experience in routine

ultrasound examination with the Mindray Resona 7 device (Shenzhen

Mindray BioMedical Electronics Co., China) and GE Vivid E9

(General Electric Co., USA), using a multifrequency (2−5 MHZ)

convex array probe (C5-2).

All patients were evaluated after overnight fasting in the supine

position. The ultrasound probe was gently positioned over the right

abdomen in an oblique projection way to visualize the kidney as a

longitudinal image and obtain a coronary ultrasound image of the

right kidney in the largest cross-section. All measurements were taken

during apnea at the end of inspiration. The parameter configuration

during the acquisition process was based on the best display settings

of ultrasound images.
FIGURE 1

The flow diagram of the study.
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Renal biopsy

Renal biopsy was performed within 3 days after the renal

ultrasound examination by two experienced nephrologists. The

right kidney was selected for biopsy. The paraffin-embedded

sections were stained with hematoxylin and eosin, periodate Schiff,

trimethylamine silver, and Masson’s trichrome. The biopsy specimens

of all patients were evaluated using immunofluorescence, light, or

electron microscopy.

The pathological variables of IgAN were scored according to the

MEST-C criteria: mesangial cell increase, capillary cell increase,

segmental glomerulosclerosis, tubular atrophy/interstitial fibrosis,

and presence of crescents. The presence of crescents was graded

according to the proportion of glomeruli with cellular or fibrocellular

crescents, as follows: C0, absent; C1, 0–25% of glomeruli; and C2, ≥

25% of glomeruli (7). Due to the limited sample size, C1 and C2 cases

were combined into one group.
Clinical model construction

Univariate logistic regression analysis was used to analyze the

correlation between clinical parameters and the presence of crescents.

The variables with a significant correlation (P < 0. 05) were included

in the multivariate logistic regression analysis to determine the

independent predictive factors significantly related to the presence

of crescents. These were used to establish a clinical model.
Ultrasound image segmentation and
radiomic feature extraction

Renal ultrasound image segmentation was performed by the

reader 1 (with 9 years of abdominal ultrasound imaging experience)

and the reader 2 (with 7 years of abdominal ultrasound imaging

experience) using the ITK (software v3.8.0, http://www.itksnap.org/

pmwiki/pmwiki.php?n=Downloads.SNAP3). Regions of interests

(ROIs) were manually selected and segmented. Ultrasound

radiomic feature extraction was performed using the PyRadiomics

(software v3.0.1, https://github.com/AIM-Harvard/pyradiomics),

which can extract lots of features from ultrasound images using a

large number of engineering algorithms (Figure 1).

First, renal ultrasound images of 50 patients were randomly

selected, and the ROIs were delineated by reader 1 and reader 2,

respectively. The same procedure was repeated by reader 1 after 2

weeks with renal ultrasound images of another randomly selected 50

patients. The consistency of the extracted features for each reader

(inter-class correlation coefficient) and between two readers (intra-

class correlation coefficient) was tested using intra- and interclass

correlation analysis, respectively. The same procedure was repeated

after 2 weeks with renal ultrasound images of another randomly

selected 50 patients. Intra- and interclass correlation coefficient values

larger than 0.75 were considered to indicate good consistency of the

extracted features. The image segmentation and radiomic feature

extraction for the remaining ultrasound images was completed by

reader 1 alone. Only the features with good consistency were used in

subsequent analyses.
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Ultrasound radiomic model construction

As shown in Figure 2, The radiomic features with intra- and

interclass correlation coefficient values larger than 0.75 in the

training cohort were included in univariate analysis to identify

features with a significant distribution difference between the C0

and C1 groups in the training cohort (P < 0.05). The identified

features were analyzed using the least absolute shrinkage and

selection operator algorithm to select the most significant features

for predicting the crescent status.

Next, we constructed three radiomic models that were trained

with the selected features using different ML algorithms, including

logistic regression (LR), random forest (RF), and support vector

machines (SVM). Five-fold cross-validation was performed in the

training dataset to obtain the best parameter configuration. The

super parameters of the three ML algorithms were adjusted through

the grid search method and five-fold cross-validation in the training

dataset. In each loop of CV, the super parameters with the best area

curve (AUC) under the receiver operating characteristic (ROC)

value were retained, and the entire training dataset was used for

the final model establishment. The remaining patients in the test

dataset were used to evaluate the model performance. After

completing each round of CV, each patient was assigned the

prediction probability.
Statistical analysis

Statistical analysis was performed using IBM SPSS Statistics version

25.0(IBM Corp., Armonk, NY, USA) and Python 2.2(Python Software

Foundation, Beaverton, OR, USA). Quantitative data with normal

distribution were expressed as mean ± standard deviation values,

while those with non-normal distribution were expressed as median

± interquartile range values. Categorical data were expressed as

numbers and percentages. The Chi square test, independent sample

Student’s t-test, and Mann-Whitney’s U test were used for univariate

analysis. The DeLong test was employed to compare the AUC values of

the three models in the training and test cohorts. Two-sided P values of

less than 0.05 were considered to indicate statistical significance.
Results

Patients’ clinical characteristics

A total of 567 patients with IgAN confirmed by renal biopsy met

the eligibility criteria, including 279 men and 288 women with a mean

age of 39.4 ± 12.3 years. Among them, 398 were assigned to the

training cohort and 169 to the test cohort. The clinical characteristics

of the patients in the training and test cohorts according to the

crescent status are shown in Table 1.
Clinical model construction

In the univariate analysis, the following clinical parameters

showed statistically significant differences according to the crescent
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status: presence of occult hematuria (P<0.001), hemoglobin level

(P=0.021) and urine protein level (P=0.041). The multivariate

regression analysis showed that presence of occult hematuria was

an independent predictor of the crescent status.
Ultrasound radiomic feature extraction,
selection, and model construction

A total of 1 504 radiomic features were extracted from ultrasound

images. Through intra- and interclass correlation analysis and

subsequent univariate correlation analysis, 236 features were found
Frontiers in Endocrinology 04
to be significantly different between the C0 and C1 groups. Among

them, the least absolute shrinkage and selection operator algorithm

and multivariable logistic analysis identified the following 12 features

as the most significant: original_glcm_Correlation,original_glszm_

HighGrayLevelZoneEmphasis, original_ngtdm_Complexity,

original_ngtdm_Strength, wavelet-HLL_glcm_MCC, wavelet-

HLH_gldm_SmallDependenceHighGrayLevelEmphasis, wavelet-

HLH_glszm_SizeZoneNonUniformityNormalized, wavelet-HHL_

glszm_SmallAreaLowGrayLevelEmphasis, wavelet-LHL_glszm_

LargeAreaLowGrayLevelEmphasis,wavelet-HHH_glcm_SumAverage,

square_glszm_SmallAreaHighGrayLevelEmphasis, squareroot_

firstorder_Maximum. These were included in the ultrasound radiomicmodels.
FIGURE 2

The radiomics flow chart of the study.
TABLE 1 Clinical factors in the training and testing cohorts.

Clinical factors Training cohort (n =398) Testing cohort (n= 169)

Crescent1 Crescent0 P Crescent1 Crescent0 P

Age (years) 39.9 ± 12.8 39.4 ± 12.2 0.733 38.8 ± 12.1 39.4 ± 12.4 0.745

Sex(male/female) 55/58 146/139 0.647 26/40 52/51 0.16

Systolic pressure (mmHg) 132.1 ± 16.4 132.1 ± 19.2 0.998 131.1 ± 18 132.3 ± 18.3 0.658

Diastolic pressure (mmHg) 87.1 ± 15 86.3 ± 12.5 0.5566 85.9 ± 12.5 87.3 ± 13.4 0.496

Creatinine level at biopsy(mmol/L) 97.9 ± 44.3 91.9 ± 49.8 0.259 96.3 ± 39.1 91.8 ± 44.9 0.5

Urine occult blood(Ery/ml) 2.76 ± 0.344 2.17 ± 1.13 0.000 2.65 ± 0.75 1.91 ± 1.2 0.000

Urinary erythrocytes(a/ml) 88.3 ± 130.3 64.3 ± 136.2 0.108 74.2 ± 142.7 48.4 ± 101.8 0.172

eGFR at biopsy(mL/min/1.73m2) 88.1 ± 30.9 94.1 ± 32.5 0.091 87.4 ± 30.3 94.4 ± 44.9 0.147

Hemoglobin at biopsy(g/L) 130 ± 17.8 134.1 ± 17 0.021 131.7 ± 21.8 134.6 ± 21.1 0.402

Urea at biopsy(mmol/L) 6.56 ± 3.01 6.14 ± 2.4 0.142 6.19 ± 2.27 6.2 ± 2.28 0.926

Uric acid at biopsy(mmol/L) 392.8 ± 103.9 383.5 ± 104.7 0.426 381.2 ± 98.9 377.5 ± 104.6 0.818

Platelet at biopsy(109/L) 234.4 ± 65.8 234.8 ± 67.5 0.226 243.7 ± 73 233.9 ± 63 0.364

Urine protein(g/L) 1.25 ± 1.24 0.82 ± 1.43 0.041 1.1 ± 1.16 0.72 ± 0.82 0.034

24h Urine protein(g/24H) 2.18 ± 1.92 1.3 ± 1.80 0.373 1.83 ± 1.16 1.25 ± 1.44 0.054

24h urine volume(L) 1.86 ± 0.62 1.85 ± 0.64 0.907 1.81 ± 0.58 1.81 ± 0.69 0.91
frontier
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Diagnostic performance of the ultrasound
radiomic models

The diagnostic performance of the three radiomic models based

on different ML algorithms is presented in Table 2. The ROC curves

of these models in the training and test cohorts are shown in Figure 3.

The average AUC value of the three models for determining the

crescent status was 0.762. Among them, the LRmodel performed best,

with an AUC value, accuracy, sensitivity, specificity, negative

predictive value, and positive predictive value of 0.838, 71.1, 83.6%,

64.6%, 49.5%, and 92.9% in the training cohort, and 0.81, 72.8, 75.8%,

70.9%, 62.5%, and 82% in the test cohort, respectively.
Clinical−radiomic nomogram

The clinical−radiomic nomogram was established by combining

the Rad score and clinical characteristics (Figure 4). The combined

model had an AUC value, accuracy, sensitivity, and specificity of

0.883, 77.6, 91.2%, and 72.3% in the training cohort, and 0.862, 78.1,

86.4%, and 72.8% in the test cohort, respectively. The calibration

curve of the combined model showed good consistency between the

predicted and actual crescent status in both cohorts (Figure 5).
Comparison of the three diagnostic models

The discriminant effectiveness of the three diagnostic models

(clinical, ultrasound radiomic, and clinical−radiomic) is shown in

Table 3. The ROC curves of the three models in the training and test

cohorts are shown in Figure 6. The decision curve analysis confirmed

the clinical decision effectiveness of the combined model (Figure 6).
Discussion

In the present study, we identified 12 radiomic features from renal

ultrasound images and used them to construct prediction models with

various classification algorithms to determine the crescent status in

IgAN. These models exhibited good performance in discriminating

between presence and absence of crescents, with an average AUC
Frontiers in Endocrinology 05
value of 0.762 in the test cohort, with the LR model performing best

(the AUC value was 0.81). Furthermore, we constructed a combined

clinical−radiomic nomogram, which had AUC values as high as 0.883

and 0.862 in the training and test cohorts, respectively. These findings

indicate that ML has great application potential in the field of renal

ultrasound due to its powerful processing capacity for high-

throughput data. However, the prediction effectiveness of the

combined clinical−radiomic nomogram can be further improved.

To the best of our knowledge, this is the first study on the

application of ML model analysis of ultrasound radiomic features

for noninvasive evaluation of the crescent status in IgAN.

Although ultrasound is the first-line imaging method for renal

examination at present, subtle changes are more difficult to identify

using this method. As this tissue heterogeneity is beyond human

perception, it can be analyzed by obtaining non-visual information

using mathematical formulas to extract quantitative texture features

through ultrasound radiomics (21, 22). Compared with the

traditional morphological features, radiomic features may provide

more comprehensive and quantitative information on renal

heterogeneity, and help to explain the potential relationship

between pathophysiological properties and radiographic

imaging phenotypes.

As a branch of artificial intelligence, ML can perform

classification by building an algorithm model, and improve its

performance based on some experience (data) (23, 24). In recent

years, some studies have attempted to diagnose chronic kidney

disease (CKD) by ultrasound radiomics, showing great potential.

Bandara et al. performed two-dimensional ultrasound on a group of

patients with CKD (n = 75) and healthy subjects (n = 27), and found

that the radiomic features based on wavelet transform were sensitive

to the directivity of ultrasound speckle patterns, and could be

successfully used to distinguish CKD and healthy kidney ultrasound

images (25). Kim et al. set three ROIs—renal cortex, cortex-medulla

boundary, and medulla—and used the gray-level co-occurrence

matrix algorithm to extract features from each ROI. A total of 57

features were extracted and processed through an artificial neural

network consisting of 58 input parameters, 10 hidden layers, and

three output layers (normal, mild and moderate CKD, and severe

CKD), with a final classification accuracy of 95.4% (26). Zhang et al.

attempted to classify diffuse glomerulopathy using ultrasound

radiomics. They extracted a series of 180 ultrasound radiomic
TABLE 2 Performance of the three model in the training and testing cohorts.

AUC ACC SEN SPE PPV NPV

Training cohort

Random Forest 0.976(0.964-0.988) 90.7 0.956 0.888 0.771 0.981

Support Vector Machines 0.768(0.717-0.818) 68.8 0.743 0.667 0.469 0.868

Logic Regression 0.838(0.797-0.878) 71.1 0.876 0.646 0.495 0.929

Testing cohort

Random Forest 0.725(0.649-0.801) 66.3 0.939 0.485 0.539 0.926

Support Vector Machines 0.75(0.678-0.822) 66.9 0.924 0.505 0.545 0.912

Logic Regression 0.81(0.745-0.874) 72.8 0.758 0.709 0.625 0.82
frontier
AUC, area under the curve; ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, Positive likelihood ratio; NPV, negative likelihood ratio.
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features from ultrasound images of patients with IgAN and

membranous nephropathy to describe kidney features, reaching the

highest accuracy of 0.7647 (27). Similar to these studies, we extracted

high-dimensional imaging features from renal ultrasound images and
Frontiers in Endocrinology 06
identified 12 most significant independent predictive features.

Further, we developed several ML models by combining different

classifiers and sequences. Notably, our results showed that the LR

classifier performed better than the other two classifiers in the IgAN
FIGURE 4

The clinical radiomics nomogram. The values of clinical characteristics and rad score can be converted into quantitative values according to the points
axis. After summing the individual points to achieve the final sum shown on the total points axis, The evaluation of this crescent is shown.
A B

FIGURE 3

The receiver operating characteristic (ROC) curves of the three ML models. (A) Three ML model ROC curves in the training cohort. (B) Three model ML
ROC curves in the testing cohort.
A B

FIGURE 5

The calibration curve of the clinical radiomics model. (A) The calibration plot also showed good agreement between the transition probabilities predicted
by the nomogram in the training cohort; (B) The calibration plot also showed good agreement in the testing cohort.
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crescent status classification tasks, with AUC values of 0.838 and

0.810 in the training and test cohorts, respectively.

In this study, although we included numerous baseline clinical data,

after the univariate and multivariate logistic regression analyses, only the

presence of occult hematuria was an independent predictor in the clinical

model. The pathogenesis of crescent formation is related to immune and

inflammatory reactions, reflecting the severity of interstitial inflammatory

infiltration (10, 28). Crescent formation is due to focal rupture of the

glomerular basement membrane (29, 30). Therefore, the presence of

occult hematuria reflects the formation of crescents to some extent (31,

32). The clinical−radiomic nomogram established by combining the Rad

score and the presence of occult hematuria showed sufficient prediction
Frontiers in Endocrinology 07
effectiveness in both cohorts. The clinical model reflects the role of

baseline clinical information in the noninvasive assessment of the

crescent status, while the radiomic model based on ultrasound images

involves image quantification. The clinical−radiomicmodel combines the

advantages of the clinical and radiomic models, and improves the overall

prediction effectiveness of the model.

The present study had some limitations. First, the retrospective

design was prone to selection bias. Second, this was a single-center

study with a limited sample size; thus, future multicenter studies

could provide more generalizable performance verification. Finally,

multimodal ultrasound might further improve the accuracy of the

established model, which was our future research direction.
TABLE 3 Performance of the clinical model, radiomics model, and clinical radiomics model in the training and testing cohorts.

AUC ACC SEN SPE PPV NPV

Training cohort

Clinical 0.632(0.589-0.675) 52.8 0.823 0.411 0.356 0.854

Radiomics 0.838(0.797-0.878) 71.1 0.876 0.646 0.495 0.929

Clinical Radiomics 0.883 (0.849-0.918) 77.6 0.912 0.723 0.566 0.954

Testing cohort

Clinical 0.672(0.603-0.74) 62.7 0.788 0.524 0.515 0.794

Radiomics 0.81(0.745-0.874) 72.8 0.758 0.709 0.625 0.82

Clinical Radiomics 0.862 (0.807-0.917) 78.1 0.864 0.728 0.671 0.893
frontier
AUC, area under the curve; ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, Positive likelihood ratio; NPV, negative likelihood ratio.
D

A B

C

FIGURE 6

The receiver operating characteristic (ROC) curves and decision curve analysis (DCA) of the three models of the three models. (A) Three model ROC
curves in the training cohort. (B) Three model ROC curves in the testing cohort. (C) Three DCA models in the training cohort. (D) Three DCA models in
the testing cohort.
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In summary, we developed a clinical−radiomic nomogram based

on clinical and ultrasound radiomic features, which demonstrated

high accuracy in differentiating between presence and absence of

crescents in IgAN. This nomogram will allow noninvasive assessment

of the crescent status in IgAN by providing clinicians with more

comprehensive and personalized image information, which is of great

significance for the selection of treatment strategies.
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