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Type 2 diabetes mellitus (T2DM) is a widespread metabolic condition with a high

global morbidity and mortality rate that affects the whole body. Their primary

consequences are mostly caused by the macrovascular and microvascular bed

degradation brought on by metabolic, hemodynamic, and inflammatory

variables. However, research in recent years has expanded the target organ in

T2DM to include the lung. Inflammatory lung diseases also impose a severe

financial burden on global healthcare. T2DM has long been recognized as a

significant comorbidity that influences the course of various respiratory disorders

and their disease progress. The pathogenesis of the glycemic metabolic problem

and endothelial microangiopathy of the respiratory disorders have garnered

more attention lately, indicating that the two ailments have a shared history.

This review aims to outline the connection between T2DM related endothelial

cell dysfunction and concomitant respiratory diseases, including Coronavirus

disease 2019 (COVID-19), asthma, chronic obstructive pulmonary disease

(COPD) and idiopathic pulmonary fibrosis (IPF).

KEYWORDS

endothelial cells, COVID-19, asthma, COPD, type-2 diabetes
Introduction

Monitoring other diseases associated with diabetes is necessary for patients with Type 2

diabetes mellitus (T2DM). Vascular diseases such as coronary artery disease,

cerebrovascular accidents, retinopathy, nephropathy, and neuropathy are causes of

morbidity and mortality in diabetes (1). Also, diabetic patients are more prone to

asthma, chronic obstructive pulmonary disease (COPD), obstructive sleep apnea

syndrome (OSA), acute lung injury, and respiratory infections (2). In addition, many

studies have shown that various metabolic pathologies accompany respiratory diseases, and
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the pathophysiological mechanisms that determine the major

degenerative complications of diabetes may also contribute to the

leading cause of lung function deficits (3, 4).

Studies have shown that endothelial dysfunction largely

influences diabetic vasculopathy’s pathophysiology. Even in the

early stages of diabetic microangiopathy, endothelial dysfunction

is already present (5–7). Although it is unclear whether endothelial

dysfunction is a feature of diabetes itself or whether other factors are

necessary to cause endothelial dysfunction, given the presence of

diabetes, it is believed that endothelial dysfunction is the hallmark

stage of diabetes (8). Many factors contribute to the emergence of

endothelial dysfunction in diabetes. Activation of protein kinase C

(PKC), increased expression of transforming growth factor-beta

(TGF-b) and vascular endothelial growth factor (VEGF), non-

enzymatic glycation, oxidative stress, activation of the coagulation

cascade, increased expression of tumor necrosis factor-alpha (TNF-

a), high levels of insulin and insulin precursor molecules, and

hyperglycemic pseudohypoxia are a few common hypotheses.

These factors may all contribute to endothelial dysfunction

However, in the situations of diabetes and lung disease, the

importance of these proposed pathways has not been evaluated (5).

Given that the lungs are anatomically covered in a significant

number of vascular endothelial cells and that this increases the

likelihood that endothelial cell damage brought on by diabetic lesions

will result in lung disease, endothelial cells play a special role in

“connecting” diabetes and lung disease. The discovery of abnormal

pulmonary function in some diabetic patients raise the possibility that

the lung should be viewed as a “target organ” for diabetes (8, 9).

Endothelial dysfunction in chronic lung diseases has been gradually

increasing in recent years, especially in Coronavirus disease 2019

(COVID-19) and idiopathic pulmonary fibrosis (IPF), COPD, and

asthma, while endothelial dysfunction in diabetes leading to acute or

chronic airway diseases of the respiratory is almost rarely studied (10–

13). The primary purpose of this review is to examine the mechanisms

of action of the vascular endothelial cells as a shared target in the co-

morbidity of T2DM and respiratory disease (COVID-19,COPD,

asthma, and IPF) as well as the effects of T2DM treatment on

respiratory disease via the vascular endothelial cells.
Potential mechanisms of diabetes
related lung disease

The traditional role of blood vessels is to carry oxygen and vital

nutrients to other tissues. The primary core lesion cells in most of these

vascular disorders are endothelial cells. Long believed to be only

controlled by angiogenic growth factors like VEGF and other signals

like Notch, research indicates that the metabolic switch in endothelial

cells also has an impact on the angiogenic switch (14). The vessel wall is

impacted by the metabolic environment of T2DM, which includes

endothelial dysfunction, platelet overactivity, oxidative stress, and

inflammation, as well as insulin resistance, hyperglycemia, and the

formation of excess free fatty acids and other metabolic abnormalities.

Vasoconstriction is further intensified, and thrombosis is expedited

when these mechanisms are active. The endothelial dysfunction driven
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on by diabetes is a critical early stage that cannot be ignored in the

development of vascular issues. Reduced nitric oxide (NO) release,

increased oxidative stress, increased generation of inflammatory agents,

aberrant angiogenesis, and impaired endothelium repair are the typical

symptoms of endothelial dysfunction in microvascular issues (15).

In clinical practice, abnormal pulmonary function is observed in

some diabetic patients; the most consistent abnormalities are reduced

lung volume, pulmonary elastic recoil, and pulmonary diffusion

impairment in both young and adult diabetic subjects, which are

caused by decreased capillary blood volume in the adult group (16, 17).

The existence of pulmonary microangiopathy is suggested by the

histological data, which also shows thickening of the basal lamina of

the pulmonary capillaries (18). The most frequent pathogenetic

explanation for mechanical pulmonary dysfunction in diabetic

subjects is non-enzymatic glycosylation-induced pulmonary

connective tissue changes, while the most plausible explanation for

impaired pulmonary microangiopathy in these patients is the presence

of underlying pulmonary microangiopathy; abnormal endothelial cell

function is another frequent mechanism (18, 19). It has been reported

in the literature that common pathogenetic mechanisms exist between

diabetes and respiratory disorders and that these mechanismsmay play

a significant role in the diabetes-induced decline in lung function

(Table 1). However, further research is presently needed to determine

the importance of endothelial cell dysfunction for respiratory disease.
Common etiology of T2DM related
endothelial microangiopathy

Fewer research has evaluated the processes of endothelial cells as a

shared target for diabetes and respiratory disorders. Different organ

systems, even vascular beds in the same area of a vascular bed exhibit

considerable variability in endothelial cell responses. In addition to the

variances, there are shared signaling pathways. The research of Nitric

oxide (NO) has focused particularly on prostacyclin and NO, two key

byproducts of endothelial cells that are crucial for managing vascular

homeostasis. Endothelial NO synthase (eNOS), which is crucial for the

regulation of endothelial function, produces NO via an enzymatic

process. Studies inmodels of T2DMhave shown that aberrantNADPH

oxidases (NOX) activation results in endothelial dysfunction and eNOS

(39). Recent studies have shown that there is a common pathogenesis

in targeting vascular endothelial cells for the treatment of diabetes and

pulmonary diseases. Glucagon-like peptide-1 (GLP-1), for instance, are

extensively used in the treatment of diabetes, and the research shows

that it relates to the function of the vascular endothelial cells. GLP-1

decreased reactive oxygen species-induced senescence in human

umbilical vein endothelial cells (HUVECs) in a receptor-dependent

manner that included downstream Protein kinase cAMP-dependent

(PKA) signaling and the activation of antioxidant genes (40). Studies

conducted in vitro on HUVECs revealed that GLP-1 receptor agonists

(GLP-1RAs) decreased reactive oxygen species-induced senescence in a

receptor-dependent manner that included downstream PKA signaling

and activation of antioxidant genes (41). Advanced glycation end

products (AGEs) increased endothelial cells, however GLP-1-RAs

suppressed these endothelial cells by reducing AGE receptor (RAGE)
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TABLE 1 T2DM pathophysiology shared by COVID-19, asthma, COPD and IPF.

Common
mechanisms

Study COVID-19 Study T2DM

Activation of
Protein Kinase
C

Huang,
Changbai
et al. (20)

In ACE2-expressing A549 cells, PKC inhibitors
prevented the reproduction of wild-type SARS-CoV-2

Beeson,
Mary et al.
(21)

Reduced capacity of PIP3 to directly activate aPKCs
and impaired insulin receptor substrate (IRS)-1-
dependent PI 3-kinase activation

Increased
expression of
tumor necrosis
factor

Hsu, Ren-Jun
et al. (22)

High systemic TNF- levels were linked to respiratory
distress syndrome, lower survival, and pulmonary
dysfunction in severe COVID-19 cases

Makowski,
Lena-Maria
et al. (23)

T2DM patients’ monocytes have an enhanced
migratory response to low TGF-1 concentrations

Oxidative Stress Suhail,
Shanzay et al.
(24)

The ACE2 receptor is essential for reducing oxidative
stress

Apostolova,
Nadezda
et al. (25)

Key metabolic processes are disrupted (AMPK and
mTORC1)

Common
mechanisms

Study COPD Study T2DM

Oxidative stress Barnes, Peter J
(26).

Reactive oxygen species (ROS) cause endogenous
antioxidant defenses to become compromised and/or
overpowered, which leads to oxidative stress

Apostolova,
Nadezda
et al. (25)

Interfere with major metabolic pathways (AMPK and
mTORC1)

Increased
expression of
tumor necrosis
factor

Feng, Qiong
et al. (27)

TNF-a - knockdown may reduce MAPK pathway
activation while increasing SOCS3/TRAF1 expression.

Makowski,
Lena-Maria
et al. (23)

High glucose levels induced soluble(s) VEGFR1
expression.

Common
mechanisms

Study Asthma Study T2DM

Activation of
protein kinase C

Lu, Yiwen
et al. (28)

Eosinophil peroxidase potentiates the CCDC25-ILK-
PKC-CRTC1 pathway, which is used by EETs to activate
pulmonary neuroendocrine cells.

Beeson,
Mary et al.
(21)

Insulin increased muscle aPKC activity in control
participants by threefold, which was due to diminished
IRS-1-dependent PI 3-kinase activation and reduced
capacity of PIP3 to directly activate aPKCs.

Oxidative stress Michaeloudes,
Charalambos
et al. (29)

Excessive generation of ROS brought on by immune
cells invading, especially eosinophils and neutrophils

Apostolova,
Nadezda
et al. (25)

Interfere with major metabolic pathways (AMPK and
mTORC1)

Common
mechanisms

Study IPF Study T2DM

Genetic
predisposition

Stock, Carmel
J et al. (30)

MUC5B variant increases risk of IPF Chen,
Guanjie
et al. (31)

Dysregulated MUC5B expression may be involved in
the pathogenesis of T2DM

Increased
expression of
TGF-b

Chanda et al.
(32); Joannes
et al. (33);
Konigshoff
et al. (34);
Selman et al.
(35)

activation of TGF-b pathways in IPF Zhou, T.
et al. (36)

High levels of TGF-b1 are associated with
susceptibility to T2DM

Oxidative Stress Gonzalez-
Gonzalez,
Francisco J
et al. (37)

ROS play a signaling role to enhance TGF-b signaling
and promote fibrosis

Apostolova,
Nadezda
et al. (25)

Key metabolic processes are disrupted (AMPK and
mTORC1)

Activation of
protein kinase C

Wang, Jun
et al. (38)

Protein Kinase C d (PKCd) Attenuates Bleomycin
Induced Pulmonary Fibrosis via Inhibiting NF-kB
Signaling Pathwayb

Beeson,
Mary et al.
(6)

Reduced capacity of PIP3 to directly activate
aPKCs and impaired insulin receptor substrate
(IRS)-1-dependent PI 3-kinase activation
F
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Table 1 By identifying common signaling pathways between diabetes and pulmonary dysfunction in respiratory diseases, we sought to identify the mechanisms of lung function deterioration in
diabetes combined with COVID-19, asthma, COPD, and IPF. The common mechanisms of COVID-19 in combination with diabetes mellitus are protein kinase C, tumor necrosis factor, and
oxidative stress. The common mechanisms of COPD are oxidative stress and tumor necrosis factor. The common mechanisms associated with asthma are protein kinase C and oxidative stress.
ACE2, angiotensin converting enzyme-2; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; PIP3, Phosphatidylinositol-3,4,5-triphosphate; aPKC, Atypical protein kinase C; TGF-
b1, Transforming growth factor beta 1; AMPK, AMP-activated protein kinase; mTORC1, mammalian target of rapamycin complex 1; SOCS3, Suppressor Of Cytokine Signaling 3; MAPK,
Mitogen−activated protein kinase; TRAF1,TNF Receptor Associated Factor 1; CCDC25, Coiled-coil domain containing 25; ILK, Integrin-linked kinase; PKC, Protein kinase C; CRTC1,CREB-
regulated transcription coactivator 1; MUC5B, Mucin 5B.
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expression and upregulating VCAM-1 mRNA levels (42). Inhibiting

PKC-a, NADPH oxidase, NF-kB signaling, and upregulating anti-

inflammatory and antioxidant enzymes, GLP-1RAs significantly

reduced inflammation and had antioxidant effects on endothelial

cells (43). GLP-1RAs significantly reduced inflammation in human

aortic endothelial cells. They also showed that it could raise intracellular

Ca2+ and activate Calcium/calmodulin-dependent protein kinase

kinase (CAMKK), which in turn could activate AMPK (44).

Endothelin-1, which is also present in endothelial cells, is inhibited

by GLP-1RAs via preventing the activation of nuclear factor kappa B

(45). Common diseases of pulmonary dysfunction, such as COVID-19,

asthma, COPD, IPF, and T2DM, have abnormal vascular endothelial

cell function, and diabetes drug targets are commonly expressed in the

vascular endothelial cells (Figure 1); However, in addition to common

signaling pathways, lung diseases share their specific targets with

T2DM when pulmonary vascular endothelial cells are used as

common targets.
The unique pathophysiology of
pulmonary dysfunction and
endothelial microangiopathy driven
by T2DM

COVID-19 and T2DM
A few of the several potential causes of COVID-19 in

combination with diabetes are increased inflammatory storms,
Frontiers in Endocrinology 04
immunocompromised states, disturbance of glucose homeostasis,

hypercoagulable state, alveolar hyperpermeability, and vascular

endothelial injury. The characteristics of patients with severe

COVID-19 may be explained by the endothelial glycocalyx

(Figure 2A). According to study, acquired Hpa-2 deficiency may

be a possible causative factor in patients with severe COVID-19

with endothelial damage involving the integrity of the glycocalyx

(46). A key element of vascular integrity and cardiovascular

homeostasis is the endothelial glycocalyx (EG), which covers the

apical surface of endothelial cells and floats into the lumen of the

channel. Most EG-related functions include separating blood from

the endothelium, regulating vascular permeability, restricting

leukocyte and platelet adhesion, and improving the endothelial

responsiveness to flow fluctuations through mechanosensing.

Recent research findings indicate a more inventive strategy for

maintaining EG levels in T2DM therapy (47). A substantial part of

the glycocalyx that constitutes the vascular wall and endothelium

glomerular permeability barrier is hyaluronic acid (HA). It is

known that endocytosed hyaluronidase1 (HYAL1) breaks down

HA into tiny pieces in a variety of cell types, including endothelial

cells. Diabetes-related endothelium and glycocalyx dysfunction is

facilitated by HYAL1. A novel treatment strategy to stop the

vascular consequences of diabetes may use HYAL1 inhibitors

(48, 49).

The vascular EG may provide an explanation for the traits of

COVID-19 patients who are severely unwell. The vascular EG is

disturbed by inflammation brought on by SARS-CoV-2 infection, as

well as in people with hypertension, obesity, diabetes,
FIGURE 1

PKA,AGE,AMPK, NF-kB,eNOS are presented as an example for a list of prospective therapeutic targets that diabetes and pulmonary diseases
potentially explore through vascular endothelial cells. NF-kB, Nuclear factor kappa B; AT2, Alveolar Type II Cells; COPD, Chronic obstructive
pulmonary disease; PKC, Protein kinase C; COVID-19, Coronavirus disease 2019; eNOS, Endothelial NO synthase; AMPK, AMP-activated protein
kinase.
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cardiovascular disease, and current smokers. The elderly may be

more susceptible to SARS-CoV-2 infection than younger people,

and males are more likely to get the virus than females (11). The

pulmonary interstitial develops aberrant shadows (multiple

speckled shadows with a ground glass interstitial appearance) as a

result of microvascular leaks caused by vascular glycocalyx failure. It

also triggers the coagulation cascade, which may result in multi-

organ failure and thrombosis. Notably, the virus that causes

COVID-19, SARS-CoV-2, interacts to angiotensin converting

enzyme-2(ACE2), which is abundantly present in human lung

and small intestine epithelial cells as well as vascular endothelial

cells and arterial smooth muscle cells. EG abnormalities may be

linked to persistent inflammation during endotoxemia in a diabetic

mouse model (47). According to Lambadiari et al., persistent

cardiovascular symptoms after 4 months were associated with

markers of EG and vascular function (50).

Endothelial markers of COVID-19 invasive ventilation increase

in correlation with the outcome of vascular damage, whereas

endothelial injury indicators upregulate later (51). RAGE is

abundantly expressed in the membranes and cytoplasm of

pneumocytes in the lung, where it interacts with AGEs in patients

with combined diabetes in COVID-19, activating downstream

signaling pathways and inducing an inflammatory response

(Figure 2B). In consequence of this, vascular wall cells generate

more cytokines and have greater endothelial permeability (52).

RAGE mediates cell migration and the activation of pro-

inflammatory and pro-thrombotic molecules on cells including

endothelial cells by interacting with ligand-RAGE on those cells

(53). Targeting this mechanism, particularly in individuals with

combined Diabetes, may help prevent cytokine storm and
Frontiers in Endocrinology 05
thrombotic symptoms related to dysregulated immunological

response to SARS-CoV-2 infection (54).

The anti-inflammatory features of incretin-based treatments,

diabetes treatment medications were suggested to improve the

prognosis of COVID-19 (Figure 2C). Despite the older age and

typically more severe disease of DPP4i users, the evidence

demonstrates that pre-morbid usage of GLP1-RA is linked with

decreased mortality and other deleterious outcomes compared to

DPP-4i use in COVID-19 patients (55). According to study, DPP-4i

users had an increased adjusted risk ratio for 30-day mortality (56).

Patients with T2DM with COVID-19 have a reduced risk of death if

they take metformin and sulfonylureas. However, mortality is

higher in T2DM patients with COVID-19 and on insulin (57, 58).

However, there are also reports in the literature that treatment with

sulfonylureas is not associated with mortality (59).

In conclusion, individuals with COVID-19 infection, in

addition to diabetes, have worse lung function than those with

diabetes alone. One of the key mechanisms for this is the activation

of endothelial cells, including endothelial glycocalyx, RAGE, and

AGEs. Treatment for diabetes may also delay the decline in lung

function brought on by COVID-19 infection since the medications

used to manage diabetes may also have effects on the lungs, delaying

the progression of pulmonary disease.
COPD and T2DM

Patients with COPD are more likely than the general population

to have T2DM.Additionally, T2DM patients are more likely than

non-diabetic individuals to have concomitant COPD (60, 61). The
FIGURE 2

illustrates how endothelial cell damage from T2DM and COVID-19 infection are related. As a result, T2DM paired with COVID-19 infection may
trigger the same signaling pathways and processes via endothelial cells, including endothelial glycocalyx (A), RAGE, and AGEs (B). Additionally,
maintaining good management of diabetes and using glucose-lowering medicines (C) by acting on endothelial cells may lessen the likelihood that
COVID-19 infection may result in decreased pulmonary function. GLP-1 RAs, GLP-1 receptor agonists; DPP-4i, Dipeptidyl peptidase 4 inhibitors.
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increasing incidence of diabetes in COPD has been linked to several

variables, such as rising obesity, declining physical activity, rising

smoking, exposure to corticosteroids, disease-related inflammation,

oxidative stress, and hypoxia. Smoking, inflammation, or obesity by

individually, however, do not completely explain the link between

T2DM and reduced lung function. Despite controlling for other risk

variables, airflow restriction also seems to be an independent

predictor of death in persons with T2DM.

Among the hypothesized mechanisms to contribute for the

decline in lung function associated with diabetes include

microangiopathy of the alveolar capillaries and pulmonary

arterioles, chronic low-grade tissue inflammation, autonomic

neuropathy affecting the respiratory muscles, and loss of elastic

recoil secondary to collagen glycosylation of lung parenchyma (62–

65). The accumulation of glycosylated proteins, which have pro-

inflammatory tendencies, in persistent hyperglycemia is the

underlying cause of diabetes’ microvascular sequelae. The

interstitium widened and the alveolar gap closed as a result of

increased pulmonary vascular permeability, mononuclear cell

infiltration, cell proliferation, hypertrophy of interstitial cells, and

accelerated fibrosis, as depicted in studies on the lungs of diabetic

rats (66, 67). In human autopsies (68) and trans-bronchial biopsy

investigations (69), alterations in the thickness of the alveolar-

capillary basement membrane and nodular fibrosis in the alveolar

walls have been linked to diabetes. Given the alveolar-capillary

basement membrane has undergone fibrotic modifications and an

enlarged interstitium inhibits lung expansion, these changes may

clinically translate to lower spirometry scores and decreased

diffusion (Figure 3A).
Frontiers in Endocrinology 06
Clinical data suggest that the vascular area in the airways of

COPD patients is increased and may lead to narrowing of the

airways (70). Endothelial dysfunction is defined as disturbed

endothelium-dependent vasodilation. Endothelial microparticles

(EMPs) in blood can also be used as a measurement of

endothelial dysfunction. Endothelial dysfunction correlates with

the severity of COPD and is associated with forced expiratory

volume in 1 second (FEV1) (71–73). EMPs levels are elevated in

patients with frequently worsening COPD (74) and also predict a

rapid decline in patient FEV1 (75). EMPs are positively correlated

with the severity of emphysema in COPD patients, again suggesting

that endothelial cells may be a potential mechanism for emphysema

(75). EMPs are also associated with T2DM (76–81) (Figure 3B).

VEGF is a highly specific growth factor that targets endothelial

cells and is produced in response to hypoxia (82). VEGF levels may

be reduced in such patients because the major transcription factor

of VEGF, hypoxia-inducible factor 1a (HIF-1a), which mediates

cellular and systemic responses to hypoxia and binds to the hypoxia

response element (HRE) on VEGF (83). T2DM-associated

endothelial angiogenesis and rising HIF-1 levels are tightly

connected. VEGF expression was reduced, and angiogenesis was

prevented by HIF-1a inhibition. New treatment options for diabetic

retinopathy were revealed by VEGF of endothelial cells (84–

89).Further exploration of molecular mechanisms of COPD

suggests that increased bronchial vascular distribution is

associated with higher cellular expression of VEGF-A (90, 91).

Levels of HIF-1a and VEGF may correlate with predicted FEV1

percentages in COPD patients (83, 92) (82). Excessive stimulation,

including cigarette smoke (55), hypoxia (93) and cytokines) (94)
FIGURE 3

In endothelial cells, COPD and T2DM create a similar pathogenic pathway. Endothelial cells in T2DM may impact how a lung disease develops in
the end. Endothelial cells become dysfunctional in patients who have T2DM and COPD because of the accumulation of glycosylated proteins (A), a
rise in endothelial microparticles (EMPs) (B), and an increase in VEGF (C). GLP-1 RAs, GLP-1 RAs and DPP-4i can treat COPD and diabetes
simultaneously (D). GLP-1 RAs, GLP-1 receptor agonists; DPP-4i, Dipeptidyl peptidase 4 inhibitors; VEGF, Vascular endothelial growth factor.
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increase VEGF-A production (95). Perfusion of isolated lungs under

hypoxic conditions increases tissue VEGF-A and VEGFR1 (96, 97).

The above studies confirm that endothelial cells initiate and

participate in the pathogenesis of COPD, T2DM which induces

vascular inflammation with proinflammatory, and remodeling

activities (98). As research progresses, there is increasing evidence

that molecular biological mechanisms such as endothelial cells play

an important role in regulating endothelial cell dysregulation in

COPD and T2DM (Figure 3C).

GLP-1RAs may enhance endothelial function via a variety of

pathways, some of which are independent of insulin signaling or

glucose homeostasis. GLP-1RAs is a potential novel therapeutic

target for controlling COPD and T2DM together (69–71). GLP-1

has anti-inflammatory and surfactant-releasing effects, so studies

showed that GLP-1Ras reduce the frequency of acute exacerbations

by decreasing their severity and that GLP-1RAs may have

therapeutic potential for the treatment of COPD (99–102).

Endothelial cells express DPP-4, which has a broad variety of

biological roles in glucose metabolism, cancer biology, and

immunological control. DPP-4i is detrimental in respiratory

diseases. Slowly but surely, its biological processes, important

molecular pathways, connections, and linkages are being revealed.

Respiratory diseases may be affected significantly by DPP-4i and

subsequent development may be regulated (103) (Figure 3D). As

diabetes may lead to an increased prevalence of COPD, and in turn

COPD may lead to an increase in diabetes, future research should

take advantage of the mechanisms of endothelial cell dysfunction to

improve clinical outcomes in patients with diabetes combined

with COPD.
Asthma and T2DM

Both early-onset diabetes and asthma are becoming more

common, and adolescents who have active asthma have an

increased chance of developing T2DM (104). A prospective

cohort of 38,570 women, both asthma and COPD were separately

and independently linked to a higher risk of developing T2DM,

suggesting that chronic airway inflammation may play a role in the

development of diabetes (105). In a significant nested case-control

research, patients with asthma or COPD who used inhaled

corticosteroids (ICS) saw a 34% higher incidence of diabetes

mellitus during 5.5 years of follow-up compared to age-matched

controls who did not get ICS (106). The findings are consistent with

the notion that metabolic traits linked to prediabetes and diabetes,

such as metabolic syndrome and insulin resistance, might affect

asthma morbidity (107). Patients with concurrent DM who were

hospitalized for asthma had longer hospital stays, higher costs, and

a higher risk of readmission. In patients with coexisting DM and

asthma, interventions are urgently required to lower the risk of

hospital admission and readmission (108, 109).

The parameter of the induced sequential vascular response was

used to study several metabolite (sugars and L-histidine) and

pharmacological (aspirin, insulin, and glucagon) challenges. There

was also a correlation with a common oral glucose tolerance test.

The findings showed a range of glucose, insulin, glucagon, L-histidine,
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and aspirin challenges produced both comparable and different

behavioral responses (Figure 4A). New therapies might improve

airflow through better regulation of vessel growth, dilatation, and

leakage in the airway wall (110). One mechanism that endothelial

cells act in asthma is by transendothelial migration (TEM). L-selectin

and Intercellular Adhesion Molecule 1(ICAM-1)are critical TEM

regulating genes, and animal asthma model lacking these cell

adhesion molecules have decreased lung inflammation and lower

airway hyperresponsiveness (AHR) in response to ovalbumin

challenge (111–113), and allergic asthma patients also have increased

endothelial adhesion molecules in bronchial biopsies (114). Elevated

levels of adhesion molecules have been linked to asthmatics’

inflammation and underlying endothelial dysfunction (115, 116).

Increased vascular permeability brought on by alterations to the

blood-retinal barrier (BRB) is one of the primary effects of early

diabetes (117). VE-cadherin proteolytic degradation has been

suggested by observations as a possible mechanism by which

diabetes promotes BRB deterioration (Figure 4B).

High glucose stimulated tissue transglutaminase 2 (TG2)

express ion and TG2 s i lencing prevented Ab- induced
mitochondrial calcium influx, mtROS accumulation, and cell

death in neuronal cells. In clinical treatment, the prevalence of

tissue transglutaminase antibodies and diabetes with their first-

degree relatives (118–122). Chemokine overexpression is one more

potential explanation for the rise in asthma. In order to attract and

activate circulating eosinophils, endothelial cells in asthma seem to

release more chemokines (123). Mice with endothelial deficit of

TG2 display lower numbers of pulmonary eosinophils in response

to allergen challenge, while pulmonary endothelium TG2 is

increased in asthma and seems to be necessary for eosinophil

recruitment to the lung (124) (Figure 4C).

The neovascularization of the tracheal and bronchial arteries

that develops in asthmatics with hyperreactive airways disease. This

study’s findings were corroborated by bronchoscopy samples taken

from the airways of asthmatic patients and healthy control

volunteers, which revealed an increase in vessel size and density

(125–127). By comparing the expression of VEGF, its receptors, and

angiopoietin-1 in biopsy samples and bronchoalveolar lavage fluid

between asthmatic sufferers and controls, researchers were able to

better understand the processes causing this neovascularization

(128). Endothelial markers as CD31 or VWF used in histological

analysis of parenchymal units could not distinguish between

bronchial and pulmonary arteries. As a result, these models have

been inaccurate in their appraisal of angiogenesis (129).

Additionally elevated in asthmatics’ produced sputum samples,

VEGF has a negative correlation with FEV1 (130). Additionally,

several VEGF polymorphisms (such as rs4711750 and rs3025038)

seem to enhance the chance of developing asthma and are linked to

lung function (131).Further research is required to determine the

processes behind the development of new vascular beds in adults.

However, it is still challenging to distinguish the growth factors and

molecular processes of lung angiogenesis from underlying diseases

consequences (110, 130, 132–142) (Figure 4D).

GLP-1R is expressed in endothelial cells (143). The usage of GLP-

1RAs in the management of T2DM is recommended. GLP-1RAs may

also lessen airway inflammation and hyperresponsiveness at the same
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time. GLP-1RAs prevent adult asthmatics’ symptoms from

deteriorating as much. GLP-1RAs could provide a fresh method for

treating asthma brought by metabolic malfunction (144–149). As a

result of increased expression of DPP-4, which is induced by the type 2

cytokines interleukin (IL)-4 and IL-13, in diseases of asthma and type 2

inflammation, such as atopic dermatitis and chronic rhinitis, DPP-4i

may help with the management of asthma (103, 150–154).

Glibenclamide (targeting sulfonylurea receptor 1) may lessen airway

inflammation because it inhibits ATP-sensitive potassium (KATP)

channels. Glibenclamide significantly decreased the AHR, airway

inflammation, and T-helper type 2 (Th2) cytokines in a mouse

model of asthma caused by ovalbumin (OVA). Additionally,

Glibenclamide decreased the lung’s phosphorylated signal transducer

and activator of transcription 6 (p-STAT6) and vascular cell adhesion

molecule 1 (VCAM-1) expression that was brought on by OVA. These

findings provide evidence for the safety of prescribing Glibenclamide in

diabetic patients with comorbid asthma, as well as suggest a potential

new therapeutic role for asthma through a pathway related to targeting

the control medications for diabetes. These findings suggest that GLP-

1R,DPP-4, and the sulfonylurea Glipalamides play an important role in

the development of asthma (155–158) (Figure 4E). However, fewer

studies have been undertaken on the combination of asthma and

diabetes to yet, and endothelial cell dysfunction may become a

prominent study area. Future research should focus more on this

process to optimize the usage of medications and enhance patients’

lung function and prognosis to a greater extent.
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As was already indicated, the lung has a dense network of

connective tissue and alveolar capillaries, indicating that it can be

one of the targets of diabetic microvascular damage. Recent research

has shown that having high blood sugar levels might cause

interstitial fibrotic alterations and alveolar microangiopathy (159,

160). The three main stages of alveolar microangiopathy, in which

hyperglycemia may cause interstitial fibrosis, are: (1) oxidative

stress injury, which initiates IPF; (2) alveolar inflammation,

immune cell activation, secretion of numerous pro-inflammatory

factors, which activates endothelial cells; and (3) pro-fibrotic

cytokines secreted by endothelial cells, which mark the end of the

disease (25, 161–163).

The common pathways of endothelium damage-related lung

injury in diabetes are listed below. Endothelial cells exhibit higher

levels of expression of AGEs, RAGE, and sirtuin (SIRT), which are

also changed in diabetes and are strongly linked to the onset of the

disease (164, 165) (Figures 5A, B). Under typical circumstances,

diabetes causes AGEs to accumulate in the lungs (166). Researchers

discovered significant elevated AGEs in diabetic patients, which

resulted in pulmonary fibroblast aggregation (167). RAGE is

thought to stimulate the production of TGF-b and to inhibit the

activation of Smad2, ERK, and JNK signaling (168, 169). TGF-b
(170) is a key player in tissue remodeling and fibrosis and is a

mediator of pro-fibrotic characteristics. SIRT has a possible
FIGURE 4

Mechanisms shared by asthma and T2DM in endothelial cells. Metabolite (A), L-selectin, ICAM-1 (B), tissue transglutaminase 2 (TG2) (C), and VEGF
(D) are all intimately connected to and have an impact on each other in endothelial cells, which may represent a common mechanism of lung
function decline. GLP-1 RAs targeting endothelial cells, DPP-4i and other drugs can treat asthma and diabetes (E). GLP-1 RAs, GLP-1 receptor
agonists; DPP-4i, Dipeptidyl peptidase 4 inhibitors; VEGF, Vascular endothelial growth factor; ICAM-1, Adhesion molecule 1.
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involvement in the treatment of IPF by mediating the processes of

insulin secretion, cell cycle, and apoptosis (171, 172). SIRT is crucial

in the development of diabetic microangiopathy (173, 174). SIRT

blocks oxidative stress, the IL-1, and TGF-1/Smad3 signaling

pathways, which are pro-inflammatory cytokines, mitochondrial

DNA damage, and fibronectin. Additionally, pro-inflammatory or

pro-fibrotic substances, including fibronectin, angiotensin II (Ang

II) that are heavily implicated in the development of the diabetic

lung were also shown to be elevated in the lung tissue of diabetic

mice (175) (Figure 5C). As a consequence of several pathways being

triggered in a high-glucose environment, intracellular stress and

abnormal cytokine production occur. Damage to the structural

lungs and pathological pulmonary fibrosis result from the failure of

re-endothelialization and consequent loss of the alveolar-capillary

barrier basal layer’s integrity.

In the lungs of IPF patients, metformin has potent antifibrotic

effects via metabolic pathway modulation, inhibition of TGF-1

activity, inhibition of collagen synthesis, activation of PPAR

signaling, and induction of lipogenic differentiation of fibroblasts

(176–181). By activating AMPK and enhancing the TGF- signaling

pathway, metformin induces the inactivation and apoptosis of

myofibroblasts, reversing the progression of pulmonary fibrosis

(180). Gu et al. studied that metformin-activated AMPK can

downregulate Forkhead Box M1 (FOXM1) and alleviate BLM-

induced IPF model in mice (177). GLP-1 is a crucial hormone
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that regulates hunger, glucose metabolism, and insulin secretion. A

39 amino acid agonist of GLP-1receptor, exendin-4. By deactivating

NF-kB, GLP-1 receptor agonists greatly reduce bleomycin (BLM)-

induced lung damage and fibrosis in mice (182).Exendin-4,

meanwhile, reduced hyperglycemia-related lung damage by

lowering oxidative stress and promoting cell growth (183).DPP-4

inhibitors and PPAR-g agonists have proven useful in the treatment

of pulmonary fibrosis. In a mouse model of pulmonary fibrosis after

systemic endotoxin damage, endothelial to mesenchymal transition

(EndMT) was shown in endothelial cells overexpressing DPP-4

(Vildagliptin), which has been reported to alleviate pulmonary

fibrosis. Vildagliptin, which inhibits EndMT, may be helpful in

treating pulmonary fibrosis (184). PPAR- is a member of the

nuclear hormone receptor superfamily, and its effects include

modifying metabolic and inflammatory responses, among others.

Recent research has also shown the effectiveness of PPAR- agonists

in treating BLM-induced lung fibrosis (185, 186). In a mouse model,

rosiglitazone and selegiline inhibited TGF-1-mediated fibrotic

alterations in alveolar epithelial EMT, differentiation of myoblasts,

and collagen synthesis, indicating a therapeutic efficacy of PPAR-

ligands in fibrotic lung injury (187, 188) (Figure 5D).

In conclusion, endothelial cells are critical in the development

of pulmonary fibrosis brought on by hyperglycemia. Additionally,

endothelial cells must be the primary focus of therapeutic

intervention; thus, determining whether endothelial cells are
FIGURE 5

There are shared mechanisms in endothelial cell dysfunction in T2DM with IPF, with existing research focused on AGEs (A), RAGE (B), and Ang II (C).
In the meanwhile, diabetic therapies such as metformin, GLP-1 receptor agonists, DPP-4 inhibitors, and PPAR-agonists may alleviate pulmonary
function decline by enhancing endothelial function (D). GLP-1 RAs, GLP-1 receptor agonists; DPP-4i, Dipeptidyl peptidase 4 inhibitors.
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involved in the regulation of lung fibers might be a promising

therapeutic avenue for the investigation of diabetes-related

pulmonary fibrosis.
Conclusion

Future studies should focus on the mechanism and clinical

management of respiratory diseases and diabetes, especially due to

the COVID-19 pandemic when severe lung consequences. It is

possible to improve the treatment of patients with diabetes and

pulmonary diseases by understanding the interactions between the

two disorders and developing an effective treatment strategy. In

addition, further research is essential to pave the way for potential

treatments by using endothelial cells in discussions of co-

morbidities underlying mechanisms.
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