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Chinese Academy of Sciences, Dalian, China, 3Key Laboratory of Integrative Medicine, The First
Affiliated Hospital of Dalian Medical University, Dalian, China, 4Institute of Integrative Medicine, Dalian
Medical University, Dalian, China, 5iPhenome Biotechnology (Yun Pu Kang) Inc., Dalian, China
Background: More than half of the cases of fetal structural anomalies have no known

causewith standard investigations like karyotype testing andchromosomalmicroarray.

The differential metabolic profiles of amniotic fluid (AF) andmaternal bloodmay reveal

valuable information about the physiological processes of fetal development, which

may provide valuable biomarkers for fetal health diagnostics.

Methods: This cohort study of singleton-pregnant women had indications for

amniocentesis, including structural anomalies and a positive result frommaternal serum

screening or non-invasive prenatal testing, but did not have any positive abnormal

karyotype or chromosomal microarray analysis results. A total of 1580 participants were

enrolled between June 2021 and March 2022. Of the 1580 pregnant women who

underwent amniocentesis, 294 were included in the analysis. There were 137

pregnant women in the discovery cohort and 157 in the validation cohort.

Results: High-coverage untargeted metabolomic analysis of AF revealed distinct

metabolic signatures with 321 of the 602 metabolites measured (53%) (false

discovery rate, q < 0.005), among which amino acids predominantly changed in

structural anomalies. Targetedmetabolomics identified glutamate and glutamine as

novel predictivemarkers for structural anomalies, their vital role was also confirmed

in the validation cohort with great predictive ability, and the area under the receiver

operating characteristic curves (AUCs) were 0.862 and 0.894 respectively. And

AUCs for glutamine/glutamate were 0.913 and 0.903 among the two cohorts.

Conclusions: Our results suggested that the aberrant glutamine/glutamate

metabolism in AF is associated with nonchromosomal modificantions fetal

structural anomalies. Based on our findings, a novel screening method could

be established for the nonchromosomal modificantions fetal structural

anomalies. And the results also indicate that monitoring fetal metabolic

conditions (especially glutamine and glutamine metabolism) may be helpful for

antenatal diagnosis and therapy.
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Introduction

Fetal structural anomalies, which can range from minor

deficiencies in a single organ to severe multi-organ system

malformations, have a considerable impact on fetal morbidity and

mortality (1). Prenatal ultrasound is now regarded as a routine

analysis in obstetrical care, and with increasingly high resolution,

fetal structural anomalies are identified in approximately 3% of

pregnancies. Fetal structural anomalies have various genetic causes,

including chromosomal aneuploidy, copy number variations

(CNVs), and pathogenic sequence variants in developmental

genes (2). Genetic investigations are essential for the assessment

and clinical triage of fetal structural anomalies. Clinically, when fetal

anomalies are identified, further prospective evaluations included

karyotype testing and chromosomal microarray analysis (CMA) to

detect aneuploidies and CNVs (3, 4). Overall, approximately 32% of

fetuses with a structural anomaly identified by ultrasound have a

clinically relevant abnormal karyotype, and 6.5% of them have a

causative CNV (1, 3–5). Additionally, where karyotype testing and

CMA failed to determine the underlying cause, whole-exome

sequencing was reported to identify a well-described genetic cause

in 8.5-10% of fetuses with structural anomalies (2, 6). However,

more than 50% of fetal structural anomalies are left without a

prospectively screening or identification method.

Pregnancy is related to the onset of many adaptation processes

that change throughout gestation (7). Maternal blood constantly

exchanges with the fetus’s blood through the placenta to provide the
Frontiers in Endocrinology 02
nutrients needed for fetal growth and development. Amniotic fluid

(AF) can also be considered a pool of metabolites reflecting the

biological process of anabolism and catabolism (8, 9). The

biochemical nature of AF and maternal blood makes them

extremely valuable materials for fetal health diagnostics.

Spurred by tremendous technological advancements, the

metabolome has become widely acknowledged as the dynamic and

sensitive expression of biological phenotypes at the molecular level,

placing metabolomics at the forefront of biomarker and mechanistic

discoveries associated with pathophysiological processes (10).

Untargeted metabolomics is applied to measure the most

comprehensive range of compounds or putative metabolites present

in an extracted sample without prior knowledge of the metabolome

(11). In contrast, targeted metabolomics focuses on a small group

(50–500) of compounds of interest; here, methods are generated and

optimized for the investigation of specific metabolites and metabolic

pathways with higher sensitivity and selectivity than untargeted

metabolomics (12). The targeted analysis is also outstanding for

hypothesis validation and expanding upon the results of untargeted

analysis (13).

Liquid chromatography-tandem mass spectrometry (LC-MS/

MS) is a current, routine, highly accurate application in newborn

screening (14, 15). Similarly, metabolomics can be applied to fetal

malformations by exploring the AF metabolome, and several

studies have reported promising results (16, 17), revealing the

possibility of using this technology in clinical practice. Since AF

can reflect both maternal and fetal health, linking AF metabolic
GRAPHICAL ABSTRACT
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profiles with structural anomalies is conducive to biomarker

discovery, and will better guide clinical practice.

The present study aimed to characterize the metabolic signature

of AF in fetal structural anomalies. Also, we tried to investigate

whether metabolic changes reflect maternal or fetal conditions. In

this study, we measured AF metabolites in the structural anomalies

and control groups from two independent cohorts using both

untargeted and targeted metabolomics. First, a high-coverage

untargeted metabolomic assay based on ultra-high performance

liquid chromatography-tandem mass spectrometry (UHPLC-MS/

MS) was applied to 137 participants (the discovery cohort). To assay

the changes inmetabolitesmore quantitatively, we performed targeted

metabolomic analysis using the UHPLC-MS/MS system and isotope-

labeled internal standards. The findings in the discovery cohort were

confirmed by targeted metabolomic analysis of a validation cohort of

157 participants. At the same time, we analyzed maternal serum

metabolites using targeted metabolomics, which reflected the amino

acid metabolism of the mothers.
Materials and methods

Study design and participant enrollment

This study was approved by the medical ethics committee of

Jiangxi Maternal and Child Health Hospital (Approval number: EC-

KT-202210). All the participants provided written informed consent.

All participants were recruited from the prenatal diagnosis center of

Jiangxi Maternal and Child Health Hospital from June 2021 toMarch

2022. Inclusion criterion: Pregnant women who had an indication for

amniocentesis, including structural anomalies and a positive result

from maternal serum screening or non-invasive prenatal testing.

Exclusion criteria: (1) abnormal karyotype or chromosomal

microarray analysis results; gestational age beyond 140-154 days;

(3) multiple pregnancies; (4) other risk factors for prenatal diagnoses.

Finally, 294 participants were included and separated into the

discovery (n= 137, from June 2021 to October 2021) and validation

(n= 157, from November 2021 to March 2022) cohorts. Fetuses with

structural anomalies were categorized into three phenotypic groups

based on abnormalities in different organ systems detected by

ultrasound, including cardiac, central nervous systems, and renal

anomalies. The control group in this study included women with

singleton pregnancies whose fetuses had no structural malformations,

but who had indications for amniocentesis, including a positive result

from maternal serum screening or non-invasive prenatal testing.
Collection and processing of samples

20-25 mL of AF and 3-5 mL of blood were obtained from the

pregnant women at the time of amniocentesis. The AF was

centrifuged at 1200 rpm for 10 min at 4°C, and the supernatant

was collected. Blood was placed at 4°C for 1 h and centrifuged at

3000 rpm at 4°C for 10 min, and serum was collected from the

upper layer. All samples were stored at -80°C before analysis, and

their use for research was approved by the ethical committee. In the
Frontiers in Endocrinology 03
validation cohort, AF and blood samples were obtained from the

same pregnant woman.
Untargeted LC-MS metabolomics profiling

Broad-based metabolomic profiling was performed using

UHPLC-MS/MS platform. Further details are provided in the

Supplementary Material.
Targeted LC-MS metabolomics data
collection and processing

Fifty-four amino acids and their derivatives were quantified using a

Shimadzu LC-20ADXR (Shimadzu, Kyoto, Japan) coupled with a Sciex

5500+ triple quadrupole mass spectrometer (AB Sciex, Singapore).

Further details are provided in the Supplementary Material.
Statistical analysis

The metabolites included in the statistical analyses were those

which were consistently detected in at least 80% of the samples. The

metabolome data derived from different methods were normalized.

Data scaling was assessed using Pareto scaling. Multivariate

statistical analyses, partial least squares discrimination (PLS-DA),

functional enrichment, metabolic pathway analysis of metabolites

and lipids, and receiver operating characteristic (ROC) analysis, and

the respective area under the ROC curve (AUC) were performed

using an online data analysis platform- MetaboAnalyst 5.0 (https://

www.metaboanalyst.ca). Unit statistical analyses, such as t-tests,

were performed using SPSS software (version 26.0; IBM, USA). Bar

and line plots were drawn by GraphPad Prism 8.0 (GraphPad

Software Inc., USA). Chemical similarity enrichment analysis was

conducted using ChemRICH R package (18), and significant

metabolites alterations were visualized in an enhanced heat map

in gplots package using the in R (version 3.6). All p-values involved

in this study were two-tailed probabilities and were adjusted by false

discovery rate (FDR). Differences were considered statistically

significant at FDR <0.05.
Results

High-coverage untargeted metabolomics
analysis revealed distinct metabolic
signatures with amino acids predominantly
changed in the structural anomalies group

To comprehensively detect the metabolic profiles of structural

anomalies, we implemented a high-coverage untargeted metabolomic

analysis of AF samples by integrating five different analytical methods

that could cover both hydrophobic and hydrophilic metabolomes.

Between June 2021 and March 2022, 1580 pregnant women whose

fetuses were diagnosed with structural anomalies were screened for
frontiersin.org
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their eligibility for inclusion in our study (Figure 1). Finally, 137 and

157 participants prospectively enrolled in the study as described in

Table 1. The untargeted metabolomic analysis enabled the detection

and relative quantification of 602 metabolites in all AF samples. As

shown in the PLS-DA score plot, the structural anomalies group was

separated from the control group in the direction of the first principal

component (Figure 2A). Running 10-fold cross-validation showed

that the accuracy of one component was 0.87 (0.54 for R2 and 0.50 for

Q2) (Supplementary Table 1). Moreover, 321 metabolites were

identified as differential metabolites between the structural

anomalies and control groups (FDR, q <0.05) (Supplementary

Table 2, Supplementary Figure 1A). Among these, differential

amino acids were the most abundant (Figure 2B). The KEGG

pathway enrichment analysis of these differential metabolites also

showed that amino acid metabolic pathways, such as glutamine (Gln)
Frontiers in Endocrinology 04
and glutamate (Glu) metabolism; alanine, aspartate and Glu

metabolism; and phenylalanine, tyrosine and tryptophan

biosynthesis, were the most significant changed (Figure 2C).

Among all amino acids, Gln (32% increase, FDR, q<1×10−13) and

Glu (84% decrease, FDR, q<1×10−11) were the significantly the

significantly altered metabolite in structural anomalies group

(Figure 2D, Supplementary Table 2).

Based on the above results, we focused on the amino acid

changes among different structural anomalies, including cardiac,

central nervous system, and renal system anomalies. Compared to

the control group, each type of structural anomaly demonstrated a

distinct metabolic profile, with 172 overlapping differential

metabolites (Figure 2E). There were 14 amino acids in the 172

overlapping metabolites. Surprisingly, Glu levels were dramatically

lower while Gln levels were significantly higher in the cardiac,
FIGURE 1

Study outline of workflow.
TABLE 1 Characteristics of cases with structural anomalies and matched controls.

Structural anomalies Control

Discovery cohort Validation cohort Discovery cohort Validation cohort

AF samples, No.(%) 100 (34%) 85 (29%) 37 (13%) 72 (24%)

blood samples,No.(%) 0 85 (54%) 0 72 (56%)

gestational age when underwent amniocentesis (days) 146.76 ± 4.82 147.14 ± 4.61 145.82 ± 3.96 146.36 ± 4.68

Maternal age (years) 27.36 ± 2.12 25.68 ± 1.85 27.97 ± 2.32 29.07 ± 2.64

Smoke during pregnancy 0 0 0 0

Fetal karyotype analysis results normal normal normal normal

Fetal chromosomal microarray analysis results normal normal normal normal

Maternal ethnicity Asian Asian Asian Asian
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central nervous system, and renal anomalies (Supplementary

Table 2). Gln-Glu exchange is important in placental amino acid

transport, and Gln and Glu are the most utilized amino acids in

fetuses during late gestation. Therefore, we hypothesized that Gln

and Glu are vital for the early diagnosis of fetal structural anomalies.

In addition to the significant changes in Glu metabolism in the

three types of structural anomalies, it is worth noting that fetuses

with renal anomalies uniquely showed significantly inhibited urea

cycle (arginine and proline metabolism), and that creatine

metabolism was positively regulated in fetuses with central

nervous system anomalies subjects (Figure 2F). These metabolic

pathway changes may be typical responses to different

structural anomalies.
Amniotic fluid-targeted metabolomics
of identified glutamate and glutamine
as novel predictive markers for
structural anomalies

We performed a targeted metabolomic assay of 54 amino acids

and their derivatives to quantify the metabolite changes in the
Frontiers in Endocrinology 05
structural anomalies and control groups more precisely. We first

quantified AF amino acids obtained from 137 participants in the

discovery cohort, confirming that aberrant amino acid

metabolism occurred in the structural anomalies group

(Supplementary Table 3). Gln and Glu were significantly altered

in targeted metabolomics.

To further validated these results, we applied targeted

metabolomics to the validation cohort. Based on the

concentrations presented in the different groups, 33 amino acids,

including Gln and Glu, showed significant differences between the

structural anomalies and control groups (Supplementary Table 4).

Twenty amino acids were shared by the three types of structural

anomalies (cardiac, central nervous system and renal anomalies),

and significant differences existed between the structural anomalies

and control groups (Supplementary Figures 1B, C). We found that

Glu levels in the AF were significantly lower (Figure 3A), while Gln

levels were significantly higher in the structural anomalies group

than in the control group (Figure 3B). Using Gln/Glu as a metric

indicating Gln-Glu conversion, we found that this ratio fell

approximately 14-fold on an average among participants in the

structural anomalies group (Figure 3C). Notably, regardless of the

types of anomaly present, the Gln/Glu ratio was significantly
A B

D

C

E F

FIGURE 2

Amniotic fluid metabolic landscape for fetal ultrasound anomalies. (A) PLS-DA score plot for untargeted metabolomics data. (B) Classed enrichment
analysis for differential metabolites between ultrasound anomalies group and the control group. (C) Pathway enrichment analysis for significantly
different metabolites between ultrasound anomalies group and the control group. (D) Volcano plot for all metabolites from untargeted metabolomics.
(E) Venn plot of differential metabolites from three kinds of ultrasound anomalies compared with the control group. (F) Chemical similarity
enrichment analysis for differential metabolites from three kinds of ultrasound anomalies. CA, cardiac anomalies; CNA, central nervous system
anomalies; RA, renal anomalies.
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reduced in the structural anomalies group than in the control group

(Supplementary Figure 1D). These results were consistent with our

findings in the discovery cohort (Supplementary Figure 1E). In

addition, Glu (AUC=0.862, 95%CI: 0.800-0.925), Gln (AUC=0.894,

95%CI: 0.838-0.950) and Gln/Glu (AUC=0.903, 95%CI: 0.851-

0.954) had great prediction ability in distinguishing structural

anomalies from the control group in the validation cohort

(Figure 3D–F).

We then investigated whether the Gln/Glu in AF correlated

with maternal metabolic conditions. Serum samples were collected

from women in the validation cohort and analyzed using the same

amino acid-targeted metabolomic assay. Notably, maternal serum

Glu (Supplementary Figure 1F) and Gln levels (Supplementary

Figure 1G) did not differ significantly between the structural

anomalies and control groups. Gln/Glu ratio also did not differ

between the two groups (Supplementary Figure 1H). In addition,

almost all the quantified amino acids demonstrated no big

differences between the structural anomalies group and control

group (Supplementary Table 5), except for threonine

(Supplementary Figure 1I) and leucyl-leucine (Supplementary

Figure 1J). Taken together, these results suggest that changes in

Gln/Glu ratio in the AF of the structural anomalies group are

associated with the fetal condition rather than the maternal

condition (Figure 4).
Frontiers in Endocrinology 06
Discussion

Despite the use of karyotype testing and chromosomal

microarray as routine investigations in obstetric care, a large

proportion of fetal structural anomalies still have no proven cause.

Herein, we explored the underlying causes of fetal malformations

using AF metabolomics study. First, we performed an untargeted

metabolomic assay on AF samples, starting with the discovery cohort.

The results demonstrated that AF metabolic signatures were

remarkably altered in the structural anomalies group compared to

the control group. The most apparent alterations were observed in

amino acids and their derivatives. These amino acid changes were

further confirmed using targeted metabolomics, and we found 23

amino acids that were differentially expressed in the three types of

structural anomalies (cardiac, central nervous system, and renal

anomalies). Among these amino acids, Glu and Gln were the most

significantly altered metabolites. The structural anomalies group was

characterized by a significantly lower Gln/Glu ratio than the control

group. To strengthen this finding, the results were validated using

samples from an independent validation cohort. The results of the

validation cohort were consistent with those of the discovery cohort;

aberrant Glu and Gln metabolism was found in fetal structural

anomalies. In addition, analysis of maternal blood samples through

targeted metabolomics demonstrated no significant difference in Gln/
A B

D

C

E F

FIGURE 3

Glutamine and Glutamate were novel predictive markers for ultrasound anomalies. (A–C) Expression of glutamine (A), glutamate (B) and glutamine/
glutamate (C) in amniotic fluid of validation cohort. (D, E) ROC curves of glutamine (D), glutamate (E) and glutamine/glutamate (F) in discovery
cohort (red line) and validation cohort (blue line). ****, P<0.0001.
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Glu ratio between the fetal structural anomalies and the control

groups, suggesting that the contributors to these Glu-Gln changes in

AF were closely related to fetal metabolic conditions rather than

maternal metabolic status. It is also worth noting that most amino

acids in maternal blood did not show significant changes in the

structural anomalies and the control groups.

During pregnancy, amino acids serve as important precursors for

the biosynthesis of macromolecules, including proteins and

nucleotides, which are involved in fetal development and growth

(19–21). Glu and Gln are among the most abundant and most

utilized amino acids in the fetus during late pregnancy (19). The

human placenta mediates the net transfer of amino acids to the fetus,

with amino acid concentrations being generally higher in the fetus than

in the mother, indicating an active transfer process across the placenta

(22, 23). One notable exception to this process is Glu, which is the net

placental uptake from the fetus (23). To meet the acquisitive demand

for nutrients, Gln, a non-essential amino acid, is essential when fetal

demand for amino acids exceeds maternal supply during pregnancy

(24, 25). This demand is met through the interorgan recycling of Gln

and Glu. In the fetal liver, the deamination of Gln produces Glu. Glu is

transported across the syncytiotrophoblast microvillous membrane

and basal membranes by high-affinity excitatory amino acid

transporters and is converted to Gln in the placenta (26, 27). Glu is

also an important nitrogen resource and a precursor of g-aminobutyric

acid, a key inhibitory neurotransmitter (28, 29). Therefore, the Glu-Gln

cycle and exchange in the placenta-fetus unit likely play important roles

in fetal growth and development.

In our study, the significant increase in Gln/Glu ratio in the AF

observed in the fetal structural anomalies group suggested a disturbing

Glu-Gln cycle in the fetus rather than in the mother, since no obvious

changes were detected for either Glu or Gln in maternal blood.
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Decreased levels of Glu and increased levels of Gln in AF have also

been reported in the studies of fetal malformations, prediagnostic

gestational diabetes, preterm delivery and early rupture of

membranes (16, 30). The underlying cause may be the dysfunction

of transporters utilized by Glu and Gln. The amino acids that the fetus

requires for metabolic processes and biosynthesis pathways can only be

obtained from the placenta and delivered by different amino acid

transporters (23, 31). For example, in fetal growth restriction, the initial

rate of uptake of Gln and Glu into placental villous fragments is

reportedly reduced but increases with the expression of their

transporter proteins (Gln: LAT1, LAT2, SNAT5, Glu: EAAT1) (32,

33). Transporter activity is not simply determined by the protein

expression levels; it is also influenced by factors that regulate substrate

levels on both sides of the membrane. Interestingly, a study

demonstrated that Glu efflux down its transmembrane gradient drives

placental uptake viaOAT4 andOATP2B1 from the fetal circulation and

that the reuptake ofGlumaintains this driving gradient, althoughOAT4

and OATP2B1 are not currently understood Glu transporters (26).

In the group with renal anomalies, we also found inhibited urea

cycle metabolism. Arginine is the precursor for the synthesis of

ornithine, proline, and nitric oxide (34), detecting the levels of

arginine and its metabolites may provide insight into discriminating

fetal renal anomalies and monitoring fetal urinary development.

However, there are some limitations to our study. First, this

study was limited to one center: the Prenatal Diagnosis Center of

Jiangxi Maternal and Child Health Hospital. UHPLC-MS/MS

analysis is simple and sensitive, and it uses only a small amount

of AF for metabolic analysis, AF acquisition is still invasive.

Additionally, details of clinical examination results were not

available in our study, so the study did not reveal the correlations

between changed metabolites and the clinical data.
FIGURE 4

General view of aberrant glutamate and glutamine metabolism in fetal ultrasound anomalies. NS, no significance; ****, P<0.0001.
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