
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Claire Joanne Stocker,
Aston University, United Kingdom

REVIEWED BY

Ana Sandoval-Rodriguez,
University of Guadalajara, Mexico
Javier Crespo,
Marqués de Valdecilla Health Research
Institute (IDIVAL), Spain

*CORRESPONDENCE

T. Waddell

tom.waddell@magd.ox.ac.uk

SPECIALTY SECTION

This article was submitted to
Obesity,
a section of the journal
Frontiers in Endocrinology

RECEIVED 07 October 2022
ACCEPTED 08 February 2023

PUBLISHED 22 February 2023

CITATION

Waddell T, Namburete A, Duckworth P,
Fichera A, Telford A, Thomaides-Brears H,
Cuthbertson DJ and Brady M (2023) Poor
glycaemic control and ectopic fat
deposition mediates the increased risk of
non-alcoholic steatohepatitis in high-risk
populations with type 2 diabetes: Insights
from Bayesian-network modelling.
Front. Endocrinol. 14:1063882.
doi: 10.3389/fendo.2023.1063882

COPYRIGHT

© 2023 Waddell, Namburete, Duckworth,
Fichera, Telford, Thomaides-Brears,
Cuthbertson and Brady. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 22 February 2023

DOI 10.3389/fendo.2023.1063882
Poor glycaemic control and
ectopic fat deposition mediates
the increased risk of non-
alcoholic steatohepatitis in high-
risk populations with type 2
diabetes: Insights from Bayesian-
network modelling

T. Waddell1,2*, A. Namburete3, P. Duckworth4, A. Fichera2,
A. Telford2, H. Thomaides-Brears2, D. J. Cuthbertson5,6

and M. Brady2

1Department of Engineering Science, The University of Oxford, Oxford, United Kingdom, 2Perspectum
Ltd, Oxford, United Kingdom, 3Department of Computer Science, The University of Oxford,
Oxford, United Kingdom, 4Oxford Robotics Institute, The University of Oxford,
Oxford, United Kingdom, 5Department of Cardiovascular and Metabolic Medicine, Institute of Life
Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom, 6Liverpool
University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
Background: An estimated 55.5% and 37.3% of people globally with type 2

diabetes (T2D) will have concomitant non-alcoholic fatty liver disease (NAFLD)

and the more severe fibroinflammatory stage, non-alcoholic steatohepatitis

(NASH). NAFLD and NASH prevalence is projected to increase exponentially

over the next 20 years. Bayesian Networks (BNs) offer a powerful tool for

modelling uncertainty and visualising complex systems to provide important

mechanistic insight.

Methods: We applied BN modelling and probabilistic reasoning to explore the

probability of NASH in two extensively phenotyped clinical cohorts: 1) 211

participants with T2D pooled from the MODIFY study & UK Biobank (UKBB)

online resource; and 2) 135 participants without T2D from the UKBB. MRI-

derived measures of visceral (VAT), subcutaneous (SAT), skeletal muscle (SMI),

liver fat (MRI-PDFF), liver fibroinflammatory change (liver cT1) and pancreatic fat

(MRI-PDFF) were combined with plasma biomarkers for network construction.

NASH was defined according to liver PDFF >5.6% and liver cT1 >800ms.

Conditional probability queries were performed to estimate the probability of

NASH after fixing the value of specific network variables.

Results: In the T2D cohort we observed a stepwise increase in the probability of

NASH with each obesity classification (normal weight: 13%, overweight: 23%,

obese: 36%, severe obesity: 62%). In the T2D and non-T2D cohorts, elevated (vs.

normal) VAT conferred a 20% and 1% increase in the probability of NASH,

respectively, while elevated SAT caused a 7% increase in NASH risk within the
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T2D cohort only. In those with T2D, reducing HbA1c from the ‘high’ to ‘low’ value

reduced the probability of NASH by 22%.

Conclusion: Using BNs and probabilistic reasoning to study the probability of

NASH, we highlighted the relative contribution of obesity, ectopic fat (VAT and liver)

and glycaemic status to increased NASH risk, namely in people with T2D. Such

modelling can provide insights into the efficacy andmagnitude of public health and

pharmacological interventions to reduce the societal burden of NASH.
KEYWORDS

Ectopic fat deposition, magnetic-resonance imaging, type-2 diabetes, non-alcoholic
steatohepatitis, body composition
1 Introduction

According to the World Health Organisation, the global

prevalence of obesity almost tripled between 1975 and 2016 with

39% of the world’s adult population (1.9 billion; 39% of men, 40% of

women) overweight and 13% (650 million; 11% of men, 15% of

women) living with obesity in 2016 (1). In parallel, according to the

International Diabetes Federation, the global diabetes prevalence in

2019 was estimated to be 9.3% (463 million people), with a

projected 25% increase by 2030 (10.2% prevalence; 578 million)

and a projected 50% increase (10.9% prevalence, 700 million) by

2045 (2).

People living with obesity and type 2 diabetes (T2D) are at a

significantly greater risk of liver related complications compared to

people without either condition (3). Notably, according to a recent

global meta-analysis and meta-regression, ~55.5% of people with

T2D worldwide have associated non-alcoholic fatty liver disease

(NAFLD), 37.3% non-alcoholic steatohepatitis (NASH) and 17.3%

biopsy-confirmed advanced liver fibrosis (4). Those people with

NAFLD and concomitant T2D have significantly worse liver-related

outcomes including higher rates of advanced fibrosis, cirrhosis and

liver-related cancers compared to those with NALFD only (5–8).

20-year projections of the economic and clinical burden of

NASH/NAFLD estimate that co-prevalent NASH and T2D will

account for 65,000 liver transplants, 812,000 liver-related deaths

and 1.37 million cardiovascular-related deaths, totalling $55.8

billion in healthcare costs (9). Early detection of those patients

with T2D at high-risk of NASH is therefore of considerable

importance and would enable early access to personalised care/

medicines and improved clinical and disease outcomes.

In both T2D and NASH, obesity is a significant risk factor,

though the clinical utility of the body mass index (BMI) metric is

limited since it describes global body mass relative to height and

does not describe body fat distribution. People with T2D represent a

clinical population, and relative to those without T2D, are

characterised by a distinct body composition profile with

significantly higher volumes of visceral adipose tissue (VAT),

increased liver fat deposition and fibroinflammation and reduced

skeletal muscle mass (10, 11), when measured by magnetic
02
resonance imaging (MRI). Furthermore, elevated VAT but not

subcutaneous adipose tissue (SAT), has been associated with a

significant increase in circulating insulin, plasma glucose and

incidence of the metabolic syndrome (12, 13), highlighting the

importance of studying body fat distribution.

Multi-parametric MRI can provide quantitative tissue

characterisation in multiple organs. Fat infiltration (steatosis),

iron deposition and fibroinflammatory change can be measured

using proton density fat fraction (PDFF), iron and fat corrected T1

mapping (cT1) with MRI. PDFF quantifies liver fat at each voxel

and correlates strongly with histologic steatosis (14, 15) while liver

cT1, an indicator of liver disease activity and severity, correlates

strongly with histological markers of fibroinflammation and

demonstrates high diagnostic accuracy for stratifying patients

with NASH and those with at-risk NASH (16, 17).

In this paper, we use MRI-derived measures of body composition

and liver health using PDFF and liver cT1 to identify participants

with NAFLD and NASH and to overcome the intrinsic limitation of

the BMI noted above by exploring regional fat distribution. We

describe how applying Bayesian-networks to study the associations

betweenMRI-derived measures of body composition and liver health,

enables a comprehensive assessment of the high-risk metabolic

phenotypes associated with co-prevalent T2D and NASH. We also

show how BNs can be used to identify potential therapeutic targets

for alleviating NASH risk.
2 Methods

2.1 Data collection and preparation

We investigated two datasets: the first included 221 participants

with T2D pooled from the MODIFY study (NCT04114682) (18)

and the UK Biobank (UKBB) online resource under application

9914. MODIFY recruited participants with T2D from primary or

secondary care settings from three sites across the UK; UKBB is a

general population-based cohort study in people aged 40 to 69 years

from across the UK (https://www.ukbiobank.ac.uk/). The second

cohort included 135 participants without diabetes of any kind (non-
frontiersin.org
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T2D) drawn from the UKBB. All participants underwent an

abdominal MR scan that included multi-parametric imaging of

the liver and pancreas. See (10) for an in-depth description of the

MR-protocol.
2.2 Clinical details and MRI image
acquisition and analysis

Body composition was examined from a 2DMR slice positioned

at the third lumbar (L3) vertebra and measurements of VAT, SAT

and skeletal muscle were based on manual delineations by trained

analysts, see Figure 1. Measures of skeletal muscle were then

indexed to the participant’s height to produce a measure of

skeletal muscle index (SMI) (cm2/m2). All continuous variables

were discretized based on pre-defined clinical thresholds or by

splitting the data into ‘low’ and ‘high’ value groups determined at

the 75th percentile value, see supplementary. For example, HbA1c
Frontiers in Endocrinology 03
within the T2D cohort was discretised by splitting the cohort into

‘low’ (HbA1c <62mmol/mol) and ‘high’ (HbA1c >=62mmol/mol)

value groups. Presence of NASH was classified based on liver PDFF

>5.6% and liver cT1 >800ms. Such thresholds have consistently

demonstrated high diagnostic accuracy for stratifying patients with

NASH, predicting liver-related outcomes, classifying between

NASH and NAFLD only and are an effective alternative to liver

biopsy for diagnosing NASH (17, 19).

Bayesian-networks (see Supplementary information for full

explanation of BNs)

Bayesian Networks (BNs) are directed acyclic graphs that are

capable of explicitly representing and analysing complex systems

and under certain assumptions, specifying causal relationships.

When combined with probabilistic reasoning, BNs can be used to

estimate the probability of an ‘event’ occurring in response to a fixed

evidence input. For example (20), used BNs to estimate the

probability of acute kidney injury after fixing certain biochemical

abnormalities in patients with gastrointestinal cancer.
FIGURE 1

(Top left) Example MR images of body composition segmentation: SMI, skeletal muscle index; SAT, subcutaneous adipose tissue; VAT, visceral
adipose tissue. (Top right) pancreas with example typical ROI placement (H – head, B – body, T – tail). (Middle) liver cT1 and (bottom) liver PDFF
with corresponding reference values.
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To investigate the probability of NASH in specific clinical

characteristics, we conducted conditional probability queries that

estimate the probability of an event (here, NASH), given an

‘evidence list’ containing the set values of specific network

variables (for example, obesity or HbA1c status). The probability

of NASH was estimated using the likelihood weighting algorithm, a

Monte Carlo approximation technique utilising importance

sampling. While BNs can be extended to incorporate a plethora

of clinical features and sources of information, our networks have

been deliberately limited to illustrate their application of the

present analysis.
2.3 Network variables

BN construction included the following variables: liver fat

(PDFF %), liver cT1 (ms), pancreatic fat (PDFF %) visceral

adipose tissue (cm2), subcutaneous adipose tissue (SAT) (cm2),

skeletal muscle (SMI) (cm2), gender (1[male]/0[female]), BMI (kg/

m2), age (yrs), HbA1c (mmol/mol), AST (IU/L), ALT (IU/L),

smoking status (0[non-smoker]/1[current smoker] /2

[past smoker]).
2.4 Bayesian-network construction (See
Supplementary information for full
overview of network construction)

BN construction and probabilistic inference were completed

using the ‘bnlearn’ package and visualised using ‘graphviz’ within

the R software platform (version 3.6.1). Automated network

structures, derived from a score-and-search algorithm (21), were

adjusted by removing or reversing nonsensical edges and inserting

edges based on domain knowledge gleaned from medical literature.

Crucially, incorporation of clinical knowledge in these network

structures enables the modelling of causal relationships between

variables. Figures 2, 3 show the final networks from the T2D and

non-T2D cohorts, respectively.
2.5 Statistical analysis

All statistical analyses used the R software platform (version

3.6.1). Descriptive statistics, showing median [inter quartile range],

are reported to summarise population characteristics. Wilcoxon

and X2 tests were used to make between group comparisons.
3 Results

3.1 Descriptive characteristics of
participants

The baseline clinical, biochemical, and imaging characteristics

are shown in Table 1. The groups were well matched for age, gender,

and BMI. Despite similar liver biochemistry, participants from the
Frontiers in Endocrinology 04
T2D cohort (and thus higher HbA1c (<0.001)) had significantly

elevated liver cT1 (<0.001), liver PDFF (<0.001), VAT/SAT ratio

(p=0.034) and greater prevalence of NASH (<0.001).
3.2 Estimation of NASH using probabilistic
reasoning

The baseline probabilities of NASH in the T2D and non-T2D

cohorts were 30% and 10%, respectively. ‘Intervening’ on a variable

within the BN means that a specific value is assigned to it. For

example, the variable ‘HbA1c’ may be assigned the values ‘0’ (‘low’
FIGURE 2

Bayesian-network structure from the T2D cohort.
FIGURE 3

Bayesian-network structure from the non-T2D cohort.
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value) or ‘1’ (‘high’ value). The effect of amending level of glucose

regulation is then propagated throughout the network, where the

variables(s) conditionally dependent on the intervened variable(s)

are updated to reflect the specified evidence.
3.3 T2D cohort

3.3.1 Impact of body mass index
We first explored the effect of obesity status on NASH risk,

observing a 13%, 23%, 36% and 62% probability of NASH under

normal weight (<25kg/m2), overweight (25-30kg/m2), obesity (30-

40kg/m2), and severe obesity (>40kg/m2) settings, respectively. This

equated to a 23% greater probability of NASH when comparing

‘obesity’ vs. ‘normal weight’. (Table 2; Figure 4).

3.3.2 Impact of HbA1c
Increasing HbA1c status from the low (HbA1c <62 mmol/mol)

to high value group (HbA1c >=62mmol/mol) increased the

probability of NASH by 22% (24% vs. 46%). (Table 2; Figure 5).

3.3.3 Impact of adipose tissue volumes (VAT and
SAT)

We observed a 20% and 7% increase in the probability of NASH

when specifying elevated vs. normal measures of VAT and SAT,

respectively. (Table 2; Figure 5).

Impact of skeletal muscle area: Reduced SMI decreased the

probability of NASH by 4% (30% vs 26%). (Table 2; Figure 5).
Frontiers in Endocrinology 05
3.3.4 Impact of liver and pancreatic fat
Increasing liver fat from 5.6-10% to greater than 10% increased

the probability of NASH by 31% (25% vs 56%). Elevated pancreatic

fat increased the probability of NASH by 1% (29% vs 30%).

(Table 2; Figure 5).

3.3.5 Combination of risk factors
BNs enable a user (e.g., clinician) to specify an individual

phenotype, enabling personalised ‘what if’ analysis. For example,

a high-risk phenotype with obesity, elevated VAT, elevated liver fat

(>10%) and ‘high’ HbA1c had an 86% probability of NASH. In this

phenotype, reducing HbA1c to the ‘low’ value reduced the

probability of NASH by 29% (67%).
3.4 Cohort without T2D

We observed a 16%, 6%, 11% and 30% probability of NASH

under normal weight, overweight, obese, and severe obesity settings.

We observed a 1% increase in the probability of NASH when

specifying elevated vs normal measures of VAT. Increasing liver fat

from 5.6-10% to >10% increased the probability of NASH by 23%

(7% vs. 30%). Increasing HbA1c from the ‘low’ <38mmol/mol) to

‘high’ (>38mmol/mol) value reduced the probability of NASH by

1% (10% vs 9%). (Table 2; Figures 4; 5).

Exploring the same high-risk phenotype specified within the

T2D cohort, we observed a 30% probability of NASH. Reducing

HbA1c lowered the probability of NASH by 3% (27%).
TABLE 1 Baseline characteristics of T2D and non-T2D cohorts.

Characteristic T2D (n = 221) Non-T2D (n = 135) p-value

Clinical data

Age (yrs) 57 [52-64] 57 [53-63] 0.3

Sex (n of male participants [%]) 146 (66%) 98 (73%) 0.2

BMI (kg/m2) 30 [27-34] 29 [26-33] 0.3

HbA1c (mmol/mol) 50 [41-62] 36 [33-38] <0.001

AST (IU/L) 24 [19-29] 27 [23-32] <0.001

ALT (IU/L) 27 [20-36] 26 [19-35] 0.5

MRI data

Liver cT1 (ms) 751 [695-827] 709 [672-752] <0.001

Liver fat (%) 8 [4-14] 5 [3-11] <0.001

Pancreatic fat (%) 5 [3-9] 5 [3-8] 0.6

VAT (cm2) 238 [173-307] 215 [149-279] 0.065

SAT (cm2) 249 [180-322] 271 [181-366] 0.3

VAT/SAT ratio 0.90 [0.58-1.33] 0.79 [0.57-1.15] 0.034

SMI (cm2/m2) 49 [42-56] 51 [43-56] 0.6

NASH (n of participants [%]) 69 (31%) 13 (9%) <0.001
fron
Data is median [IQR]. Bold denotes significance.
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4 Discussion

In this paper, we applied a novel BN approach to demonstrate

the mediating influence of type 2 diabetes, particularly determining

the impact of poor glycaemic control and higher ectopic fat

deposition, focussing on the impact of liver and visceral fat

depots, on the increased risk of NASH in people with T2D and

those in the general population. Firstly, we found that obesity

(versus normal BMI) conferred a 23% increase (within the T2D

cohort) and 5% decrease (in the cohort without T2D) in the

probability of NASH. However, considering the intrinsic

limitations of the BMI, aggregating all measures of body

composition (for example, combining adipose tissue and skeletal

muscle volumes) into a single measure, this metric assumes that all

individuals will have a similar relative proportion of the different

biological tissues.

Our work overcomes this limitation by applying BNs to study the

association between MR-derived measures of body composition (using

regional adipose tissue volumes, VAT and SAT and organ specific fat

measurements) and NASH risk, highlighting the independent

contribution of fat deposition within visceral and subcutaneous sites.

Specifically, within the T2D cohort the probability increase of NASH

was more than double under elevated VAT (+20%) than elevated SAT

(+7%) conditions. Such finding is similar to that of (22) who, despite
Frontiers in Endocrinology 06
applying different statistical techniques, also observed that higher

measures of VAT relative to SAT was predictive of advanced liver

fibrosis in people with NAFLD.

VAT area is independently associated with NASH and

correlates significantly with histology confirmed NAFLD with

significant fibrosis (23). Proposed mechanisms behind the

association of elevated VAT and NASH include lipotoxicity and
FIGURE 4

Probability of NASH (%) by obesity category (BMI) in the non-T2D
(red) and T2D (blue) cohorts.
TABLE 2 Probability of NASH (%) under different variable settings in the T2D and non-T2D cohorts.

Biomarker Cohort

T2D (n = 221) Non-T2D (n = 135)

Obesity status (BMI)

Normal weight (<25kg/m2) 13% 16%

Overweight (25-30kg/m2) 23% 6%

Obese (30-40kg/m2) 36% 11%

Severe obesity (>40kg/m2) 62% 30%

Body composition & fat deposition

Normal VAT 16% 10%

Elevated VAT 36% 11%

Normal SAT 27% 10%

Elevated SAT 34% 10%

Normal SMI 30% 10%

Reduced SMI 26% 11%

Liver fat 5.6-10% 25% 7%

Liver fat >10% 56% 30%

Normal pancreatic fat 29% 10%

Elevated pancreatic fat 30% 10%

HbA1c range

Low (<62mmol/mol [T2D]; <38mmol/mol [non-T2D]) 86% 30%

High (>=62mmol/mol [MODIFY]; >=38mml/mol [non-T2D]) 67% 27%
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an overexpression of proinflammatory cytokines that promote

inflammation and fibrosis within the hepatocytes (24). Such

overexpression of cytokines has been linked to fat deposition

within visceral, but not subcutaneous, adipose sites (25).

In participants with T2D, our analysis revealed a 22% reduction in

the probability of NASH when lowering HbA1c from the ‘high’

(>62mmol/mol) to ‘low’ (<62mmol/mol) range. Furthermore,

NASH risk was reduced by 29% when lowering HbA1c in an

example high risk phenotype. Importantly, this was achieved

without specifying changes to obesity status, liver fat content or body

composition. Chronically elevated blood glucose (i.e., glucotoxicity)

has been linked to NASH development via its effects on increasing

TCA cycle activity and synthesis of Acyl CoA that promote de novo

lipogenesis and oxidative stress (26). At the time of writing, no FDA-

approved pharmacologicalmedications are available for the treatment

of NASH. To this end, our findings highlight the potential of glucose

lowering therapies for mitigating NASH risk, particularly in high-risk

metabolically unhealthy populations or thosewith overweight/obesity.

Interestingly, newer T2D therapies such as GLP1-receptor agonists

(liraglutide, semaglutide), novel dual and triple peptides (e.g.

tirzepatide) and SGLT2-inhibitors have been shown to decrease

levels of ALT and lower liver fat (measured by MRI-PDFF) in people

with T2D and areas offibrosis, ALT/AST and hepatic lipid content in

murine NASH models (27, 28).

Notably, and despite similar measures of BMI and body

composition (see Table 1), we found significantly greater

measures of liver cT1, liver fat and prevalence of NASH within
Frontiers in Endocrinology 07
the T2D cohort. This highlights the clinical need to screen people

with T2D for concomitant liver disease and NASH, where critically,

we observed similar measures of ALT and significantly greater AST

in the non-T2D cohort. Screening for liver disease needs to adopt a

multi-modality approach that extends beyond the reliance on

circulating biomarkers alone.

Limitations of this studyultimatelyderive from the fact thatNASH

is a complex and multifactorial disease that involves numerous

mechanisms that are not investigated in our work to date. However,

theBNmethodology thatweuse is intrinsically extensible. Futurework

will seek to broaden the variables included in network construction,

such as biochemical pathways associated with hepatocyte injury, for a

more comprehensive assessment of NASH risk.

In conclusion, this paper applied Bayesian-networks and

probabilistic reasoning to identify populations at a high risk of

NASH. We emphasise the role of elevated VAT, liver fat and obesity

status in driving the probability of NASH, and these effects are most

significant in people with type 2 diabetes highlighting the importance

of prevention and good glycaemic management as a potential

therapeutic target for addressing the epidemic of NAFLD/NASH.
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FIGURE 5
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