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Over the years, the vaste expansion of plastic manufacturing has dramatically

increased the environmental impact of microplastics [MPs] and nanoplastics

[NPs], making them a threat to marine and terrestrial biota because they

contain endocrine disrupting chemicals [EDCs] and other harmful

compounds. MPs and NPs have deleteriouse impacts on mammalian

endocrine components such as hypothalamus, pituitary, thyroid, adrenal,

testes, and ovaries. MPs and NPs absorb and act as a transport medium for

harmful chemicals such as bisphenols, phthalates, polybrominated diphenyl

ether, polychlorinated biphenyl ether, organotin, perfluorinated compounds,

dioxins, polycyclic aromatic hydrocarbons, organic contaminants, and heavy

metals, which are commonly used as additives in plastic production. As the

EDCs are not covalently bonded to plastics, they can easily leach into milk,

water, and other liquids affecting the endocrine system of mammals upon

exposure. The toxicity induced by MPs and NPs is size-dependent, as smaller

particles have better absorption capacity and larger surface area, releasing

more EDC and toxic chemicals. Various EDCs contained or carried by MPs and

NPs share structural similarities with specific hormone receptors; hence they

interfere with normal hormone receptors, altering the hormonal action of the

endocrine glands. This review demonstrates size-dependent MPs ’

bioaccumulation, distribution, and translocation with potential hazards to the

endocrine gland. We reviewed that MPs and NPs disrupt hypothalamic-pituitary

axes, including the hypothalamic-pituitary-thyroid/adrenal/testicular/ovarian

axis leading to oxidative stress, reproductive toxicity, neurotoxicity,

cytotoxicity, developmental abnormalities, decreased sperm quality, and
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immunotoxicity. The direct consequences of MPs and NPs on the thyroid,

testis, and ovaries are documented. Still, studies need to be carried out to

identify the direct effects of MPs and NPs on the hypothalamus, pituitary, and

adrenal glands.
KEYWORDS

microplastics, nanoplastics, mammalian endocrine system, endocrine abnormalities,
endocrine disrupting chemicals, plastic additives, environmental pollution
1 Introduction

xIn recent decades, plastic pollution has become one of the

most widespread and enduring anthropogenic alterations in

all environmental compartments of our planet’s surface (1)

and therefore, considered as a stratigraphic marker for the

Anthropocene (2). A culture of single-use plastic, rapid and

inexpensive plastic production and non-circular economic

models led to the creation of over 368 million metric tons

(Mt) of single-use plastic in 2019 (3). It is expected that if the

current production and waste management trends continue,

approximately 12,000 Mt of plastic waste will end up in the

natural environment by 2050 (4). To date, plastic debris has

affected 3876 species only in the aquatic environment (https://

litterbase.awi.de/interaction_detail; date assessed July 28,

2022), and by the year 2050, plastic will be found in the

digestive tract of 99% of all sea bird species (5). Globally

mammals are already at-risk due to several reasons, including

climate change (6), however, bioaccumulation of the

microplastic (MP) and associated toxic chemical additives

are accelerating the risk of extinction (7, 8). Despite its

ubiquitous distribution, current knowledge about the

health effects of MP and associated chemicals in mammals is

limited. Therefore, we aim to highlight how MP affects

mammalian endocrine glands, which could contribute to

their conservat ion and management , especia l ly in

vulnerable populations.
1.1 Rising global plastic and MPs
pollution in the terrestrial and
aquatic environment

Plastic waste is a contemporary societal and ecological issue

due to its indispensable nature and ubiquitous use in daily life,

associated with long-term detrimental effects on organisms (9).

Plastic consumption will continue to rise in response to global

population growth, and as plastic degrades, microplastics (<5
02
mm) and nanoplastics (< 1 nm) enter the terrestrial ecosystem

in several ways (10). Depending on their manufactured and

fragmented origin, MPs can be classified as primary or

secondary (11). Primary MPs are primarily designed into

small sizes for commercial practices like personal care

products, whereas secondary MPs are fragmented from larger

plastics by various physical and biological methods (10), such

as UV radiation, temperature changes, and wave action (12).

Due to sewage sludge applications, each year, 63–430 and 44–

300 thousand tons of MPs are added to agro-ecosystems in

Europe and North America (13). In marine ecosystems,

approximately 5-13 million tons of plastic debris enter the

ocean each year (8). Consequently, the world’s upper ocean

currently comprises 24.4 trillion pieces, (8.2 × 104 ~ 57.8 × 104

tons) of micro-plastic (14), and its concentration might exceed

250 mill ion metric tons by 2025 (8, 15). In 2015,

Oceanographers estimated 15-51 trillion MP particles

floating on water surfaces worldwide (16). In Europe,

approximately, 63,000–430,000 tonnes of MPs entered the

farmlands annually (17), while in most part of the world,

data regarding MP loading in agriculture farmlands

are unavailable.
1.2 Chemical composition of MPs and
their endocrine-disrupting effects

MPs generated from plastic degradation persist for

hundreds and thousands of years in the environment (18).

Plastic bottles, disposable diapers, and polystyrene foam have a

life span of 450, 500, and >5000 years [https://www.goecopure.

com/lifespan-of-plastic.aspx]. Plastic additives used during

plastic processing contribute up to 70% of plastics (18). More

than 10,000 chemicals are identified as plastic additives, and

2400 chemicals have been classified as detrimental to marine

and terrestrial biota (19). These additives include plasticizers,

antioxidants, UV stabilizers, dyes, and flame retardants. Some

of them are of serious concern, such as alkylphenol (20),
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polybrominated diphenyl ethers [PBDEs] (21), phthalates,

organotins, perfluorinated compounds, dioxin (22), bisphenol

A [BPA] and heavy metals like chromium, lead, and cadmium

(8, 23). Approximately, 1000 chemicals classified as endocrine

disruptor chemicals (EDCs) alter the expression of various

hormone receptors and interfere with the synthesis, secretion,

transport, and action of hormones, leading to endocrine and

developmental abnormalities (23, 24). Nearly nine different

forms of MPs are reported in human feces from multiple

countries, clearly validating the presence of MPs in the

human food chain and warning us about their harmful

effects on human health (25). MPs and their composite toxic

additives can cross various biological membranes, blood-brain

barriers and both can interfere with various hormone

receptors, thereby disrupting different hypothalamic axes

such as the hypothalamic-pituitary-thyroid axis [HPT], the

hypo tha l amic -p i tu i t a ry - adrena l ax i s [HPA] , and

hypothalamic-pituitary-gonadal axis (HPG; Figure 1) (23,

26–29). Various metabolic disorders, gut dysbiosis, and

intestinal barrier dysfunction induced by MPs have been

explored using rats and mice as model organisms. Similarly,

neurobehavioral changes, disrupted thyroid status, and

biochemical stress are the direct consequences of MPs

exposure in rats (30).
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1.3 MPs bioaccumulation and
biomagnification due to their “Trojan
Horse” effects in mammals

The large surface area and hydrophobic surface of MPs make

them a suitable medium for carrying many pollutants such as

EDCs, heavy metals, and other toxic organic chemicals, making

them harmful to mammals through bioaccumulation and

biomagnification processes (31, 32). These are called “Trojan

Horse Effects” of MPs (33), and induce several synergistic,

behavioral, histological, and biomolecular alternations (32).

Many EDCs and other pollutants are added as additives or

absorbed by MPs; after being consumed directly or indirectly

through the food web, MPs increase their bioaccumulation in

mammals (8, 21, 34). MPs accumulate in various body parts and

are involved in biochemical pathways, affecting cell functioning

by crossing biological membranes in a size-dependent manner

(35). Studies have shown that MPs of size 0.1-10 µm can cross

biological membranes, blood-brain barrier, and even placenta,

enhancing the possibilities of their bio-accumulation in

secondary tissues such as the liver and brain (23). While MPs

<150µm can cross the gastrointestinal tract, those <5µm can

accumulate in macrophages and be carried to the blood

circulation and the spleen (22). Similarly, MPs <10µm trans-
FIGURE 1

Micoplastic and their associated chemicals exposure can effect endocrine glands.
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locate from the gut to the circulatory system and can accumulate

in the liver, kidney, and brain (36).

This review warns about the accumulation of MPs in marine

and terrestrial ecosystems. Furthermore, it implies that studies

need to be carried out to deeply understand the action

mechanism of MPs, nanoplastics [NPs], and associated

chemicals in aquatic and terrestrial biota and their long-term

detrimental consequences on the mammalian endocrine system.
2 Effects of MPs, NPs, and
associated chemicals on the
mammalian thyroid gland

The thyroid gland is an essential endocrine gland

responsible for normal brain function, growth, and

neurological development of all animals (37). The thyroid

functions under the HPT axis and affects almost every organ

in the body (38), therefore disruption in thyroid homeostasis

can be detrimental and will affect the body’s overall health

status. Long-term exposure to plastic particles and associated

chemicals has been shown to exhaust thyroid endocrine

function by weakening its driving forces in regulating

growth, development, metabolism, and reproduction (39).

MPs additives and pollutants, such as PBDEs, BPA,

phthalates, and organotin act as thyroid-disrupting chemicals

[TDCs] (22) (Table 1). Similarly, MPs cause thyroid

dysfunction and developmental abnormalities once ingested

with associated POPs and EDCs (43). Phthalate causes a

reduction in thyroid weight during childhood exposure and

associated with developmental abnormalities and hyperactivity

of the thyroid gland (44, 45). These TDCs associated with

plastic enter the body through the gastrointestinal tract and

interfere with T4 and T3 biochemical pathways, while their

circulation adversely affects thyroid hormone production and

metabolism, affecting other organs like the brain in primary

developmental stages (46). Several TDCs circulating in the

blood form complexes with protein of thyroid hormones and

eventually reach the brain and bind with thyroid hormone

receptors, disrupting thyroid health (46). TDCs are also

responsible for the prevalence of subclinical thyroid

conditions known as “subclinical thyroid disease” [SCTD]. In

SCTD, the body observes abnormal low or high levels of
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thyroid-stimulating hormones [TSH] (47). Similarly, BPA

can interfere with thyroid hormone action and impairs

thyroid functions by inhibiting T3 binding to its receptor

and suppressing transcriptional activity mediated by thyroid

hormone receptors (48). Phthalates also disturb the normal

thyroid system by interfering with gene expression in the HPT

axis and metabolic activity (27). It impairs thyroid function

through various mechanisms, including inhibition of T3

protein binding, antagonistic interactions, and disruption of

throid receptor’s transcriptional activity (49).

PBDEs and polybrominated biphenyl [PBBs] as flame

retardants in plastic (50) can decrease the circulating level of

thyroid hormones and are associated with impaired thyroid

function (51). It has been reported that five weeks of rats’

exposure to 1, 3, 6, and 10mg/kg/day of polystyrene

nanoplastics [PS-NPs] suppress the serum level of T3, FT3,

and FT4 synthesis and circulating level of thyroid hormones (41)

(Table 2). Few researchers have demonstrated phthalates

association with altered FT4 and total T3 in pregnant women

(53). It has been shown that BPA and phthalates cause endocrine

toxicity at all levels in animals (45).

Thyroid hormone levels in pregnant rats and their progeny

are altered by brominated flame retardant chemicals, resulting in

obesity, heart illness, early puberty, and insulin resistance in

their children (62). The PBDEs and PBBs can dissolve in lipids

and fats, so their accumulation is easy in wildlife and marine

animals once exposed to these chemicals (21). PBDEs reduce the

circulating levels of thyroid hormones through changes in T4

binding, and reduction in serum T4 (55). PBDEs disrupt the

HPT axis (63) by altering the gene transcriptions of multiple

genes like thyroid stimulating hormone subunit [tsh], deiodinase

type 2 [deio2], and NK2 homeobox 1 [nkx2.1] (64). These genes,

regulating thyroid development and TSH synthesis, are

extremely sensitive to PBDEs (64).
3 Effect of MPs, NPs, and associated
chemicals on the male
reproductive system

Due to the small size of MPs, they can easily enter the

organism’s reproductive cells, tissues, and organs altering

normal morphology, histology, and physiological functions of
TABLE 1 The effects of MPs on the mammalian thyroid gland.

Plastics Species Thyroid disrupting consequences References

MPs Humans Thyroid dysfunction and metabolic and developmental abnormalities once ingested with associated POPs and EDCs (40)

NPs Rats T3 and circulating THs levels were decreased after exposure to PS NPs, while TSH significantly increased. (41)

MPs Rats Remarkable lesions Ectopic thymus Ultimobranchial cyst. (42)

MPs Rats Increased level of T3, FT3/FT4 ratio, and decreased level of TSH (41)
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the male reproductive system (65). In recent years MPs’ toxicity

to the reproductive system got much more attention because

they have caused widespread male reproductive abnormalities in

mice making them a potential hazard (66) (Table 3). Currently,

this environmental issue with respect to mammalian

reproductive health is poorly understood (65). However, the

harmful effects of MPs on mice’s reproductive health might

provide new insight into the deleterious effects of MPs on the

mammalian reproductive system.

The limited preliminary studies have suggested MPs

bioaccumulation in mammalian testes with subsequent adverse

reproductive outcomes (65). MPs ≤10 mm have been observed to

accumulate in mice testes reducing testosterone [T]

concentration, sperm quality and causes testicular

inflammation (66). It also penetrates the testicular tissues such

as Leydig cells, germ cells, and Sertoli cells (66). The

accumulation of MPs in these cells may profoundly contribute

to our understanding of MPs’ effects on mammalian

reproductive health.
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MPs contaminated with phthalate esters [PAEs] accumulated

in the testes and altered testicular weight and sperm physiology by

reducing sperm number and vitality (68). MPs cause

morphological alternation in sperm like loss of sperm acrosome,

cephalic having a small head, acephalia having no head, and

tailless sperm (66). Exposure to these plastic particles at

developmental stages resulted in shrank germ cells and

decreased sperm density in the seminiferous tubules (73). MPs

also induces irregular rearrangement of spermatid in testicular

seminiferous tubules reducing spermatids’ number (67). A recent

study (67) suggested PS-MPs reduce sperm production in mice

through testicular injury. Deng et al. (68) observed spermatogenic

disruption through altered acid phosphatase [ACP], superoxide

dismutase [SOD], and malonaldehyde [MDA] levels in testes.

ACP present in Sertoli cells (74) providing structural and

nutritional support to spermatogenesis, were significantly

increased while SOD and MDA levels were also increased

inducing oxidative stress in testes (68). Oxidative stress is the

key factor responsible for male infertility due to the increased cell
TABLE 3 MPs effects on the mammalian male reproductive system.

Plastics Species Consequences on male reproductive system References

MPs Mice Recused sperm quality, abnormal testicular spermatogenesis (67)

MPs Mice Testicular transcriptomic alterations, altered spermatogenesis (68)

MPs Mice Decreased testosterone levels, disruption of Blood Testes Barrier [BTB], testicular inflammation (66)

MPs Swine Increased apoptosis and necrosis in testes, decreased viability of testicular cells (69)

MPs Mice Decreased testicle weight and sperm quality, altered sperm phenotype (70)

MPs Rats Damaged seminiferous tubule, destruction of BTB, spermatogenic cell apoptosis (71)

PS-MPs Mice Oxidative stress in testes reduced sperm motility (72)
TABLE 2 The MPs additives effects on the mammalian thyroid gland.

Endocrine disrupters Species Thyroid disrupting consequences Reference

Phthalates Humans

Thyroid epithelial cell hypertrophy and hyperplasia
Thyroid hyperactivity, gene expression disruption of the hypothalamic-pituitary-thyroid [HPT]
axis, thyroid antagonistic interaction,
altered FT3 and FT4

(52)
(44)
(27)
(49)
(53)

Bisphenol A [BPA] Rats Inhibits T3 receptor binding ability, thyroid antagonist, thyroid oxidative damage (48, 54)

Polybrominated diphenyl ethers
[PBDEs]

Rats,
Humans

Serum T4 reduction, the prevalence of hypothyroidism, disturb T4 levels in umbilical-cord blood,
altered T3 and T4 levels

(51, 55)
(56)

Tributyltin [TBT] Rats Dysregulated HPT axis, thyroid follicle reduction, decreased FT4 level (57)

Polychlorinated
Biphenyls (PCBs)

Rats Reduced TT4 and FT4 levels (58)

Hexabromocyclododecane
(HBCD)

Rats Thyroid follicular cell hypertrophy, reduced concentration of serum T3 (59)

Mercury Humans Contribute to thyroid cancer, hypothyroidism, and autoimmune thyroiditis (60)

Dichlorodiphenyltrichloroethane
[DDT]

Rats Reduced T4 level and decreased size of follicles (61)
f
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division rate and mitochondrial oxygen consumption in testicular

tissues (75). PS-MPs not only cause spermatogenic defects and

testicular abnormalities but also penetrate the blood-testis-barrier

[BTB] (66) in Sertoli cells and accumulate in the organism testes

(30). According to (67) mice exposed to 5 µm of MPs shows a

reduction in sperm activity and testicular tissue damage by

activating the p38 mitogen-activated protein kinases

[MAPK] pathway.

Spermatogenesis is an essential differentiation mechanism

that requires T secretion, nutritional support provided by the

sertoli cell, and a suitable environment for the production of

sperm protected by BTB (66, 76). Following exposure to MPs,

the T secretion declined and causes BTB disruption (66) with

dysregulated testicular spermatogenesis (67). MPs enter

testicular tissues by disrupting BTB, which serves as a physical

barrier preventing the penetration of toxic chemicals to the

testis, thus providing a healthy environment for spermatogenesis

(66, 77) (Table 3). Due to BTB disruption, some proteins

expression linked with BTB like Claudin 11, N-Cadherin,

Connexin and Occludin were significantly reduced (71).

Excess bioaccumulation of MPs induces increased germ cell

apoptosis and disrupted spermatogenesis by causing abscission

and irregular arrangement of spermatogenic cells (72) and

sperm DNA fragmentation; a primary factor responsible for

reproductive impairment (30). In mice, MPs exposure resulted

in the shedding of spermatogenic cells and the structural

disruption of seminiferous tubules (71).

The development and regulation of the reproductive

system depend on the HPG axis, which alludes to the

connection between the hypothalamus, pituitary, and gonads

(78). Reproductive regulation initiates at the hypothalamus

level due to gonadotropin-releasing hormone (GnRH)

secretion by neurosecretory cells to the hypothalamic-

hypophysial system (79). In response to GnRH secretion,

pituitary releases FSH and LH that control gonadal functions

(79). In males, the HPG axis is responsible for T secretion and
Frontiers in Endocrinology 06
regulation of spermatogenesis (80). MPs disrupt the HPG axis

(26) as their exposure in male mice reduces the serum

concentration of FSH, LH, and T while estradiol level

significantly increases (81). Therefore the reproductive

abnormalities caused by MPs due to HPG axis disruption

include delayed gonadal maturation and the altered ratio of

sex hormones that hindered reproductive development (26).

Some studies have shown PS-MPs increase reactive oxygen

species [ROS] in male zebrafish liver and gonads. Their exposure

to MPs increases apoptosis in testes, affecting gamete production

(82) and interact with plasma membrane permeability of

gametes, preventing gamete binding and offspring growth (26).

In zebrafish testis, silver nanoparticles induce increased cell

apoptosis due to overexpression of apoptotic genes like BAX,

caspase-3 and caspase-9 (83). MPs also cause the thickness of the

basement membrane of the zebrafish testis, due to which the

production of spermatozoa is attenuated and undergoes

the atrophy of seminiferous tubules (82).

BPA as essential plasticizers causes abnormal spermatogenesis,

disruption of BTB, production of poor semen quality, and oxidative

stress (84) (Table 4). BPA and BPS consumption alters T secretions

and causes cell proliferation by interfering with many receptors

(91). PBDEs as persistent flame retardants alter sperm DNA

methylation by disrupting the hypothalamic-pituitary-testicular

axis, affecting the functional ability of Leydig cells and

spermatogenesis (86). MPs contaminated with phthalates can also

cause oxidative stress in testes, change the sperm physiology (68),

and their esters like dibutyl phthalate [DBP], diethylhexyl phthalate

[DEHP], and diisopentyl phthalate [DiPeP] are recognized as anti-

androgenic endocrine disrupters (85). Nonylphenol as a persistent

pollutant inhibits steroidogenesis and alters enzyme localization like

P450 aromatase, 3b-hydroxysteroid dehydrogenase and 17b-
hydroxysteroid dehydrogenase in Podarcis Siculus (92). Similarly,

DDT causes testicular injury and possible transgenerational effects

on epigenomes and transcriptomes of future generations (93). Some

anthropogenic EDCs such as cadmium [Cd] and lead [Pb] beyond a
TABLE 4 MPs additives effects on the male mammalian reproductive system.

Endocrine
disrupters Species Consequences on male reproductive system Reference

Phthalates Rats and Mice
Oxidative stress in testes,
altered sperm’s physiology, anti-androgenic effects

(68, 85)

BPA Mice
Abnormal spermatogenesis, blood-testis-barrier [BTB] disruption, poor semen quality, DNA damage in
sperm cells

(84)

PBDEs Male Dysregulated sperm DNA methylation, altered spermatogenesis (86)

TBT
Syrian
hamsters

Adverse steroidogenic enzymes activity, impaired testosterone production, defective spermatozoa (87)

PCBs
Harbour
porpoises

Decreased testes weight,
Reduced sperm and spermatid numbers, small seminal vesicles

(88, 89)

Chromium, lead and
Mercury

Mice, Rabbits
Leydig cell tumors, attenuates serum level of luteinizing hormone [LH], testosterone, follicle-
stimulating hormone, testicular stroma

(90)
f
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certain levels have a close association with infertility in mice and

humans (94) (Table 4). Both Cd and Pb adversely alters the HPG

axis that harms testicular tissues directly (40) and disrupt

spermatogenesis, spermiogenesis, and steroidogenesis (95). Mice

administration to varying doses of PSMPs for six weeks induced a

significant increase in sperm deformities rate and a decrease in

sperm motility (72). PSMPs also cause a reduction in mice’s serum

T levels and decrease the functional activity of various enzymes

involved in sperm metabolisms such as succinate dehydrogenase

and lactase dehydrogenase (72).

4 Effects of MPs, NPs, and their
associated chemicals on the female
reproductive system

Little is known about the harmful effects of MPs and NPs on

the ovaries of mammals but studies conducted on rats and

aquatic organisms may provide new insights into deadly

consequences caused by plastic particles in ovaries. The

harmful effects of MPs and their compound substances are

linked to a dysfunctional female reproductive system

(26) (Table 5).

Research has shown MPs accumulation in rat’s ovaries and

granulosa cells, reducing the growth of the follicles, decreasing

the level of anti-Mullerian hormone [AMH] (99), estradiol, and

causing an irregular estrous cycle and abnormal folliculogenesis

(101). Granulosa cells are the essential somatic cells of the ovary

responsible for normal ovarian development and maturation
Frontiers in Endocrinology 07
and play a significant role in folliculogenesis (102). In addition,

PS-MPs also induce fibrosis of the ovary through activation of

the Wnt/b-Catenin signaling pathway and apoptosis of

granulosa cells by oxidative stress, reducing normal ovarian

reserve capacity in rats (99, 103). The wnt/b-Catenin signaling

pathway is essential for maintaining tissue homeostasis and

regulating embryonic maturation, cell proliferation, and

apoptosis (104).

MPs as a transport medium for their composite EDCs (105)

induce various endocrine disorders like infertility, precocious

puberty, hormone-based tumors, several metabolic problems,

disruption of granulosa cell steroidogenesis, and polycystic ovary

syndrome [PCOS] (106, 107) (Table 6). Endocrine disrupting

plastic additives like PBDEs, BPA, phthalates, organotins (20),

nonylphenols, octylphenols (113), and biocides like TBT,

mercury, arsenic, copper, cadmium, and lead (114) can

transfer from pregnant women to the fetal bloodstream

through a placental barrier causing neurodevelopmental

abnormalities in infants (115). In mice and monkeys, BPA

disrupts oocyte development (116) and induces impairment

and disruption of steroidogenesis in humans, ovine, swine

(107), and murine granulosa cells (117). Several concerns have

been raised demonstrating phthalates effect on granulosa cell

steroidogenesis in humans (118), mice (108), and rats (119), and

increase cell proliferation in swine when exposed to NPs with

their composite EDCs (120). Similarly, cadmium disrupts

gonadal steroidogenesis and inhibits the binding of FSH to its

specific receptor, and alters steroid production of ovarian

granulosa cells (121).
TABLE 5 Microplastics effects on the mammalian female reproductive system.

Plastic Species Consequences on the female reproductive system References

MPs Mice
Oxidative stress in ovaries,
decrease the number of ovarian antral follicles and malondialdehyde [MDA] levels in ovaries

(96)

MPs Mice Decreased pregnancies and increased mortality (97)

MPs Mice Spontaneous abortion, decreased diameter of uterine arterioles, decreased uterine blood supply (98)

MPs Rats Granulosa cell apoptosis, ovary fibrosis, and pyroptosis (99)

MPs Rats Granulosa cells pryptosis through NLRP3/Caspase-1 signaling mechanism, (100)
TABLE 6 The effects of MPs additives on the female mammalian reproductive system.

Endocrine disrupters Species Consequences on the female reproductive system References

Phthalates Mice Reduced LH, defective ovarian steroidogenesis (108)

BPA Humans Inhibiting secretion of progesterone and oestradiol, decreases the expression of CYP11A1 (107)

PBDEs Humans Increased menstrual cycle and bleeding time (109)

TBT Rats Irregular ovarian adipogenesis, Ovarian fibrosis (110)

PCBs Mice Follicular atresia, suppressed level of LH, and progesterone (111, 112)

Chromium, lead and Mercury Mice and Rabbits Follicular astresia, low follicle growth, corpus luteum (90)
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Some aquatic studies have also shown the bioaccumulation

of PS-MPs in female fish embryo yolk sacs and female eggs,

affecting the normal physiology of offspring in female fish (122,

123). The ability of polystyrene MPs to interfere with plasma

proteins connected to oocytes facilitates MPs ’ cross-

generational transfer (123). In addition, PSMPs delay ovarian

development, decline the reproductive ability of marine

medaka (26) and reduce superoxide dismutase [SOD],

catalase [CAT], glutathione S-transferase [GST], and

glutathione peroxidase [GSH-PX] in Oryzias melastigma

ovary (99, 123). Similarly, MPs disrupt the HPG axis by

down-regulating the transcription of genes like GnRH,

v i t e l l ogen in [Vtg ] , and chor iogen in [Chg] in the

steroidogenesis pathway (26) while its combined exposure

with phenanthrene [Phe] increases the accumulation of Phe

in the ovaries of marine medaka, disrupting ovarian

development and the HPG axis (124).
5 Effects of MPs, NPs, and their
additives on the hypothalamus

Hypothalamus is an essential part of the endocrine system

that connects the nervous system to the endocrine system and

secretes both inhibiting and releasing hormones that signal the

pituitary gland to release various important hormones to the

whole endocrine system (125). The detrimental consequences of

MPs on the mammalian hypothalamus are poorly documented.
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However, there is clear evidence of mammalian hypothalamic-

pituitary axes disruption caused by MPs and their composite

EDCs that alter hormonal balance through feedback

mechanisms (126, 127) (Table 7).

MPs and NPs accumulation have been observed in fish brain

tissues, crossing the blood-brain barrier and causing neurotoxic

effects (136). MPs also decrease hypothalamic kisspeptin level in

zebrafish, responsible for their reproduction (137), and

interferes with the HPT axis that distorts their gene

expression (138).

Plastic additives like BPA and BPS cause decreased

hypothalamic neurons and neuroendocrine disruption (139)

while polybisphenols disturb the expression of HPT-axis genes

(140). Mice exposed to BPA have shown astrocyte activation and

various inflammatory actions in the hypothalamus through

activation of the toll-like receptor [TLR4], a receptor that

plays a vital role in inflammatory responses in the central

nervous system (128). The hypothalamic inflammation

induced by BPA impairs the function of proopiomelanocortin

[POMC] neurons in the hypothalamic arcuate nucleus [ARC]

(128). BPA also alters regulatory and inhibitory responses in the

HPG axis and its chronic exposure increases expression levels of

GnRH1, Kiss1, and FSH in exposed male and female rodents

(141). Similarly, BPA induces increased anteroventral

periventricular nucleus [AVPV] Kiss1 neurons in male

offspring and enhanced Kiss1 cell number in the rostral

periventricular area of the third ventricle of female

offspring (126).
TABLE 7 MPs additives effects on the mammalian hypothalamus.

Endocrine
disrupters Species Harmful effects References

PBDEs Rats Dysregulation of HPT and hypothalamic-pituitary-gonadal [HPG] axis (126)

BPA Mice

Cause significant decrease in hypothalamic neurons,
Cause astrocyte activation
Impairs the function of proopiomelanocortin [POMC] neurons in the hypothalamic arcuate nucleus [ARC],
Astrocyte-dependent hypothalamic inflammation

(128)

Phthalates Rats

Dysregulation of the HPG axis,
induce early puberty in female rats by inducing upregulation of hypothalamic IGF-1 expression,
prolong the female estrous cycle,
affects mRNA and protein expression of KiSS1, GPR54, and GnRH in the hypothalamus

(129)

PCBs Rats
Oxidative stress in the hypothalamus, decreased hypothalamic weight, decreased acetylcholinesterase (AChE)
activity

(130)

TBT Rats

Disrupts the functional ability of the female HPG axis reducing some hormones like hypothalamic GnRH and
decreasing secretion of pituitary LH.
Distorting gene expression and provoking thyroid homeostasis to various morphological alternations like
significant changes in TSH.

(131)
(57)

Mercury
Rats and
Mice

Decreased Luteinizing hormone-releasing hormone [LHRH],
changes in hypothalamic neuropeptides,
decreased Hypothalamic insulin receptor [Insr] mRNA

(132, 133)

Chromium Rats
Chromium in combination with benzene causes significant alternations in the neuroendocrine and lymphoid
systems by disrupting the hypothalamic-pituitary-adrenocortical axis,
increased MT-3 mRNA expression in the hypothalamus

(134)
(135)
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Phthalates cause hormonal imbalance by interacting with

nuclear receptors, hormonal receptors, signaling pathways, and

modulate gene expression linked with reproduction thereby,

disrupting the HPG axis that affects fertility (142, 143). Due to

HPG axis disruption, phthalates alter the levels of GnRH by

interacting with genes of G protein-coupled receptors [GPCRs]

on pituitary cells and disrupt FSH and LH ratio by interfering

with their receptors on Leydig cells, which consequently disrupt

the normal activity of steroidogenic enzymes and steroid

hormones (142). DEHP exposure induces early puberty in

female rats by inducing upregulation of hypothalamic insulin-

like Growth Factor-1 [IGF-1] expression which alters normal

hormonal levels of growth hormone [GH] and IGF-1 in the

hypothalamus (129). DEHP also adversely affects mRNA and

protein expression of KiSS1, GPR54, and GnRH in the

hypothalamus thereby interfering with the hypothalamic

regulatory mechanism affecting normal gonadal development

and hypothalamic hormonal balance in pubertal rats (129).

Similarly, nonylphenol disrupts the negative feedback

mechanism of the hypothalamic-pituitary-adrenal [HPA] axis

by inhibiting estrogen binding with its receptor (28). TBT

disrupts the functional ability of the female HPG axis reducing

hormones like hypothalamic GnRH and decreasing the secretion

of pituitary LH (125). These abnormalities induced by TBT are

associated with dysregulated ovarian steroidogenesis, irregular

folliculogenesis, oxidative stress, fibrosis, and abnormal

alternations in estrogen and testosterone levels (144).

Furthermore, TBT is capable of reducing thyroid follicles,

distorting gene expression in the HPT axis and provoking

thyroid homeostasis to various morphological alternations like

changes in TSH and FT4 levels (57).

Mercury exposure causes adverse alternation in the circulating

level of some hormones like FSH, LH, inhibin, and androgen,

causing reproductive disruption (121, 145) through its pathogenic

changes in the HPA axis and HPG axis (146). Studies found a

higher concentration of HPA axis hormones in people exposed to

heavy metals (147). Some heavy metal present in electronic waste

of electronic devices alters the HPA axis and increases the

secretion of corticotropin-releasing hormone [CRH], and

adrenocorticotropic hormone [ACTH] (147). Lead (Pb) distorts

the mechanism of neurotransmission (148) in the brain and causes

variations in the regulation of hypothalamic neurotransmitters that

affect the functional ability of gonadotropic hormones by

influencing the control of the HPG axis (121, 149). Chromium is

a neurotoxicant that increases GR activity and metallothionein

isoform 3 [MT3] in the hypothalamus (150). Chromium in

combination with benzene causes alternations in the

neuroendocrine and lymphoid systems by disrupting the

hypothalamic-pituitary-adrenocortical axis (134).
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6 Effects of MPs, NPs, and their
associated chemicals on the
pituitary gland

The pituitary gland is a neuroendocrine organ having an

essential role in major physiological functions such as growth,

sexual development, metabolism, and stress responses (151).

Through various regulatory axes, the hypothalamus and

pituitary gland regulate neuroendocrine actions including

the HPT axis, HPG axis, HPA axis, and HP-somatotrophic

axis (126). The hypothalamus-pituitary [HP] axis plays a

major integrative role in controlling the mammalian

endocrine system. It maintains a balanced homeostatic

condition and is responsible for essential hormone secretion

that regulates the thyroid, adrenal gland, gonads, somatic

growth, and many other functions (126). The hormones

secreted by the hypothalamus play a major role in

controlling pituitary functions such as metabolism, lactation,

growth, and milk secretion (126). Pituitary glands consist of

two lobes, the anterior pituitary, and posterior pituitary,

linked by the intermediate lobe. The hormones secreted by

the anterior pituitary gland into the bloodstream are

adrenocort icotrophic hormone, fol l ic le-st imulat ing

hormones, luteinizing hormones, thyroid-stimulating

hormone, growth hormone, and prolactin while the

posterior pituitary releases oxytocin and antidiuretic

hormone (152).

There is a dearth of studies regarding the harmful effects of

MPs on the pituitary and we did not find out any research data

that have explored the MPs toxicity on the mammalian pituitary

gland. However, there is some evidence on the dysregulation of

hypothalamic-pituitary axes caused by MPs and their composite

EDCs (126, 127) like the HPT axis (138) and HPG axis

(127) (Table 8).

HP axis is vulnerable to a variety of MPs composite EDCs

(105 ) such a s BPA (162 ) , PCBs , PBDEs , PBBs ,

dichlorodiphenyltrichloroethane [DDT] (163), and TBT (164)

(Table 8). Extensive use of these EDCs in synthetic products, as

well as their incorrect disposal, results in a range of

environmental contamination, leading to endocrine disruption

(126). The consequences of EDCs carried by MPs and NPs (105)

on the pituitary gland are the induction of a non-cancerous

pituitary tumor known as prolactinoma and stimulation of

pituitary hormones like prolactin and TSH (165). The minimal

amount of estrogen required to induce tumor is far higher than

the normal level so, it is questionable and doubtful whether weak

estrogenic disrupters might act as carcinogenic in the pituitary

gland (165).
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BPA as an essential additive (126) disrupts the regulatory

mechanism of the HPT axis through altered TSH levels and

affects the pituitary directly by altering its response to

Thyrotropin-releasing hormone [TRH] released by the

hypothalamus (153).

Mice studies have shown a significant decrease in the

expression of pituitary Esr1 with reduced hypothalamic Esr1

expression in rats exposed to 10mg/kg/day diisopentyl phthalate

(85). PBDEs as flame retardants alter TH balance at multiple

stages of the HPT-axis (154, 155) and exert carcinogenic effects

in the thyroid and pituitary of male rats and the uterus of the

female rats (154).

Mercury bio-accumulates in the pituitary and thyroid glands

and causes endocrine toxicity by altering HP thyroid/gonadal

axis (158). Cadmium and arsenic, among the most harmful

EDCs, adversely affect the endocrine by altering the secretion of

hormones (166).

Mercury inhibits pituitary gland LH and FSH secretion,

causing spermatogenesis and sperm count disruption in

males and ovar i an dys funct ion and dysregu la ted

menstruation in females (146). Both Cadmium and arsenic

exert xenoestrogenic effects on the interior part of the

pituitary gland and reduce LH secretion (167). Arsenic

causes neurological abnormalities, and increases mRNA

expressions of genes responsible for oxidative responses

thus, inducing oxidative stress and apoptosis (168).

Similarly, the combined exposure of Pb and cadmium

affects the LH and FSH levels in proestrus rats while Pb

exposure alone causes a reduction in the fluidity of the

pituitary membrane (94).
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7 Effects of MPs, NPs, and their
associated chemicals on the
adrenal gland

The adrenal gland is an essential endocrine gland located on

the top of the kidneys and composed of the adrenal cortex and

adrenal medulla that release hormones like cortisol, aldosterone,

epinephrine, and norepinephrine (169). Like the hypothalamus

and pituitary, we did not find any research-based analysis about

the direct consequences of MPs on the mammalian adrenal

gland, except the findings of Stojanović et al. (170) that have

identified an increase in the relative weight of rat’s adrenal gland.

However, in zebrafish, PS-NPs affect glucose homeostasis by

increasing cortisol secretion and such alternation in cortisol

levels causes behavioral changes by interfering with brain cells’

electrical activity that alters important molecules like

neurotransmitters, enzymes, and receptors (171).

Toxicological findings have recognized the adrenal gland as

the most sensitive organ to EDCs because of the critical role of

glucocorticoids secreted by the adrenal cortex in maintaining

homeostasis (172) (Table 9). EDCs may disrupt HPA (186),

which induces stress responses causing altered behavioral,

neuronal, and immune functions while other abnormalities

associated with disrupted HPA axis include anxiety, metabolic

disorders, and post-traumatic stress disorder [PTSD] (187).

BPA as EDC plays an essential role in the development of non-

functional adrenal incidentaloma [NFAI] (174) and causes

increased adrenal gland weight in offspring of both male and

female rats when exposed to food containing BPA of 25mg/kg
TABLE 8 The effects of [MPs] additives on the mammalian pituitary gland.

Endocrine
disrupter

Species Harmful effects References

Phthalates Rats Altering levels of GnRH, LH, and FSH, increases corticosterone and ACTH levels (68)
(142)
(85)

Bisphenols Rats Effect the pituitary directly by altering its response to TRH released by the hypothalamus (153)

PBDEs Rats Significantly alter TH balance at multiple stages of HPT-axis thereby, disrupting normal HPT-axis, and exerting
its carcinogenic effects in the pituitary of male rats and the uterus of female rats

(154)
(155)

TBT Rats Decreased secretion of GnRH and LH. (144)

HBCD Rats degeneration of the adrenal cortex (59)

Organophosphate Rats Decreases fertility by affecting the pituitary gonadotrophins, Cortical hypertrophy of zona fasciculate (156)
(157)

Mercury Human Inhibits LH and FSH secretion, menstruation disorders, Leydig cells deformation, impaired follicular
development

(158)
(159)

Lead [Pb] Rats Suppressed serum FSH (160)

Chromium Rats Increased superoxide dismutase activity in the anterior pituitary, oxidative stress in the pituitary gland (135)

Cadmium Rats Decreased circulating levels of LH and FSH (161)
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(173). BPA causes high level of plasma corticosterone by elevating

steroidogenic acute regulatory protein [StAR] concentration (174)

and altering adrenal cell proliferation through ERb and Sonic

Hedgehog Signaling [SHH], activating cyclin D1 and cyclin D2

(188). BPA also reduces the immunoreactivity of smooth muscle

actin [SMA] in smoothmuscles of the adrenal capsule and alters the

immunoreactivity of adrenal contractile proteins in rats (189). It has

been observed that BPA induces a considerable increase in the

adrenal index, vascular congestion, cellular destruction, reduced

antioxidant enzymes, and decreased expression of vimentin

proteins as well as alpha-smooth muscle actin (189). DEHP as an

essential plasticizer is associated with decreased expression of

angiotensin II in the adult adrenal gland, reducing aldosterone

levels (172). Postpartum exposure to 300 mg/kg of DEHP

significantly reduced corticosterone levels while 500 mg/kg of

DEHP increases corticosterone and ACTH levels and 10 mg/kg

of DEHP triggers glucocorticoid receptor [GR] in the HPA axis,

resulting in anxiety-like behavior in premature rats (175). PBDEs,

such as 4-bromodiphenyl ether [BDE3] increased the level of serum

aldosterone and corticosterone (176). BDE3 up-regulates Cyp11b1

expression and causes AMPK signaling disruption by decreasing its

phosphorylation in rats exposed to 200mg/kg of BDE3 (176). TBT

is an oxidative endocrine disrupter, which increases intracellular
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storage (177) and causes the accumulation of lipids and cholesterol

in adrenal cells, which results in weakened cholesterol utilization

and increased cholesterol levels (178). Organophosphates like

isopropylated triphenyl phosphate [IPTPP] cause hypertrophy of

the adrenal cortical in zona fasciculate and increase the relative

weight of the adrenal gland (156).

Nonyl phenols and octylphenol derived from ethoxylates

(190) act as an ED, damaging the endogenous estrogenic cascade

in the adrenal gland. Nonylphenol causes adrenal disruption by

decreasing the noradrenaline cells leading to lethargy and

altering stress response in the body (28). While octyl phenol

causes changes in the regions of the cortex medulla, cytoplasmic

decomposition in cortex cells, and hemorrhage in the tissue

interface of pregnant rats (179). DDT, a widespread ED causes

cell atrophy and degenerative effects in the adrenal cortex mainly

in the zona fasciculate and zona reticularis (191). DDT can bio-

accumulate in the thymus, brain, and even in adipose tissue, and

induces impairments of both cortex and medulla of the adrenal

gland, disrupting hormonal secretion in cortical and chromaffin

cells as well as suppressing the thyroxine hydroxylase production

in chromaffin cells (191).

The adrenal gland is also vulnerable to heavy metals like

mercury, cadmium, cobalt, and copper that affect the zona
TABLE 9 The effects of [MPs] additives on the mammalian pituitary gland.

Endocrine dis-
rupter

Species Harmful effects References

BPA Rats Increases the adrenal gland weight in offspring
Stimulates a high level of plasma corticosterone by elevating steroidogenic acute regulatory protein (StAR)
concentration
Exerts adverse consequences on adrenal cell proliferation through ERb and SHH signaling mechanism,
activating cyclin D1 and cyclin D2

(173)
(174)

Phthalates Rats Results in decreased expression of angiotensin II in the adult adrenal gland, reducing aldosterone levels (172)
(175)

PBDEs Rats 4-bromodiphenyl ether (BDE3) increases serum aldosterone and corticosterone levels.
It also up-regulates Cyp11b1 expression and causes AMPK signaling disruption by decreasing its
phosphorylation

(176)

TBT Mice Increases intracellular storage and causes the accumulation of lipids and cholesterol in adrenal cells, which
results in weakened cholesterol utilization and increased cholesterol levels

(177)
(178)

Organophosphates Rats Isopropylated triphenyl phosphate [IPTPP] causes hypertrophy of the adrenal cortical and increased relative
weight of the adrenal glands

(156)

Phenols Rats Damages the endogenous estrogenic cascade in the adrenal gland, cause changes in the regions of the cortex
medulla,
Causes cytoplasmic decomposition in cells of the cortex and hemorrhage in the tissue interface

(179)

DDT Rats Decreased level of catecholamines, norepinephrine, and epinephrine,
Impaired aldosterone secretion, reduced the size of zona glomerulosa

(180)
(181)

Mercury Human Alter the metabolism of catecholamines in the medulla of the adrenal gland leading to an elevated level of
plasma nor-adrenaline with aging, pathogenesis of hypertension, and metabolic syndromes. lower
corticosterone level

(182)
(183)

Chromium Rats Increased adrenal D53b-hydroxysteroid dehydrogenase [HSD] activity, adrenal weight, and serum
corticosterone level

(184)

Nickel and cobalt Rats Increased mass of fascicular zone and secretion of glucocorticoids (185)
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glomerulosa of the rat adrenal gland (192) and dysregulate HPA

axis, altering the hormonal secretion of corticosterone in

response to various stressors and interfering with steroid

hormones metabolism (183). Among these toxic metals,

mercury alters the metabolism of catecholamines in the

adrenal medulla, leading to an increased level of plasma nor-

adrenaline with aging. Its chronic exposure is associated with the

pathogenesis of hypertension and metabolic syndromes (183).
8 Conclusion

The abundance and distribution of MPs derived from plastic

degradation across the globe are so extensive that we can claim

of living in a plastic world. Endocrine toxicity induced by MPs is

an emerging issue, despite the subject being rarely documented,

there is growing evidence for ingested MPs bioaccumulation in

mammalian tissues and organs with deleterious outcomes

including endocrine abnormalities, reproductive toxicity, gut

microbiota dysbiosis, and defective immunological responses

in rodents, rats and mice. Various EDCs or toxic chemicals

present in plastic as an additive or adsorbed by MPs enter the

body easily, acting as agonists or antagonists for a wide range of

hormonal receptors, and induce endocrine toxicity. The

identification of adverse consequences of MPs on the

mammalian endocrine system is a great challenge due to their

rising levels in both terrestrial and aquatic ecosystems. However,

there are still no conclusive research reports that have

determined the direct consequences of MPs and NPs on the

hypothalamus, pituitary, and adrenal gland. So further research

studies are essential to be performed to determine the potential

hazards of MPs and NPs to regulate laws that reduce exposure to

these small plastic particles.
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90. Massányi P, Massányi M, Madeddu R, Stawarz R, Lukáč N. Effects of
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