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Osteoarthritis (OA) is an age-related chronic progressive degenerative disease

that induces persistent pain and disabilities. The development of OA is a

complex process, and the risk factors are various, including aging, genetics,

trauma and altered biomechanics. Inflammation and immunity play an

important role in the pathogenesis of OA. JAK/STAT pathway is one of the

most prominent intracellular signaling pathways, regulating cell proliferation,

differentiation, and apoptosis. Inflammatory factors can act as the initiators of

JAK/STAT pathway, which is implicated in the pathophysiological activity of

chondrocyte. In this article, we provide a review on the importance of JAK/

STAT pathway in the pathological development of OA. Potentially, JAK/STAT

pathway becomes a therapeutic target for managing OA.
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Introduction

Osteoarthritis (OA), also known as degenerative arthritis or age-related arthritis, is a

chronic progressive joint disease. The main pathological features include subchondral

bone changes, inflammatory reactions, bone redundancy, and osteochondral

angiogenesis (1–3). The cartilage tissue that makes up the joint consists of the only

cell type and highly differentiated chondrocytes which maintain the homeostasis of the

articular cartilage by regulating the integrity and biological stability of the cartilage (4).

Importantly, chondrocytes are responsible for the synthesis of extracellular matrix

(ECM) that mainly includes collagen and proteoglycans, maintaining the stability and

integrity of the joint. The excessive death of chondrocytes and the consequent

degradation of ECM are the central features of cartilage degeneration in the

development of OA (5). It has also been suggested that the progression of OA is
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associated with the changes in biological actions of

chondrocytes, including the proliferation, senescence, and

apoptosis (6, 7).

As a multifactorial disease, OA is pathologically developed

with a very complex process, and the risk factors include, but not

limited to, aging, obesity, endocrine factors, genetics, trauma,

and altered biomechanics (8–10). Of which, the biological and

biomechanical factors have attracted the most interest in the

academic fields (10, 11). For example, the excessive mechanical

stress can induce biological alterations and apoptosis in

chondrocytes (12–15). Increased levels of inflammatory

cytokines are associated with inflammatory and immune

responses in the joint cavity, causing alterations in the synovial

membrane, muscles and cartilage (16–19). Current research

suggests that cartilage damage is caused by a disrupted balance

between the catabolic and anabolic capacities of chondrocytes

(20, 21). Inflammatory responses are considered to be

pathologically involved in this process, particularly in the early

stage of OA (18). It has been shown that inflammatory synovitis

is associated with damage in the cartilage (22). The stimulation

of pro-inflammatory cytokines disrupts cartilage homeostasis

and promotes the catabolism or degradation of cartilage (23).

The main therapeutic strategies for OA are to reduce pain

and improve joint functions, enhancing the patient’s quality of

life (24). Currently, physiotherapy, weight loss, non-steroidal

anti-inflammatory drugs (NSAIDs), and hyaluronic acid (HA)

injections are available for symptomatic relief in the early stages,

and total joint replacement is often used for end-stage OA (25,

26). However, no cure strategies are available. This embarrassing

situation might be due to the inexplicitly of the underlying

molecular mechanisms in mediating the pathogenesis and

progression of OA. The screening of specific therapeutic

targets and the drug exploration for treating OA have become

the challenge issues to be resolved.
JAK/STAT signaling pathway

Janus kinase (JAK)/signal transducer and activator of

transcription (STAT) is an evolutionarily conserved signaling

pathway, which can be stimulated by a variety of cytokines,

interferons, growth factors, colony-stimulating factors, hormones,

and other related molecules (Figure 1). Tyrosine kinase-associated

receptors are the receptors located in cell membrane to specifically

interact with cytokines or growth factors and then induce the

activation of JAK by phosphorylating the tyrosine residues. Notably,

this signaling pathway may accomplish signal transduction from

extracellular factors to the nucleus (27, 28). It has been

demonstrated that JAK/STAT signaling pathway is involved in

many important physiological activities, such as cell proliferation,

differentiation, immune regulation, and apoptosis (29–31).

JAK is a class of non-transmembrane tyrosine kinases in the

JAK family consisting of JAK1, JAK2, JAK3, and Tyk2. Of
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which, JAK3 is mainly expressed in hematopoietic cells, while

the other three are widely expressed in vivo (28, 32). The JAK

molecule contains approximately 1000 amino acid residues and

has seven internal homology domains (JH1-JH7) that form four

distinct structural domains: a N-terminal FERM structural

domain, a SH2 structural domain, a pseudokinase structural

domain, and a protein tyrosine kinase structural domain. JH1

and JH2 are at the C-terminal, and JH3-7 is at the C-terminal.

The kinase domain in each JAK is at JH1, and the pseudokinase

structural domain is at JH2. The SH2 structural domain and

FERM structural domain are at JH3-5 and J5-7, respectively (27).

STAT is a downstream target of JAKs and has seven

members: STAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b,

and STAT6. The STAT protein mainly consists of a conserved

N-terminal sequence, a DNA-binding region, a SH3 structural

domain, a SH2 structural domain, and a C-terminal

transcriptional activation region (TAD). The N-terminal

structure is conserved and plays an important role in the

phosphorylation and dimerization of STAT, while the C-

terminal transcriptional activation region with conserved

phosphorylated serine and tyrosine may recruit transcriptional

activators to enhance the transcriptional activity by binding to

the DNA binding region. The SH2 domain is also highly

conserved in sequence and is a target of most STAT inhibitors.

In addition, the SH2 domain possesses the sequence

“GTFLLRFSS”, which is identical to the core sequence in the

SH2 domain of the tyrosine kinase Src and contributes to

protein-protein interactions (33, 34).

As one of the most important signaling pathways, JAK-

STAT facilitates cytokine-mediated cell activation in a very

simple and effective manner by eliciting a response to

complete transmembrane receptor-to-nucleus signaling.

Specifically, the various cytokines bind to their specific surface

receptors and form dimers, which subsequently phosphorylate

JAK kinase and then recruit the STAT protein. Phosphorylation

and activation of STAT facilitate to detach from the receptor

complex. Finally, STAT-STAT forms dimer, which is

translocated into the nucleus for transcriptional regulation by

binding to the specific DNA fragments. However, activated

STAT dimers are dephosphorylated and inactivated after they

conduct their functions in the nucleus, before being transported

to the cytoplasm (27, 35).

Interestingly, the regulation of JAK-STAT signaling pathway

in transcriptional outcome exhibits a great plasticity, due to the

involvement of a broad set of intrinsic conditions. These include

selectivity arising from the differential sensitivity of genes to

STAT, interactions with other transcription factors, genomic

competition, and the heterologous STAT signaling. Different

STATs have their own regulatory pathways and physiological

roles. For example, STAT1 is involved in antiviral and

antibacterial responses, growth inhibition, apoptosis

stimulation, and tumor growth inhibition (36–39). STAT2 has

been reported the antiviral, immunomodulatory, antiapoptotic,
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and antiproliferative effects (40). In addition, STAT2 can also

affect the functions of STAT3 by interacting with IL-6, thereby

influencing cell proliferation and apoptosis (41). STAT3 can be

activated by a number of cytokines. The most representative of

which is IL-6, which induces a reduction in nuclear export

signals and leads to nuclear aggregation of STAT3 (34).

Meanwhile, STAT3 binds to the promoter of IL-6 and increase

its expression, creating a positive feedback loop in the IL-6/JAK/

STAT3 pathway (42).

STAT3 can also be activated by other pathways, such as

hormones (growth hormone, prolactin, and leptin), growth

factors (EGF, PDGF, FGF, and IGF), receptor-related kinases

and non-receptor tyrosine kinases (Src and ABL), and Toll-like

receptors. It has been reported that STAT3 can inhibit apoptosis

and promote cell survival, and STAT3 deletion may lead to

embryonic death (43–45). Consistently, transient STAT3

activation restores tissue integrity and promotes wound healing.

However, sustained STAT3 activation is associated with

mitogenesis, anti-apoptosis, metastasis and carcinogenicity (34).

STAT3 regulates the transcriptional processes of downstream

target genes through the regulation of growth factors. Activated

STAT3 promotes tumor proliferation by increasing the expression

of cyclin D1 and c-Myc and stimulates cell survival by enhancing

the expression of Bcl-2, surviving, and Bcl-XL (34). STAT5 also

plays an important role inmaintaining intracellular organelles and

regulating cell proliferation, cell differentiation, and survival in

progenitor B and T cells (46). STAT5 up regulates the activity of
Frontiers in Endocrinology 03
PI3K/PTEN and HIF-1a signaling pathways, inhibits DNA

damage, and protects against cell apoptosis, as demonstrated by

down regulation of miRNA15/16 and up regulation of Bcl-2,

MCL-1, and Bcl-XL expression (34).
The implication of JAK/STAT
pathway in OA inflammatory and
immune responses

Inflammation plays an important role in OA pathogenesis.

Pro-inflammatory factors such as tumor necrosis factor (TNF)-

a, IL-1b, and IL-6 exhibit complex regulatory functions in OA

development (47–49). For example, IL-1b induces the

production of pro-inflammatory cytokines, such as IL-6, which

promote catabolism and inhibit articular cartilage anabolism

(50, 51). TNF-a can mediate the activation of matrix

metalloproteinases (MMPs), which present in the ECM and

promote cartilage destruction (52, 53). IL-6 activates MMPs and

ADAMTSs, which are currently considered to be the major

mediators of catabolism, altering the metabolic balance of

chondrocytes and promoting cartilage degradation (54–57).

Apoptosis is a tightly regulated process of programmed cell

death. Apoptotic signaling pathways have been implicated in the

development of OA. Pro-inflammatory factors, such as IL-1b,
have been shown to induce apoptosis in chondrocytes, and
FIGURE 1

JAK/STAT pathway can be stimulated by various cytokines. A lot of extracellular cytokines, such as IL-6, IL-4, and IL-10, can interact with the
specific receptors, which phosphorylate JAKs and recruit STAT. Activated STAT forms dimer and enter the nucleus for mediating the
transcriptional expression of target genes, such as inflammatory cytokines.
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higher levels of IL-6 in the serum and synovial fluid are

correlated with OA progression (58–60). Reduced blood levels

of IL-6 and IL-17 cytokines can ameliorate inflammatory events

associated with OA (61). Pro-inflammatory cytokines, such as

IL-6, can be the stimulators on JAK/STAT pathway. Thus, JAK/

STAT pathway plays an essential role in the regulation of

apoptosis, and it is closely associated with inflammation in the

progression of OA (Figure 2).

IL-6 has been shown to induce JAK/STAT signaling pathway

in multiple systems. The progression of OA is likely to be

inextricably linked to IL-6/JAK-STAT pathway (62–64). In

addition to IL-6, similar regulatory effects can be achieved by

other inflammatory factors, such as TNFa, IL-4, IL10, IL13,
IL17, and IL23. IL-4 has also been shown to exert anti-

inflammatory effects in chondrocytes (65), and the JAK/STAT

pathway is thought to play an important role in the regulation of

IL-4 signaling (66, 67). IL-4 induces CITED2 expression in

human chondrocytes via the JAK/STAT pathway, while

CITED2 plays an important chondroprotective role by

inhibiting MMP13 expression (68–71). Moderate mechanical

loading has a protective effect on cartilage and synovial

membranes. It has been found that the expression of

phosphorylated JAK3 and STAT6 is increased by treatment

with the combination of IL-4 and mechanical loading,

suggesting that at least some of the combined effects of

inflammation and mechanical stress on cartilage and

synovium are mediated through the JAK/STAT pathway (66).

Interaction of IL-10 with its two receptors IL-10R1 and IL-10R2

can activate JAK/STAT/SOCS signaling pathway (72). IL-23 can

interact with FLS in joint inflammation and bone destruction

with the assistance of STAT3 (73).
Frontiers in Endocrinology 04
Macrophages are the most abundant immune cells in

synovial joints and are the main innate immune effector cells

that trigger the initial inflammatory response during the

pathology of OA (74). In macrophages, full-length lipocalin

induces the M2 phenotype via IL-4/STAT6/HO-1, reduces the

sensitivity of macrophages to TLR4 ligand stimulation, and

increases M2 markers (75). STAT1 and STAT3 have been

shown to influence inflammatory responses in macrophages

(76). Meanwhile, IL-13 and IL-4 were found to activate the

M2 phenotype by activating the JAK2/STAT3 signaling

pathway, with IL-4 phosphorylating STAT3 and STAT6 and

up-regulating the DNA binding activity of STAT3, and IL-13

initiating the Tyk2 cascade of STAT1 and STAT6 and increasing

the DNA binding activity of STAT1 (77). IL-6 can also activate

the M1 phenotype of macrophages via the JAK2/STAT3

signaling pathway (78, 79). In previous studies it has been

found that there is some overlap between OA and RA patients

with elevated inflammatory factors such as TNF-a, IL-1b, IL-6
(80–84).

Study has been shown that elevated M1/M2 ratio in

macrophages is highly correlated with OA severity (85).

Classically, activated M1 macrophages are associated with a

high production of pro-inflammatory factors as well as

chemokines, including IL-1, IL-6, IL-12, IL-23, and TNF-a.
Excessive inflammatory responses can cause cartilage damage

and destruction, induce joint pain, and aggravate OA

progression (86). On the contrary, M2 macrophages may leads

to down regulation of IL-12, IL-23, IL-1, IL-6, and TNF-a,
triggering anti-inflammatory and immunosuppressive responses

and playing a role in pathogen clearance, wound healing, tissue

remodeling, and immune regulation. Potentially, enhancement
FIGURE 2

The implication of JAK/STAT pathway in the pathological development of OA. Active JAK/STAT pathway may induce the pathological
development of OA by regulating inflammation, immune responses, mechanical loading, and apoptosis, leading to cartilage destruction,
subchondral bone destruction, and synovial inflammation.
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of M2 macrophages can counter the pathological changes of OA

(87). STAT6 activation and nuclear translocation contribute to

the polarization of M0 into M2macrophages (88). One study has

been shown that quercetin can ameliorate ECM degradation in

OA models by down regulating STAT6 signaling in a time-

dependent manner, promoting M2 macrophage production, and

inhibiting inflammatory responses (89). Squid Type II Collagen

(SCII) has also been found to promote the polarization process

towards M2 macrophages by negatively affecting the

phosphorylation of STAT6 and the nuclear translocation of p-

STAT6 in OA cartilage (87). Thus, increasing the number of M2

macrophages, reducing the proportion of M1 macrophages, and

interfering with STAT6 activation may result in improvement of

cartilage homeostasis and OA development. However, more

efforts are still needed on this issue.
JAK/STAT pathway participates
cartilage remodeling

The pathological development of OA involves the

remodeling of subchondral bone (90–92). There is also

evidence that aberrant activity of transforming growth factor-b
(TGF-b) in subchondral bone can induce abnormal recruitment

of mesenchymal stem cells (MSC), leading to development of

subchondral osteosclerosis (92). The subchondral bone and

articular cartilage work together to coordinate joint stress and

maintain joint stability, and their interaction is inextricably

linked to the occurrence and development of OA (3, 93–95). It

is possible to counteract OA through the protection of

subchondral bone. The levels of MMP isoforms in synovial

fluid and subchondral osteocytes were significantly elevated in

patients with OA (96). CDC42 may cause deterioration of

subchondral bone and induce cartilage degradation through

JAK/STAT activation (97). In addition, muscle loss can be

related to anabolic resistance in OA, where muscle wastage

disrupts joint homeostasis (98, 99). STAT3, a muscle

transcription factor, has been shown to be associated with

joint dysfunction in OA patients (100). This suggests that

JAK/STAT may also affect joint homeostasis in terms of

subchondral bone and muscle loss (Figure 2).

A study has been shown that JAK2/STAT3 pathway is

involved in the reduction of collagen II in chondrocytes (101).

In addition, JAK/STAT3 activation in chondrocytes can be

induced by IL-1b, which promotes MMPs expression (102,

103). JAK3 expression is also up regulated in mechanical

loading-treated and IL-4-treated chondrocytes (66). A study

suggests that CXCL8 and CXCL11 may be involved in

apoptosis and inhibit the proliferation of primary

chondrocytes through up regulation of phosphorylated STAT3

expression (104). A series of studies have been demonstrated the

possibility of inflammatory factors regulating the OA process
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through the JAK/STAT pathway, providing a possible direction

for the development of targeted drugs. It has been shown that

TGF-b1 can protect chondrocytes from IL-6 catabolism by

limiting STAT3 phosphorylation and blocking SOCS3

induction (105). In addition, the formation of a complex

between Smad3 and STAT3 might be involved in the

pharmacological activity of activated TGF-b1 in protecting OA

chondrocytes (106, 107). TGF-b also induces hypertrophic

differentiation of chondrocytes during OA progression with a

possible mechanism of potentiating STAT3 expression (108).

JAK/STAT pathway has been involved in the promoting

effects of IL-6 in up regulating the expression of MMP1,

MMP3, and MMP13 in human chondrocytes (109, 110).

Consistently, JAK1/STAT3 activation and interaction with

ERK pathway in bovine articular chondrocytes is associated

with loss of matrix (55). In DMM-induced mice OA models,

STAT3 and ERK1/2 expression are activated in cartilage, and

inhibition of IL-6/STAT3 signaling suppresses ECM

remodeling and osteophyte formation (57). In addition,

JAK2/STAT3 can stimulate the nuclear translocation of NF-

kBp65, up regulate NF-kB pathway, trigger the expression of

RANKL, and increasing the expression of MMP-3 and MMP-9

in arthritis cartilage (111). In intervertebral disc chondrocytes,

IL-21 may increase the expression of STAT-1, STAT-3, and

STAT-5b and promote the expression of MMP-13 and

ADAMTS-7, leading to the degeneration of intervertebral

disc. Treatment with STAT3 inhibitor AG490, the expression

of MMP-13 and ADAMTS-7 is down regulated, and the

degenerative activity of intervertebral disc is ameliorated

(112). These suggest the roles of JAK/STAT pathway in

mediating cartilage remodeling, which is associated with the

expression of ECM degrading enzymes.
The roles of SOCS/JAK/STAT in the
development of OA

SOCS family contains seven members, including SOCS1,

SOCS2, SOCS3, SOCS4, SOCS5, SOCS6, and SOCS7. SOCS

protein consists of a N-terminal binding domain, a SH2 domain,

and a proteasome-interacting and ubiquitin-associated SOCS

box domain. SOCS1-3 provides a feedback regulation of

cytokine signaling via the JAK/STAT pathway (113). SOCS1

and SOCS3 may inhibit the activity of JAK1, JAK2, and TYK2,

but not JAK3. SOCS 4-7 regulates growth factor receptor

signaling (27). Activated STATs may promote SOCS gene

transcription, and the interaction between SOCS and

phosphorylated JAK or JAK receptors may block JAK/STAT

pathway (114). For example, the binding of SOCS1 to JAK3 can

inhibit gp130-mediated pathway and negatively regulate STAT

(115, 116). Similarly, SOCS3 can inhibit the phosphorylation of

both JAK and STAT3, blocking the stimulation of JAK-STAT3
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pathway (34, 35). This suggests the possibility of SOCS as a

therapeutic target for OA.

The negative effects of SOCS against JAK/STAT in the

pathological development of OA have been discussed recently

(117). The involvement of SOCS3 has been demonstrated in the

attenuation of carboxymethyl chitosan-induced inflammatory

responses in chondrocytes by inhibiting IL-10 (118). TGF-b1
protects chondrocytes against IL-6-induced catabolism by

mediating SOCS3/STAT3 (105). The accumulation of AGEs in

the joints has been associated with weakness and stiffness. AGE-

mediated activation of MMP-13 and reduction of type II

collagen and proteoglycan can be attenuated by blocking JAK/

STAT signaling (101, 119). Silencing of TBK1 down regulates

ADAMTS-4, MMP3 and MMP13 expression while up regulates

SOX9, collagen II, and aggrecan expression, thereby attenuating

ECM degradation and cartilage degradation. These effects can be

counteracted by pcSTAT3 (120).

It has been shown that leptin can promote the expression of

IL-6, MMP-1, MMP-3, and MMP-13 and decrease the

expression of SOCS3. Knock down of SOCS3 can induce

inflammatory responses and enhance leptin-mediated MMP-3

expression in OA chondrocytes (121). In addition, oncostatin M

(OSM) induces inflammatory responses, which is highly

associated with IL-6 and orchestrated by gp130 in

chondrocytes . SOCS3 can restrain gp130-mediated

transcriptional alterations in inflammatory activity in

chondrocytes (122). In SOCS3 knock-out mice, reduced

proliferative chondrocytes and decreased proliferative zone

width in the growth plate are observed. This pathological

change might be associated with altered expression of FGFR3-

mediated MAPK signaling pathway in chondrocytes (123).

Furthermore, FGFR3 activation stimulates the expression of

STAT1 and MAPK, and prolonged STAT1 activation induces

a dysregulated response in chondrocytes proliferation. SOCS3

may mediate FGFR3 pathway by decreasing downstream MAPK

expression, preventing inhibition of chondrocyte proliferation

(123, 124).
The involvement of microRNA
in the regulation of JAK/STAT
pathway in OA

Gene modification to affect protein expression is also a novel

therapeutic strategy. CircRNA can influence the transcription of

miRNAs and thus the expression of downstream mRNAs, with

implications for the disease process (125). MiR profiling also

revealed differential expression between OA and other diseases.

This suggests that they may serve as prospective diagnostic markers

and therapeutic targets for OA (126). A series of related studies

have provided a degree of evidence for the therapeutic effects. For

example, circRNA_0092516 deletion promotes chondrocyte
Frontiers in Endocrinology 06
proliferation through the miR-337-3p/PTEN axis and impedes

apoptosis, thereby improving OA (127). JAK/STAT is associated

with the expression miR-224 in osteogenic differentiation.

Conversely, miR-224-5p can also promote cartilage degradation

and aggravate OA by activating JAK2/STAT pathway (128, 129).

miR-149-5p has been shown to be an early biomarker of OA, and

JAK inhibitors exhibit therapeutic effects against OA through

inhibiting the expression of miR-149-5p (130). LOC101928134

inhibits synovial proliferation and cartilage destruction in OA rats

by inactivating JAK/STAT pathway (131).

MiR-149/JAK1/IL-6/TNF-a axis plays a key role in

maintaining joint tissue homeostasis. Specifically, miR-224-5p

activates JAK2/STAT pathway by targeting CCL2, thereby

promoting cartilage degradation and exacerbating symptoms

in OA patients (129). In contrast, tofacitinib (a JAK inhibitor)

affects miR-149 expression in C28/I2 cells and inhibited JAK/IL-

6/TNF-a pathway, reducing arthritis scores and bone

degradation in mice (130). ZNF667-AS1 has been reported to

increase cell proliferation and suppress IL-6, IL-17, and TNFa
expression in LPS-treated chondrocytes by inactivating JAK/

STAT signaling pathway. miR-523-3p can specifically interact

with ZNF667-AS1 and abolish its inhibitory effects on JAK/

STAT signaling pathway (132). miR-223 can enhance LPS-

induced inflammatory responses by activating the activity of

JAK2/STAT1 pathway in intervertebral disc chondrocytes,

increasing the expression of MMP-3, and promoting ECM

degradation (133). Bioinformatics analysis has been reported

that hypoxic treatment can increase the repairment of OA

cartilage by promoting the proliferation and migration and

suppressing the apoptosis of chondrocytes through miR-18/

JAK/STAT pathway (134).
Future perspectives

IL-6 and its soluble receptor sIL-6R can promote cartilage

degradation through the induction of ADAMTS-4, ADAMTS-5/

11, MMP-1, MMP-3, and MMP-13, which might be regulated by

STATs (109, 135). Conversely, disruption of IL-6/sIL-6R

binding may decrease the expression of MMPs, reduce the

degradation of ECM, and thus alleviate the progression of OA.

Inactivated IL-6 gene completely can protect mice from

collagen-induced arthritis or delay the onset or reduce the

severity of the pathological process (136, 137). In addition,

rhIL-6 activates STAT3 in C-28/I2 chondrocytes and increases

MMP production, which may be associated with the degradation

of ECM and the destruction of articular cartilage (138).

Treatment with anti-mouse IL-6R antibody also inhibits the

development of arthritis in DBA/1J mice and protects the knee

joints from damage (139).

It has been demonstrated that JAK inhibitors can maintain

joint tissue homeostasis by modulating the effects of IL-6 (130).
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JAK/STAT pathway has been involved in the pathological

changes of both OA and RA. There is a rationale and clinical

significance for the development of therapeutic agents for OA

via JAK. Current anti-rheumatic drugs have been found to

modulate the activation of JAK/STAT pathway (140).

Blockade of either JAK2 or JAK3 reduces the expression and

enzymatic activity of MMP-13, ADAMTS-4, and ADAMTS-5

and prevents the reduction of collagen II (101). It has been

suggested that JAK inhibitors can also rescue chondrogenic

differentiation and promote cartilage regeneration by

stimulating the actions of mesenchymal stem cells (MSC)

(141). Similarly, the JAK inhibitor AG490 can inhibit JAK2/

STAT3 pathway, suppressing IL-1b-induced expression of

interferon regulatory factor 1 (IRF-1) and ameliorating the

course of OA (142). STAT3 expression is associated with joint

dysfunction and disability. It has been found that both JAK1 and

JAK2 inhibitors block TNF-a-induced STAT3 phosphorylation

and the binding of STAT3 to DNA (143).

Chinese medicine has been used for treating OA for a long time.

Many Chinese herbal medicines have been demonstrated the efficacy

against OA, but most of them are explained with unclear

mechanisms (144–146). By targeting JAK/STAT pathway, effective

herbal ingredients that can improve OA symptoms or even reverse

the process have been explored. Artesunate has been shown to

mediate osteoclast formation andOAprogression by inhibiting JAK/

STAT signaling and pro-inflammatory cytokine expression (147). In

addition, convallatoxin can promote apoptosis by regulating JAK2/

STAT3 andmTOR/STAT3 pathways in colorectal cancer cells (148).

Curcumin has also been found to promote apoptosis in

retinoblastoma through the regulation of JAK/STAT pathway

(149). B6, a naturally occurring compound, can interact with the

upstream kinase JAK2 via its FERM-SH2 structural domain to

induce apoptosis (150). Osthole may also promote apoptosis and
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inhibit the growth of gallbladder cancer cells by inactivating JAK/

STAT3 pathway (151). Acteoside (ACT) can inhibit IL-1b-induced
expression of inflammatory factors, such as IL-6, IL-12, and TNFa,
and apoptosis in chondrocytes by decreasing the expression of JAK/

STAT pathway (152). Although most of them are unknown to be

effective against OA development and what the exact mechanisms

are, they at least provide us with a large number of possible potential

therapeutic agents for OA management.
Conclusion

OA, a multifactorial disease with complex etiology, affects

joint’s functions throughout the body by inducing pain and even

physical disability. The current treatments for OA are mostly

symptomatic and lack an effective cure. It is therefore essential to

investigate the specific molecular mechanisms underlying the

pathogenesis of OA and to develop new therapeutic targets.

There is considerable evidence that JAK-STAT pathway plays an

important role in the development of OA. Pro-inflammatory

factors-associated JAK/STAT signaling pathway has been

demonstrated to be critical for orchestrating the inflammatory

responses in the pathological development of chronic

inflammatory diseases, such as OA. However, current

investigation has been focusing on unraveling the possible

molecular mechanism of JAK/STAT pathway in regulating OA

chondrocyte survival, apoptosis, repair activity and ECM

degradation. Perturbations in JAK-STAT pathway may result

in various pathological changes, which are crucial to many of

OA clinical aspects. JAK-STAT pathway as the critical mediators

of MMP gene expression. It is essential to detect the extent to

which JAK inhibitors alter the expression of MMP in

chondrocytes. Overall, JAK-STAT pathway promotes
FIGURE 3

The potential mechanism of JAK/STAT pathway in OA development. Inflammation factors, such as IL-6, IL-4, and TNFa, in the OA cartilage can
stimulate JAK/STAT pathway, which induces the destruction of OA cartilage, as shown by increased chondrocyte apoptosis and ECM
degradation.
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ADAMTS- and MMP-mediated ECM degradation and reduces

type II collagen expression in chondrocytes (Figure 3). It is

essential to seek effective strategy against JAK/STAT pathway,

which has become a therapeutic target for management of OA.
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