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Challenges in treatment of
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Congenital adrenal hyperplasia (CAH) due to 21a-hydroxylase deficiency

(21OHD) or 11b-hydroxylase deficiency (11OHD) are congenital conditions

with affected adrenal steroidogenesis. Patients with classic 21OHD and

11OHD have a (nearly) complete enzyme deficiency resulting in impaired

cortisol synthesis. Elevated precursor steroids are shunted into the

unaffected adrenal androgen synthesis pathway leading to elevated adrenal

androgen concentrations in these patients. Classic patients are treated with

glucocorticoid substitution to compensate for the low cortisol levels and to

decrease elevated adrenal androgens levels via negative feedback on the

pituitary gland. On the contrary, non-classic CAH (NCCAH) patients have

more residual enzymatic activity and do generally not suffer from clinically

relevant glucocorticoid deficiency. However, these patients may develop

symptoms due to elevated adrenal androgen levels, which are most often

less elevated compared to classic patients. Although glucocorticoid treatment

can lower adrenal androgen production, the supraphysiological dosages also

may have a negative impact on the cardiovascular system and bone health.

Therefore, the benefit of glucocorticoid treatment is questionable. An

individualized treatment plan is desirable as patients can present with various

symptoms or may be asymptomatic. In this review, we discuss the advantages

and disadvantages of different treatment options used in patients with NCCAH

due to 21OHD and 11OHD.

KEYWORDS
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11-hydroxylase deficiency (11OHD), treatment options, glucocorticoid treatment
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Introduction

Congenital adrenal hyperplasia (CAH) is a group of

autosomal recessive disorders with affected adrenal

steroidogenesis leading to impaired cortisol synthesis.

Consequently, the production of adrenocorticotropic hormone

(ACTH) is increased due to reduced negative feedback on the

pituitary gland. In most cases, CAH is caused by a deficiency of

21a-hydroxylase (21OHD) (1). In more rare cases, CAH is due to

a deficiency of other enzymes such as 11b-hydroxylase, 17a-
hydroxylase, or 3b-hydroxysteroid dehydrogenase (2). The

specific hallmark of 21OHD and 11OHD is impaired

production of cortisol and an elevation of the adrenal androgen

concentration. In patients with 21OHD, the conversion of 17-

hydroxyprogesterone (17-OHP) to 11-deoxycortisol is impaired,

resulting in elevated levels of 17-OHP that is metabolized into 21-

deoxycortisol and adrenal androgens (Figure 1) (3). In patients

with 11OHD, the conversion of 11-deoxycortisol to cortisol is

impaired resulting in increased levels of 11-deoxycortisol and

adrenal androgens (Figure 1).

In this review, we focus on the description of 21OHD with a

short separate section about 11OHD.

The severity of the disease and clinical presentation of

21OHD depends on the residual enzymatic activity (Figure 2)

(4). Although the clinical spectrum is a gradual scale, 21OHD is

historically classified into three groups. In the classic salt-wasting

(SW) form, there is a (near) complete loss of enzymatic activity

(< 1%) leading to a complete deficiency of both cortisol and

aldosterone. The aldosterone deficiency in SW patients leads to
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neonatal salt loss which might be fatal if not recognized and

treated. A residual enzymatic activity of 1 – 2%, referred to as the

classic simple virilizing (SV) form, is needed to produce sufficient

aldosterone and prevent salt wasting (3). Patients with a residual

21a-hydroxylase activity of 20-50% have a less severe phenotype

and are grouped as non-classic CAH (NCCAH) (5).

In many countries, patients with classic 21OHD are

diagnosed early in life by neonatal screening programs

incorporating the measurement of 17-OHP concentrations in

dried blood spots. However, in NCCAH patients, basal 17-OHP

levels are generally not markedly elevated. CAH can also be

diagnosed by the quantification of elevated adrenal steroids in

serum taken before and after ACTH stimulation. In addition,

genotyping can be performed to confirm the diagnosis in

suspected cases.

There is generally sufficient cortisol and aldosterone

production during basal conditions, although suboptimal

cortisol levels have been described in some NCCAH patients

after a stimulation test (6–9). The estimated prevalence of

NCCAH is 1 in 200-1,000 in the Caucasian population (10,

11) with a higher prevalence in specific ethnic groups such as

Ashkenazi Jews (12).

Due to the enzyme deficiency in both classic CAH and

NCCAH patients, the precursor steroids before the enzymatic

block increase and are partially shunted into the unaffected

adrenal androgen synthesis pathway leading to a variable degree

of increased adrenal androgen levels. In the SW and SV form,

prenatal androgen concentrations are higher possibly leading

to virilization of the external genitals in girls, already in utero.
FIGURE 1

Schematic overview of adrenal steroidogenesis. NCCAH patients with 21OHD have impaired 21a-hydroxylase activity (CYP21A2) and NCCAH
patients with 11OHD have impaired 11b-hydroxylase activity (CYP11B1). Precursor steroids prior to the enzymatic block increase and are shunted
into androstenedione that can be converted into testosterone and dihydrotestosterone in the gonads. Steroids depicted in a red box have
mainly glucocorticoid activity, steroids in a green box have mainly mineralocorticoid activity, and steroids in a blue box have mainly androgen
activity. DHEA, dehydroepiandrosterone; CYP11B1, 11b-hydroxylase; CYP11B2, aldosterone synthase; CYP17A1, 17a-hydroxylase/17,20-lyase;
CYP21A2, 21a-hydroxylase; HSD3B2, 3b-hydroxysteroid dehydrogenase type 2; OH-, hydroxy-.
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In NCCAH patients, androgen levels are lower compared to

classic patients, and symptoms of hyperandrogenism present

later in life. NCCAH patients may present with mild symptoms

such as premature pubarche, accelerated bone age during

childhood, acne in both boys and girls, and irregular

menstruation and/or hirsutism in women (Figure 2). However,

many patients are asymptomatic, especially adult males, because

testicular androgen production of adult males surpasses adrenal

androgen production (13). The clinical phenotype of female

NCCAH patients might resemble the phenotype of women with

polycystic ovarian syndrome, therefore, it can be challenging to

distinguish between these diseases (14).

There is a gradual scale in 21OHD phenotypes and there are

no specific cut-off values between classic and non-classic

21OHD. In general, treatment guidelines for classic CAH

patients recommend glucocorticoid treatment to substitute for

low serum cortisol concentrations and to suppress elevated

ACTH to lower adrenal androgen synthesis. However, for

NCCAH patients, general guidelines for monitoring and

treatment are scarce, and the evidence for recommendations in

guidelines is low (11, 15–17).

In this review, we will discuss the clinical aspects of NCCAH

patients in childhood, adolescence and adulthood. We will first

focus on patients with 21OHD and discuss the effect of

treatment on different clinical outcome measures. Thereafter,

we will shortly discuss patients with 11-hydroxylase

deficiency (11OHD).
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Cortisol production in NCCAH

Basal cortisol production

In contrast to classic 21OHD patients in which cortisol

production is significantly impaired, most patients with non-

classic 21OHD have basal cortisol levels within normal reference

ranges when measured by immunoassay (7–9, 18). It should,

however, be noticed that immunoassays are not free of cross-

reactivity to precursor steroids that are generally increased in

(NC)CAH patients leading to a possible overestimation of the

cortisol concentration. Therefore, liquid chromatography

tandem mass spectrometry (LC-MS/MS) should be used,

which is currently the gold standard for quantifying steroid

hormones, especially in patients with defects in the

steroidogenesis (11).

Oriolo et al. (18) measured cortisol in NCCAH patients by

LC-MS/MS in fasting serum taken between 8.00 and 8.30 am.

Interestingly, they reported mean (± SD) cortisol levels (383

nmol/L ± 183) that were not significantly different compared to

heterozygous carriers of 21a-hydroxylase mutations or women

with polycystic ovarian syndrome. In addition, Ueland et al. (19)

reported normal cortisol levels (median 346 nmol/L, range 140 –

771) in their cohort of NCCAH patients and heterozygous

carriers. Even the lowest reported cortisol level (140 nmol/L)

in this cohort of eight patients was within the range of the

control group (108 – 653 nmol/L) (20). The absence of
FIGURE 2

In NCCAH, different gene mutations can lead to decreased activity of the effected enzyme. Symptoms can present during childhood,
adolescence, and adulthood and are influenced by the residual enzymatic activity. Elevated androgen concentrations can lead to various clinical
symptoms (blue box). Side effects of supraphysiological glucocorticoid treatment are common (red box). Symptoms in the purple box occur due
to elevated androgens or glucocorticoid treatment.
frontiersin.org

https://doi.org/10.3389/fendo.2022.1064024
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Adriaansen et al. 10.3389/fendo.2022.1064024
biochemical cortisol deficiency is supported by two studies that

reported normal ACTH levels in NCCAH patients (7, 21),

indicating sufficient negative feedback from cortisol on the

pituitary gland.

These findings are in line with the clinical observations that

manifestations of cortisol deficiency are uncommon in untreated

NCCAH patients (7, 8). Stoupa et al. (8) reported that 33 out of

35 NCCAH pat ients (94 .3%) showed no s igns of

hypocortisolism under basal conditions. The remaining two

patients (5.7%) suffered from fatigue. These two patients were

sisters, and both carried the same genetic defects, namely a

V281L mutation and a large gene conversion, from which the

latter is a severe mutation.

As most NCCAH patients do not have decreased cortisol

production, suppletion with glucocorticoids is not

recommended and might even be potentially harmful as

glucocorticoids will suppress the pituitary-adrenal axis with

consequently the need to use stress dosing in situations of

illness. El-Maouche et al. (22) reported Addisonian crises in

NCCAH patients receiving hydrocortisone treatment. In

addition, Oliveira et al. (23) reported that 15% of their treated

NCCAH patients did have at least one episode of acute adrenal

insufficiency, while none of their untreated NCCAH

patients did.

In conclusion, NCCAH patients have normal basal cortisol

production. General treatment with glucocorticoids is not

recommended and may even lead to iatrogenic adrenal

insufficiency with a risk of developing an Addisonian

crisis (Figure 2).
Cortisol production during periods of
physical stress

During physical stress, such as sick days or surgery, ACTH

levels increase leading to increased production of cortisol, which

is necessary to modulate the immune response and maintain

adequate blood pressure (24, 25).

An ACTH stimulation test, in which cortisol and other

adrenal steroids are measured after ACTH administration, is

currently the gold standard to assess cortisol production in a

clinical setting. A suboptimal cortisol response is reported in

about 21-60% of NCCAH patients (6–9, 26). Nandagopal et al.

(7) and Stoupa et al. (8) reported no significant correlation

between the cortisol response to synthetic ACTH and the

genotype of the patients.

Nonetheless, symptoms of acute adrenal insufficiency during

periods of illness are seldomly reported in untreated NCCAH

patients (6–9). Bidet et al. (6) described a cohort of 161 untreated

NCCAH women (age range 13 – 52 years old) of whom two

(1.2%) experienced signs of acute adrenal insufficiency. One

patient had high fever for several days due to pyelonephritis and

the other patient suffered from repeated vomiting in the first
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trimester of pregnancy. Both patients survived without the

administration of hydrocortisone treatment. Nandagopal et al.

(7) described three out of eight NCCAH patients (aged 27, 49,

and 66) with a suboptimal cortisol response after ACTH

stimulation but without signs of acute adrenal insufficiency

during physical stress in their life, even though two of them

underwent surgeries, such as Cesarean section, cholecystectomy,

and bilateral ankle surgery. In addition, Karachaliou et al. (9)

described a cohort of 31 pediatric NCCAH patients of whom

seven (21.2%) had impaired cortisol levels after ACTH

stimulation. None of these patients experienced signs of acute

adrenal insufficiency during their life. These authors question

the necessity of stress dosing in NCCAH patients, even in

periods of severe stress. However, large cohort studies are

necessary to confirm this.

The lack of symptoms, even in patients with a suboptimal

cortisol response after ACTH, might be explained by several

hypothetical mechanisms:

Firstly, several other steroid hormones are able to bind and

activate the glucocorticoid receptor. The ligand binding domain

of the glucocorticoid and mineralocorticoid receptors are

structurally very similar and cross-reactivity of different

adrenal steroids has been demonstrated before (27). Actually,

corticosterone, an intermediate in the aldosterone synthesis

pathway, is known to have glucocorticoid effects (28) and is

the most important glucocorticoid in birds (29) and rodents

(30). Specific hydroxyl groups at positions 11, 17, and 21

enhance binding affinity with the glucocorticoid receptor and

subsequent glucocorticoid activity (31). Cortisol has a hydroxyl

group at these three positions and is known as the endogenous

steroid hormone with the greatest affinity for the glucocorticoid

receptor in humans. However, other steroids with only two out

of three hydroxyl groups can also have a glucocorticoid effect. In

21OHD, 17-OHP and 21-deoxycortisol are elevated (Figure 1).

This latter steroid hormone has a hydroxyl group at positions 11

and 17 and Engels et al. (32) reported that 21-deoxycortisol can

bind, translocate, and activate the glucocorticoid receptor in

vitro with a relative potency of 49% compared to cortisol. In

addition, 21-deoxycorticosterone, an 11-hydroxylated

progesterone molecule, can activate the receptor with a relative

potency of 23% compared to cortisol. During periods of physical

stress, ACTH increases to stimulate the adrenal cortex. Due to

the enzyme deficiency, steroids prior to the enzymatic block,

such as 21-deoxycortisol (33) and 21-deoxycorticosterone (34),

increase. These precursor steroids may partially compensate for

the insufficient cortisol response found in some NCCAH

patients and thereby prevent signs of cortisol deficiency.

Secondly, the total cortisol concentration that is generally

measured might give an inaccurate reflection of the biological

glucocorticoid activity. The total cortisol concentration consists

of the cortisol bound to proteins ( ± 90%), mostly corticosteroid

binding globulin, and unbound (i.e., free) cortisol. Only free

cortisol activates the glucocorticoid receptor (35–39). It has been
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reported that other steroid hormones, that are increased in

21OHD patients, such as testosterone, progesterone, 17-OHP,

and 21-deoxycortisol, can influence the binding of cortisol to

corticosteroid binding globulin (40–44), possibly increasing free

cortisol levels in NCCAH patients.

Lastly, polymorphisms in the glucocorticoid receptor have

been associated with differences in sensitivity (45), possibly

increasing the sensitivity in some NCCAH patients. Further

research is necessary to better understand individual differences

in glucocorticoid sensitivity and how we can implement this in

routine clinical CAH care.

In conclusion, a suboptimal cortisol response after ACTH

stimulation is reported in up to 60% of untreated NCCAH but

symptoms of an Addison crisis are not often reported. Therefore,

current guidelines recommend stress dosing in those patients

with a suboptimal ACTH test only in severe stress situations.
Growth

Untreated and poorly treated children with classic 21OHD

show accelerated growth, advanced bone age with early

epiphyseal fusion, and subsequently reduced final height due

to overproduction of adrenal androgens (46, 47). The effects of

adrenal androgens on (increased) bone maturation become

already relevant in the second year of life (48, 49). On the long

term, these androgens lead to premature epiphyseal closure

resulting in reduced final height.

In contrast, in untreated NCCAH patients, reported final

heights are within the normal range in most studies (6, 50–52),

suggesting that the elevated androgens in these patients do not

lead to significant growth reduction. However, one study by New

et al. (53) reported a final height below the target height in

untreated NCCAH patients. Mutation analyses were not

performed in this study, so it is unclear whether differences in

genotype could explain the discrepancy between the studies.

Einaudi et al. (54) reported that untreated pediatric NCCAH

patients with one of the two affected CYP21A2 mutations

classified as moderate or severe (e.g., Q318X, IVS2, or R356W)

showed a higher height SDS compared to patients with two

mutations classified as mild (e.g., V281L, P453S, or P30L). This

is probably due to the higher levels of androgens in the former

g r o u p l e a d i n g t o g r ow t h a c c e l e r a t i o n d u r i n g

childhood (Figure 2).

To avoid the unwanted effects of adrenal androgens on

growth, children with CAH are treated with glucocorticoids to

restore the negative feedback on the pituitary gland and

consequently decrease the overproduction of adrenal

androgens . Most ly , supraphys io log ica l dosages of

glucocorticoids are necessary to reach this goal (55), especially

during puberty, because cortisol pharmacokinetics changes in

this period resulting in increased cortisol clearance (56). The

estimated endogenous cortisol production is 5.3 – 7.4 mg/m2/
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day (57–60), while recommended dosages for pediatric CAH

pat i en t s are 10 – 15 mg/m2/day . Unfor tunate ly ,

supraphysiological glucocorticoid dosages may suppress

growth in children as well and cause additional weight gain in

children and adults (Figure 2), especially when long-acting

glucocorticoids like prednisone or dexamethasone are used

(61–64). Therefore, finding a balance between over- and

undertreatment in CAH patients is often challenging and the

prescription of long-acting glucocorticoids should be avoided in

children (65).

There is no clear evidence that final height is significantly

decreased in NCCAH patients receiving glucocorticoid

treatment during childhood (47, 51, 66). Wasniewska et al.

(51) reported no significant difference in final height between

treated and untreated patients. In contrast, Eyal et al. (52)

reported reduced final height in NCCAH patients after

receiving hydrocortisone compared to untreated patients.

However, the group that received treatment during childhood

was diagnosed earlier than the untreated group. In addition,

there was a significant difference in genotype between the two

groups, the occurrence of two mild mutations was respectively

70% in the treated group versus 89% in the untreated group.

Furthermore, also heterozygous carriers were included in this

study, possibly causing an underestimation of the effect of

elevated androgens and glucocorticoids on final height.

Weintrob et al. (67) found that the age of initiation of

glucocorticoid treatment may also influence final height:

NCCAH patients in whom treatment was started at least one

year before the onset of puberty had a better height outcome

compared to patients who started treatment after the onset of

puberty. However, in the group of patients who started

treatment after the first signs of puberty, three out of eight had

precocious puberty, which might result in compromised final

height and may have influenced the results of this study.

Thus, phenotypic heterogeneity, as well as differences in

patient population and treatment regimens makes the

interpretation and comparison of the results less reliable.

Clinically, growth acceleration is often small in untreated

children with NCCAH (68). Bone age can be used as an

additional clinical parameter besides monitoring growth

velocity to evaluate the effect of adrenal androgens on growth

(54, 68). A progressive bone age acceleration may be an

indication to start glucocorticoid treatment, but careful

counseling about the advantages and disadvantages of this

treatment should be offered to patients and parents including

the need to use stress dosing. Glucocorticoid treatment can be

discontinued when final height is reached. Discontinuation of

glucocorticoid treatment in NCCAH patients decreases the risk

of long-term complications such as iatrogenic Cushing

syndrome with excessive weight gain (69).

In conclusion, negative effects of adrenal androgens in

untreated pediatric NCCAH patients are generally mild but

patients with more advanced bone age acceleration are
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described. Therefore, yearly follow-up of growth and bone age is

recommended. Glucocorticoid treatment should only be

initiated in children with NCCAH after careful counseling of

patients and parents and should be discontinued after reaching

the final height.
Puberty

Premature pubarche, defined as the presence of pubic hair

before the age of 8 years in girls and 9 years in boys (70), is the

most common symptom of androgen excess in prepubertal

children with NCCAH with an incidence of 55-92% (71–73).

Chronically elevated adrenal androgens can also increase the

GnRH pulse frequency in GnRH neurons (74) and can, thereby,

potentially activate the pituitary-gonadal axis leading to earlier

onset of puberty (71, 75–77). Puberty onset in NCCAH patients

is earlier compared to the average population (47, 67) but, in

general, within the physiological range. The age of puberty onset

is related to the genotype; compound heterozygous patients with

one severe mutation (e.g., Q318X, I2 splice, or I172N) and one

mild mutation (either V281L or P30L) tend to have an earlier

onset of puberty compared to patients with two mild mutations

(78). However, true central precocious puberty, defined as

activation of the hypothalamus pituitary gonadal axis leading

to breast development before the age of 8 years in girls or a

testicular volume ≥4 mL before the age of 9 years in boys, is only

seen in about 4-5% of untreated NCCAH patients (71).

Therefore, hydrocortisone treatment is not recommended to

prevent central precocious puberty.

In boys, a testes volume of ≥4 ml indicates an activation of

the gonadal axis with increased production of gonadal

testosterone (79). During puberty, testicular androgen

production greatly overshoots the adrenal androgens

production in boys and enduring suppression of androgens

seems unfavorable. Therefore, Merke et al. (69) recommend

discontinuation of glucocorticoid treatment at a testicular

volume of 8-10 mL (Tanner stage 3) when glucocorticoid

treatment is used to prevent early pubertal development.

In NCCAH girls treated with glucocorticoids, the age of

onset of puberty and menarche is reported as normal (23, 47, 54,

66, 67). One recent study (23) reported a significantly earlier age

of menarche in NCCAH patients compared to classic patients

but results are hard to compare as all classic patients were treated

with glucocorticoids, while 13% of the NCCAH patients were

untreated. However, the median age of menarche was still in the

normal range in both classic and NCCAH patients. Einaudi et al.

(54) described a correlation between age of menarche and

severity of the mutation between subtypes of NCCAH, but the

median age of menarche was within the normal range for all

subtypes. Approximately half of the female NCCAH patients

suffer from oligomenorrhoea (72) due to increased production of

adrenal androgens, which are aromatized to estrogens, and
Frontiers in Endocrinology 06
elevated adrenal progesterone production, both leading to

suppression of the hypothalamic-pituitary-gonadal axis (80).

Menstrual regularity can be achieved by oral contraceptives

with antiandrogenic effects (81).

In conclusion, premature pubarche is a common symptom

in NCCAH patients but central precocious puberty is rare and

hydrocortisone treatment to prevent precocious puberty is not

recommended. If central precocious puberty occurs,

hydrocortisone treatment can be started to improve final

height, but only after careful counseling.
Transition into adult care

Patients with NCCAH in adolescence and adulthood have

reached their final height and completed their pubertal

development. Therefore, other treatment goals are important

during these stages. Before transition into adult care it is

important to assure regular monitoring, education about the

disease and long-term follow up (82). Therewith, patients have

sufficient information about the disease and the treatment to be

self-dependent if necessary. In the next paragraphs, we will

discuss the different clinical parameters that should be

considered during adolescence and adulthood.
Bone health

Low (83–98), normal (99–105), and high (106) bone mineral

densities (BMD) are reported in studies in which both classic

and NCCAH patients were included. However, knowledge about

bone health in NCCAH patients is scarce because most studies

do not present data of NCCAH patients separately (84, 92, 93,

96, 97, 102). It is known that glucocorticoid treatment can

potentially affect bone health. If NCCAH patients use

glucocorticoids, dosages are usually comparable to the dosages

used in classic patients (55), so the long-term side effects of

glucocorticoid treatment are most likely similar. However, in

NCCAH, glucocorticoid treatment is most often initiated at a

later age, and before that time NCCAH patients are exposed to

androgens which is favorable for BMD (see below). This is also

illustrated in several studies where higher bone quality or BMD

is reported in NCCAH patients compared to classic CAH

patients (85, 89, 105, 107, 108). Finkielstain et al. (94) reported

comparable BMD between classic and NCCAH patients. In this

same study, older age was associated with lower femoral neck

BMD in classic CAH patients but not in NCCAH patients. This

might indicate that prolonged glucocorticoid treatment has a

negative effect on femoral BMD in classic patients but less in

NCCAH patients (94).

The inconsistency between studies may be due to differences

in the patients’ age of BMD determination. Besides, several

factors play a role in the bone health of NCCAH patients:
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Firstly, androgens stimulate osteoblast proliferation and

differentiation and inhibit osteoclast formation (109), thereby,

increasing BMD. This was illustrated by one study reporting

higher lumbar spine BMD SDS in classic CAH prepubertal

patients who did only receive glucocorticoid treatment for a

relatively short period (106).

Secondly, glucocorticoids have direct effects on bone

metabolism. They increase bone resorption by upregulation of

osteoclasts (110) and increase their life span (111). In addition,

glucocorticoids directly induce osteoblast and osteocyte apoptosis

which subsequently leads to decreased bone formation (112).

Furthermore, osteoblasts produce fewer vascular growth factors

during glucocorticoid treatment which inhibits bone

vascularization leading to bone necrosis (113). These

glucocorticoid effects have a negative impact on bone

formation, especially on trabecular bone (114) which is mainly

present in the vertebral bodies and epiphyses of long bones (115).

Thirdly, glucocorticoids have an indirect effect on BMD by

inhibiting calcium absorption in the gastrointestinal tract and

calcium reabsorption in the renal tubules (116).

Lastly, glucocorticoids decrease the concentration of

androgens (117), thereby attenuating the positive effect of the

increased androgen concentration on BMD in NCCAH patients.

It is generally known that glucocorticoids have potential

negative effects on BMD, also observed in patients who use

glucocorticoids for various reasons (114). Long-acting

glucocorticoids like dexamethasone and prednisolone have a

less favorable effect on BMD compared to short-acting

glucocorticoids like hydrocortisone (84, 118).

In general, the use of glucocorticoid treatment increases the

risk of fractures (119). A recent study from Falhammar et al.

(120) reported an increased frequency of fractures in classic

CAH patients but not in NCCAH patients. This is consistent

with the findings of another study that reported fewer non-

traumatic fractures in NCCAH patients compared to CAH

patients (108). However, when only major osteoporotic

fractures are considered, both forms of CAH had an increased

frequency ( ± 5% in NCCAH vs ±10% in classic CAH patients)

compared to the general population (120). This indicates that

glucocorticoid treatment has clinically relevant negative effects

on bone health. When glucocorticoid use is discontinued, the

fracture risk decreases (114, 119), indicating that the

glucocorticoid effects are reversible. If patients are untreated,

no routine dual-energy X-ray absorptiometry is necessary to

evaluate BMD. The Endocrine Society suggests screening for

BMD only in patients receiving high dosages of glucocorticoids

or who suffered from a non-traumatic fracture (11).

Besides the use of glucocorticoids, other risk factors like

smoking, low intake of calcium and vitamin D, and low physical

activity increase the risk of osteoporotic fractures (121). It is

essential to inform NCCAH patients about these risk factors to

preserve their bone mineral density and reduce the risk of

osteoporotic fractures later in life.
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In conclusion, treatment with glucocorticoids during

childhood can already negatively influence BMD later in life.

Therefore, both endocrinologists and pediatric endocrinologists

should include these (long-term) negative effects in the decision

whether glucocorticoid treatment is beneficial for their

particular patient and to properly counsel their patients. When

glucocorticoids are necessary, hydrocortisone should be used,

especially in children, as this short-acting glucocorticoid has

fewer negative effects on BMD compared to long-acting

glucocorticoids. Patients should be counseled for the potential

decrease in BMD, and other risk factors for osteoporotic

fractures like smoking, low calcium and vitamin D levels, and

low physical activity should be brought to a minimum.
Cardiovascular and metabolic
complications

NCCAH is associated with increased cardiovascular and

metabolic morbidity in adulthood (122). Both glucocorticoid

treatment and androgen excess are important factors in this

respect (Figure 2). Supraphysiological glucocorticoid dosages

are associated with a higher prevalence of obesity, insulin

resistance, dyslipidemia, and hypertension, which are known

risk factors for cardiovascular disease (123, 124). On the other

hand, untreated or undertreated 21OHD patients suffer from

androgen excess which can also be unfavorable for the

cardiovascular and metabolic risk profile (125). In this

paragraph, different cardiovascular and metabolic complications

and risk factors in NCCAH patients will be discussed.

Several studies (92, 94, 122) reported a higher prevalence of

obesity in glucocorticoid-treated NCCAH patients compared to

healthy controls. Falhammar et al. (126) reported a higher BMI

and waist-to-hip ratio in treated NCCAH women (compared to

controls) who were ≥30 years of age, but not in patients <30

years. This indicates that the effect on body composition and fat

distribution occurs later in life. Several factors may cause weight

gain in CAH patients (127). Völkl et al. (128) reported a minor

positive correlation (r=0.22, p=0.04) between hydrocortisone

dose and BMI, suggesting that supraphysiological dosages of

glucocorticoids contribute to weight gain. Ariyawatkul et al.

(129) did, however, not confirm this finding, possibly because a

smaller sample size was used. Zhang et al. (130) reported a

higher BMI in 30 untreated female patients with classic simple

virilizing 21OHD, indicating that glucocorticoids are not the

only factor influencing the weight gain in classic 21OHD and

that the elevated androgens are possibly a contributing factor as

well. These authors suggested that the elevated androgens have a

negative effect on the body fat distribution and lipid metabolism.

Nonetheless, Saygili et al. (125) reported no significant difference

in BMI between untreated NCCAH patients and healthy

controls even though free testosterone levels were four times

higher in the patient group compared to the controls. The
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difference between the two studies might be explained by the fact

that the former study included more severe cases of 21OHD

compared to the latter (simple virilizing vs. NCCAH) and the

included patients had higher concentrations of androgens. This

suggests that slightly increased androgen levels in NCCAH do

not affect BMI.

Another factor influencing cardiovascular and metabolic

risk is insulin sensitivity. Several studies reported increased

insulin resistance in both treated and untreated NCCAH

patients compared to controls (90, 92, 125, 131–133). Williams

et al. (132) confirmed this finding in treated NCCAH patients

but did not report a higher prevalence of insulin resistance in

classic CAH patients. In this study, classic CAH patients were

diagnosed by newborn screening and subsequently treated. The

NCCAH patients were diagnosed at a later age and, therefore,

exposed to elevated androgen concentrations for a longer

postnatal period. This suggests that hyperandrogenism

contributes to insulin resistance in these NCCAH patients.

This is confirmed by other studies (14, 134, 135) who reported

higher rates on insulin resistance in women with polycystic

ovarian syndrome, who also suffer from hyperandrogenism.

There is a vicious circle in which hyperandrogenism leads to

insulin resistance, resulting in hyperinsulinemia, which in turn

leads to an aggravation of hyperandrogenism (135). On the

contrary, Bayraktar et al. (136) did not report increased insulin

resistance in NCCAH patients compared to controls. As genetic

testing was not performed here, differences in disease severity of

these patients versus patients included in other studies could not

be evaluated. Besides hyperandrogenism, also glucocorticoids

lead to insulin resistance by opposing the actions of insulin

(137). Delai et al. (133) confirmed this in NCCAH patients and

found that insulin resistance in patients was related to prolonged

use of long-acting glucocorticoids.

Whether the increased insulin resistance also leads to a

higher incidence of diabetes mellitus type II was unknown for

a long time, because only a few patients were older than 50 years

old in the described studies and diabetes usually presents later in

life. Falhammar et al. (138) did not report higher incidences of

diabetes in one study but sample sizes were small and the oldest

included patient was 67 years old. In a later study, Falhammar

et al. (122) found a higher prevalence of diabetes in a cohort of

75 treated NCCAH patients (with the oldest patient being 92

years old) compared to age- and sex-matched controls.

Another important risk factor for cardiovascular diseases is

hypercholesterolemia. Hypercholesterolemia has been observed

in 59% of the NCCAH females (92). This incidence was even

higher compared to the classic CAH males and females (36%

and 48% respectively) (92). Krysiak et al. (139) reported that

atorvastatin, a statin that reduced the levels of cholesterol and

androgens, decreased the cardiometabolic risk in untreated

NCCAH women. If this decrease in risk also leads to fewer

cardiovascular incidents in these patients, needs to be

further elucidated.
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In conclusion, glucocorticoid treatment has potential

negative effects on the cardiovascular and metabolic system

(123, 124). These complications are dose-dependent (123, 140)

and, therefore, glucocorticoids should always be prescribed in

the lowest effective dose (124). However, hyperandrogenism also

contributes to an unfavorable cardiometabolic risk profile, and

therefore adequate monitoring and balancing over- and

undertreatment is necessary. Other treatment options like

statins need further attention, to elucidate whether these can

be used in untreated NCCAH patients with hyperandrogenism

to reduce the risk for cardiometabolic complications.
Dermatological symptoms caused
by hyperandrogenism

Hyperandrogenism can lead to well-known clinical

symptoms such as hirsutism, acne vulgaris, and androgenetic

alopecia (Figure 2). In NCCAH, these symptoms of androgens

excess can present already during adolescence but are mostly

observed later in life. Hirsutism is the most common symptom in

adult women with NCCAH and does not correlate well with

genotype (54). In childhood, hirsutism is only observed in 4% of

the patients, while in adulthood the incidence rate increases to 69-

78% (6, 72). Alopecia incidence rates also increase with age with

peak incidences of 19% between 40-49 years of age (72). Acne is

most often observed in 20- to 29-year-olds with an incidence of

37% (72). Signs of adrenal hyperandrogenism are less frequently

observed in men, as testicular androgen production greatly

outreaches adrenal androgen production (13).

Glucocorticoids can be effective in lowering adrenal

androgen levels and thereby also decreasing the dermatological

signs of hyperandrogenism. However, due to long-term negative

effects on bone health and cardiovascular risk as discussed above,

other drugs like oral contraceptives with antiandrogenic effects

are generally used as first step treatment option in females with

NCCAH suffering from hirsutism. Different mechanisms

contribute to the antiandrogenic effect of oral contraceptives.

First, estrogens have negative feedback on the pituitary gland,

thereby lowering the levels of luteinizing hormone resulting in

less ovarian androgen production in females and testicular

androgen production in males (141). In addition, oral

contraceptives lower adrenal androgen production by

inhibiting the enzymatic activities of 17-hydroxylase and

17,20-lyase which are necessary for androgen production

(142). Furthermore, estrogens in oral contraceptives increase

sex hormone binding globulin (SHBG) production and thereby

reduce free testosterone levels (143, 144). Lastly, progestogens in

oral contraceptives inhibit the function of 5a-reductase resulting
in less conversion of testosterone into the more potent androgen

dihydrotestosterone (145). Although oral contraceptives can

contain different progestogens with either androgenic or

antiandrogenic features, the net effect of combined oral
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contraceptives is always antiandrogenic (146). Antiandrogenic

progestogens can also be used as monotherapy. For instance,

cyproterone acetate monotherapy has been described to be

superior compared to hydrocortisone in treating hirsutism in

female NCCAH patients (147).

Another option interfering with the androgen pathway to

reduce signs of hyperandrogenism is the administration of

spironolactone. This mineralocorticoid receptor antagonist has

antiandrogenic effects as it blocks the binding of (dihydro)

testosterone to the androgen receptor and diminishes 5a-
reductase activity in the skin (148, 149). Physicians used to be

hesitant to prescribe spironolactone for hirsutism or acne

treatment because carcinogenic features of spironolactone are

described (3). However, this was only seen in animal models

using very high dosages of spironolactone (150). Higher

incidence rates for cancer were not found in humans using

spironolactone (151–153) and nowadays, the use of

spironolactone in the treatment of acne is increasing (154).

Other off-label treatment options for hyperandrogenism are

competitive antagonists of the androgen receptor, like flutamide,

and 5a-reductase inhibitors, like finasteride and dutasteride

(146). However, these should not be used in childhood and in

women who try to conceive or are currently pregnant. These

antiandrogens can have side effects like decreased libido,

headache, dizziness, and nausea (155–157). In addition,

flutamide is potentially hepatotoxic and liver functions should

be monitored during treatment (158).

Besides antiandrogens, also cosmetic and/or topical

treatment options have to be considered to treat hirsutism in

female NCCAH patients. This includes, among others, shaving,

plucking, waxing, laser therapy, or topical eflornithine cream

(159, 160). For acne, topical gels with benzoyl peroxide,

antibiotics, retinoids, or azelaic acid can be effective (161). A

combination of different treatment approaches (both topical and

systemic hormonal) might be most effective (160, 162).

In conclusion, NCCAH women may suffer from signs of

hyperandrogenism such as hirsutism, acne vulgaris, or

androgenetic alopecia. Glucocorticoid treatment is not

recommended to reduce signs of hyperandrogenism in these

patients. An individualized approach with topical and/or

hormonal treatment is necessary for treating signs of

hyperandrogenism, and consultation with a dermatologist can

be of added value for these patients.
Fertility and pregnancy in women

Oligomenorrhoea in NCCAH women may lead to sub- or

infertility. However, reported pregnancy rates are normal in

these women (163–166). Bidet et al. (167) reported that 57% of

the pregnancies were spontaneous without any treatment and

83% of the women who conceived were pregnant within one

year. Untreated mothers with 21OHD have elevated androgen
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levels but these androgens cannot reach the fetus because

placental aromatase will convert them into estrogens

protecting the female fetus from virilization (168).

If pregnancy is not achieved, temporary glucocorticoid

treatment might be indicated to normalize progesterone levels

(11, 167, 169). Here, hydrocortisone, prednisolone, or

prednisone should be used as they can be inactivated by

placental 11b-hydroxysteroid dehydrogenase type 2 and do

not reach the fetus (170). Hydrocortisone or prednisone before

and/or during pregnancy did not significantly change the

duration of pregnancy or the child’s birth weight (165, 167).

Placental 11b-hydroxysteroid dehydrogenase type 2 is not able

to metabolize dexamethasone and dexamethasone will reach the

fetus (171) which can lead to negative side effects (172).

Therefore, we recommend against the use of dexamethasone

in women who try to conceive or are already pregnant. If

glucocorticoid treatment is necessary, an endocrinologist

specialized in CAH should be involved.

Although pregnancy rates in NCCAH women are similar to

those in the general population (163–165), these women have

higher rates of miscarriages compared to healthy females (165–

167, 173). This might be due to dysfunction of the corpus luteum

in NCCAH women (174). The progesterone production of the

corpus luteum is most important for the continuation of

pregnancy in the first trimester (175) and this is also the

period in which most miscarriages occur (165, 167).

Moran et al. (173) showed that miscarriage rates were lower

in NCCAH women who were diagnosed before conception

compared to NCCAH women who were diagnosed thereafter.

The exact reason for this is unclear, but it is noteworthy that

almost 65% of the women in the diagnosed group were treated

with glucocorticoids (either alone or in combination with

clomiphene or menotropins), compared to 5% of the women

in the undiagnosed group. However, this study found no

significant difference in miscarriage rate between untreated

women compared to women treated with glucocorticoids alone

(i.e., without clomiphene and/or menotropins). Whether these

treated women received glucocorticoid treatment before or

during pregnancy did not influence the miscarriage rate.

Moreover, also Eyal et al. (165) did not observe a difference in

miscarriage rate in treated versus untreated women. On the

contrary, studies by Feldman et al. (166) and Bidet et al. (167)

reported normalized miscarriage rates in NCCAH women with

glucocorticoid treatment. This difference might be explained by

the genotype of the patients; Bidet et al. (167) described patients

with a more severe genotype (but both NCCAH) compared to

Eyal et al. (165), which possibly results in a greater effect of the

glucocorticoids. The other two studies (166, 173) did not report

mutation analyses of the NCCAH women. If glucocorticoid

treatment does not lead to conception, ovulation induction

with clomiphene citrate might be successful (166, 167).

As CAH is a recessive disorder, NCCAH patients have two

affected alleles. Therefore, the child has at least one mutated
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allele from the affected parent. If the partner is heterozygous for

21OHD or a de novo mutation occurs, the child can suffer from

CAH with also the risk of a child with a classic CAH. Higher

incidence rates of both classic and NCCAH were found in

children of NCCAH mothers (165, 167, 173). Therefore,

genetic counseling is recommended to inform parents about

this risk and to genetically test the partners of patients with

NCCAH (167).

In conclusion, reported pregnancy rates are normal in

NCCAH women. Therefore, glucocorticoid treatment is

generally not advised. There is no conclusive evidence whether

glucocorticoid treatment during pregnancy in female NCCAH

patients leads to a decreased miscarriage rate. It is recommended

that an endocrinologist specialized in CAH is involved before

and during pregnancy of NCCAH women. If glucocorticoid

treatment is indicated, we advise prescribing hydrocortisone to

prevent glucocorticoids to cross the placental barrier.
TART and fertility in men

In classic CAH, benign testicular adrenal rest tumors

(TART) can lead to decreased fertility in men (176–179). Four

different articles (94, 98, 180, 181) reported the incidence of

TART in NCCAH men and described a total of 124 NCCAH

patients of whom only two had evidence of TART. So, TART are

not a common finding in NCCAH males, and fertility in men

with NCCAH is generally normal. Therefore, routine ultrasound

of the scrotum is not recommended in NCCAH men (3).
11OHD

The second most common form of CAH is 11OHD with a

diminished conversion of 11-deoxycortisol into cortisol

(Figure 1) (182). The estimated prevalence of 11OHD in the

general population is 1 in 100,000 (183). As the clinical picture of

NC 11OHD is variable and could resemble that of women with

polycystic ovarian syndrome, its prevalence is most likely

underestimated. Interestingly, a prospective study identified no

NC 11OHD pa t i en t s among s t 270 women w i th

hyperandrogenism, whilst six suffered from NC 21OHD (184),

indicating that the prevalence of 11OHD is probably lower than

the prevalence of NC 21OHD.

In non-classic 11OHD, residual enzymatic activities ranging

from 15 to 73% are reported (185, 186). Steroid hormones prior

to the enzymatic block, such as 11-deoxycortisol, progesterone,

11-deoxycorticosterone, and 17-OHP increase, of which the

latter is converted into adrenal androgens by the unaffected

adrenal androgen pathway (Figure 1). Therefore, the non-classic

form of 11OHD might also present with signs of

hyperandrogenism like precocious pseudo puberty in children

or irregular menstruation in females, similar to NC 21OHD
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patients (187, 188). Treatment management of 11OHD patients

also resembles the treatment in 21OHD patients.

Classic 11OHD patients have elevated 11-deoxycorticosterone

levels which can bind the mineralocorticoid receptor resulting in

high blood pressure, low renin levels, and hypokalemia (189). As

11-deoxycorticosterone prevents salt wasting from happening, no

salt-wasting form of 11OHD is known. Salt wasting was only

observed after glucocorticoid treatment, as this gives negative

feedback on the pituitary gland and, thereby, decreases the ACTH

concentration, eventually leading to reduction of the 11-

deoxycorticosterone concentration (190). Most NC 11OHD

patients do not present with hypertension during childhood

(187, 191). However, the occurrence of hypertension in some

patients cannot be ruled out because residual enzymatic activity is

variable and the clinical picture is a continuum as seen in 21OHD

(187). In fact, hypertension is observed in some patients with a

mild form of 11OHD (188, 191, 192) and Zachmann et al. (191)

found a correlation between the age of diagnosis and systolic

blood pressure. This indicates that hypertension can occur in the

NC form as well, but reported incidence rates are lower compared

to patients with classic 11OHD (191).

Glucocorticoid treatment will restore the negative feedback

on the pituitary gland similar to treatment in patients

with 21OHD. This might be useful in patients with classic

21OHD but potentially harmful in classic 11OHD patients.

Mineralocorticoid activity in 11OHD patients relies on 11-

deoxycorticosterone which is in these patients ACTH dependent

(193). By administration of glucocorticoids, ACTH will decrease

and less 11-deoxycorticosterone is produced, increasing the

chance of salt wasting crisis in classic 11OHD patients (190).

However, it is unclear to what extent this is relevant for NC

11OHD patients as residual activity of 11b-hydroxylase will

probably secure sufficient aldosterone production. If

hypertension is present, treatment with mineralocorticoid

antagonists like spironolactone might be successful (188, 192).

Similar to NC 21OHD patients, 11OHD patients who receive

glucocorticoid treatment have an increased risk for an iatrogenic

Addisonian crisis if adherence to glucocorticoid treatment is poor

and the patient becomes sick (22).

As the clinical picture of 11OHD patients is variable and

glucocorticoid treatment has both short- and long-term side

effects, it should be considered per patient whether

administration of glucocorticoids is beneficial.
Discussion

In this review, we focus on different clinical aspects of

NCCAH patients in childhood and adulthood. Most NCCAH

patients have cortisol levels within the normal reference ranges

and normal ACTH levels, indicating that there is sufficient

glucocorticoid activity during basal conditions (i.e., in periods

without physical stress). Hence, the main problem in NCCAH
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patients during basal conditions is not the decreased cortisol

production, but the increased production of adrenal androgens.

Hyperandrogenism can lead among others to rapid postnatal

growth, advanced bone age, and premature pubarche in

childhood, as well as acne, hirsutism, menstrual irregularities

(in females), and decreased insulin resistance in adulthood.

Although glucocorticoid treatment could suppress the

production of ACTH in the pituitary gland and lower adrenal

androgen production, most NCCAH patients do not suffer from

clinically relevant glucocorticoid deficiency. Therefore,

glucocorticoid treatment is generally not recommended in

NCCAH. Glucocorticoid treatment can have a negative impact

on the cardiovascular system, metabolic outcome, and bone
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health later in life. Besides, externally administered

glucocorticoids can lead to iatrogenic adrenal insufficiency

during periods of sickness with a risk of developing a life-

threatening Addisonian crisis, whilst most untreated NCCAH

patients do not develop this severe complication. Therefore,

patients should be carefully evaluated and the decision for

starting glucocorticoid treatment should be made for each

patient individually taking into account whether treatment

solely aimed to lower androgen levels outweighs the negative

effects of chronic glucocorticoid treatment. Adequate counseling

should be offered to patients (and their parents).

In Table 1 we present general recommendations for NCCAH

patients based on the literature discussed in this review. It should
TABLE 1 Recommendations for monitoring and treatment of NCCAH patients.

Clinical parameter Patient group Recommendations

Daily glucocorticoid
treatment

All ages 1. Daily glucocorticoid treatment is not recommended to compensate for a cortisol deficiency.

Stress dosing of
glucocorticoids

All ages 1. Stress dosing is only recommended in patients with suboptimal ACTH test in periods of severe physiological
stress such as major surgery, child delivery or trauma.
2. In NCCAH patients receiving basal glucocorticoid treatment stress dosing is recommended.

Growth Childhood 1. Yearly follow up of growth and bone age until final height is reached.
2. Start glucocorticoid treatment in patients with severe accelerated bone age to improve final height only after
careful counseling of patients and parents.
3. Use short-acting glucocorticoid like hydrocortisone, especially during childhood.
4. Discontinue glucocorticoid therapy when final height is reached.

Puberty Childhood 1. Isolated premature pubarche is no indication for glucocorticoid treatment.
2. Glucocorticoid treatment is not advised to prevent central precocious puberty.

Menstruation (in girls en
females)

Adolescence and
adulthood

1. Daily glucocorticoid treatment is not recommended to regulate the menstrual cycle.
2. Antiandrogenic contraceptives are recommended as the first step in the treatment of menstrual irregularity.

Bone health Adulthood 1. Screening for BMD is only recommended in NCCAH patients receiving supraphysiological dosages of
glucocorticoids for a prolonged period
2. Patients using glucocorticoids should be informed about other risk factors for decreased bone mineral density
such as smoking, low intake of calcium and vitamin D, and low physical activity.

Cardiovascular and
metabolic system

Adulthood 1. Negative effects of glucocorticoids on the cardiovascular and metabolic system are dose-dependent and therefore
glucocorticoids should always be prescribed in the lowest effective dose.
2. Both glucocorticoid treatment and elevated androgens (due to undertreatment) negatively influence the
cardiovascular and metabolic system, but evidence in NCCAH is low

Dermatological signs of
hyperandrogenism

Adolescence and
adulthood

1. Daily glucocorticoid treatment is not recommended as a first step in the treatment of hyperandrogenism such as
hirsutism, acne, or androgenic alopecia.
2. Treatment options to reduce hirsutism in adult female NCCAH patients:
a. Topical treatment with eflornithine cream.
b. Cosmetic treatment such as shaving, plucking, waxing, or laser therapy.
c. Systemic treatment with spironolactone, competitive androgen receptor antagonists like flutamide or 5a-
reductase inhibitors such as finasteride or dutasteride.
d. A combination of these treatment options.
3. For acne, topical treatment with benzoyl peroxide, antibiotics, retinoids, or azelaic acid can be effective. If acne is
severe, systemic treatment with antibiotics or retinoids can be used.

TART and fertility Men in adolescence and
adulthood

1. Routine ultrasound for TART screening is not recommended.

Fertility Women in adulthood
who try to conceive

1. Glucocorticoid treatment is only advised in females who do not get pregnant after a substantial period.
2. An endocrinologist specialized in CAH should be involved.
3. If glucocorticoid treatment is indicated, we advise to prescribe hydrocortisone because this glucocorticoid does
not cross the placental barrier.

Pregnancy Pregnant women 1. The use of dexamethasone during pregnancy is not recommended.
2. Genetic counseling is recommended to inform patients about the increased risk for classic and non-classic CAH
in their offspring.
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be noted that it is difficult to predict which NCCAH patients will

develop symptoms of hyperandrogenism because the residual

enzymatic activity is a gradual scale that leads to a variable

degree of androgen excess in different patients. Furthermore,

several genes can be variably affected by different mutations,

leading to different residual activities of the affected enzyme. In

addition, not all forms of NCCAH show a good genotype-

phenotype correlation, and different factors contribute to the

clinical presentation. Therefore, an individualized follow-up

and treatment plan is of utmost importance and clinicians

should always weigh which treatment options are best for

their patient.

Further research is necessary to establish more evidence-

based treatment recommendations specifically for NCCAH

patients. Most studies described only classic 21OHD patients

or cohorts of classic and NCCAH patients together. Findings in

these patients cannot always be extrapolated to the situation of

NCCAH patients. So, bias in the design of these studies may

have resulted in misleading conclusions for NCCAH patients.

Cohort studies in untreated NCCAH patients can be useful to

gain more insight into the natural course of the disease. In

addition, such studies will give more information about the risk

of Addisonian crisis in untreated patients. Furthermore, more

information is needed on differences in glucocorticoid

sensitivity, glucocorticoid activity of adrenal precursor steroids,

and differences in relative free cortisol levels in NCCAH patients,

to better predict which patients have glucocorticoid deficiency

and need glucocorticoid treatment. Until these research topics

are further elucidated, clinicians should consider whether

glucocorticoid treatment is beneficial for their patient based on

the whole clinical picture.
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154. Thiboutot D, Dréno B, Sanders V, Rueda MJ, Gollnick H. Changes in the
management of acne: 2009-2019. J Am Acad Dermatol (2020) 82(5):1268–9. doi:
10.1016/j.jaad.2019.04.012

155. Hirshburg JM, Kelsey PA, Therrien CA, Gavino AC, Reichenberg JS.
Adverse effects and safety of 5-alpha reductase inhibitors (Finasteride,
dutasteride): A systematic review. J Clin Aesthet Dermatol (2016) 9(7):56–62.

156. Marcondes JA, Minnani SL, Luthold WW, Wajchenberg BL, Samojlik E,
Kirschner MA. Treatment of hirsutism in women with flutamide. Fertil Steril.
(1992) 57(3):543–7. doi: 10.1016/S0015-0282(16)54897-3

157. Grimaldi F, Proto G, Bertolissi F. Flutamide–effects and side effects. Fertil
Steril. (1993) 59(4):937. doi: 10.1016/S0015-0282(16)55890-7

158. Bruni V, Peruzzi E, Dei M, Nannini S, Seravalli V, Sisti G, et al.
Hepatotoxicity with low- and ultralow-dose flutamide: A surveillance study on
203 hyperandrogenic young females. Fertil Steril. (2012) 98(4):1047–52. doi:
10.1016/j.fertnstert.2012.06.018

159. Bhat YJ, Bashir S, Nabi N, Hassan I. Laser treatment in hirsutism: An
update. Dermatol Pract Concept. (2020) 10(2):e2020048. doi: 10.5826/dpc.1002a48

160. Hamzavi I, Tan E, Shapiro J, Lui H. A randomized bilateral vehicle-
controlled study of eflornithine cream combined with laser treatment versus laser
treatment alone for facial hirsutism in women. J Am Acad Dermatol (2007) 57
(1):54–9. doi: 10.1016/j.jaad.2006.09.025

161. Eichenfield DZ, Sprague J, Eichenfield LF. Management of acne vulgaris: A
review. Jama. (2021) 326(20):2055–67. doi: 10.1001/jama.2021.17633

162. Bettoli V, Zauli S, Virgili A. Is hormonal treatment still an option in acne
today? Br J Dermatol (2015) 172(Suppl 1):37–46. doi: 10.1111/bjd.13681

163. Claahsen-van der Grinten HL, Stikkelbroeck NM, Sweep CG, Hermus AR,
Otten BJ. Fertility in patients with congenital adrenal hyperplasia. J Pediatr
Endocrinol Metab (2006) 19(5):677–85. doi: 10.1515/JPEM.2006.19.5.677

164. Stikkelbroeck NM, Hermus AR, Braat DD, Otten BJ. Fertility in women
with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Obstet
Gynecol Surv. (2003) 58(4):275–84. doi: 10.1097/01.OGX.0000062966.93819.5B

165. Eyal O, Ayalon-Dangur I, Segev-Becker A, Schachter-Davidov A, Israel S,
Weintrob N. Pregnancy in women with nonclassic congenital adrenal hyperplasia:
Frontiers in Endocrinology 16
Time to conceive and outcome. Clin Endocrinol (Oxf). (2017) 87(5):552–6. doi:
10.1111/cen.13429

166. Feldman S, Billaud L, Thalabard JC, Raux-Demay MC, Mowszowicz I,
Kuttenn F, et al. Fertility in women with late-onset adrenal hyperplasia due to 21-
hydroxylase deficiency. J Clin Endocrinol Metab (1992) 74(3):635–9. doi: 10.1210/
jcem.74.3.1310999
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