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Ultrasound images-based deep
learning radiomics nomogram
for preoperative prediction of
RET rearrangement in papillary
thyroid carcinoma

Jialong Yu1, Yihan Zhang2, Jian Zheng1, Meng Jia1*

and Xiubo Lu1*

1Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University,
Henan, China, 2Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou
University, Henan, China
Purpose: To create an ultrasound -based deep learning radiomics nomogram

(DLRN) for preoperatively predicting the presence of RET rearrangement

among patients with papillary thyroid carcinoma (PTC).

Methods: We retrospectively enrolled 650 patients with PTC. Patients were

divided into the RET/PTC rearrangement group (n = 103) and the non-RET/PTC

rearrangement group (n = 547). Radiomics features were extracted based on

hand-crafted features from the ultrasound images, and deep learning networks

were used to extract deep transfer learning features. The least absolute

shrinkage and selection operator regression was applied to select the

features of nonzero coefficients from radiomics and deep transfer learning

features; then, we established the deep learning radiomics signature. DLRNwas

constructed using a logistic regression algorithm by combining clinical and

deep learning radiomics signatures. The prediction performance was evaluated

using the receiver operating characteristic curve, calibration curve, and

decision curve analysis.

Results: Comparing the effectiveness of the models by linking the area under

the receiver operating characteristic curve of each model, we found that the

area under the curve of DLRN could reach 0.9545 (95% confidence interval:

0.9133–0.9558) in the test cohort and 0.9396 (95% confidence interval:

0.9185–0.9607) in the training cohort, indicating that the model has an

excellent performance in predicting RET rearrangement in PTC. The decision

curve analysis demonstrated that the combined model was clinically useful.
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Conclusion: The novel ultrasonic-based DLRN has an important clinical value

for predicting RET rearrangement in PTC. It can provide physicians with a

preoperative non-invasive primary screening method for RET rearrangement

diagnosis, thus facilitating targeted patients with purposeful molecular

sequencing to avoid unnecessary medical investment and improve treatment

outcomes.
KEYWORDS

papillary thyroid carcinoma, radiomics, deep learning, nomogram, RET
rearrangement, prediction
1 Introduction

Thyroid cancer is the most common endocrine tumor;

papillary thyroid carcinoma (PTC) is the most common type

of pathological cancer, accounting for approximately 80%–90%

of all thyroid cancers (1). Yasuhiro et al. studied 5897 patients

with PTC and reported that PTC is inert cancer with a low

mortality rate and >90% overall survival rate (2). However, some

histological subtypes of PTC show aggressive behavior, have a

high recurrence and distant metastasis, or lead to death (3, 4).

Therefore, early discrimination against these PTCs that require

aggressive medical intervention is important.

Several genetic alterations have been used as a tool for

diagnosing diseases and predicting prognosis owing to the

advancement in molecular genetics (5, 6). On a molecular

basis, some genetic alterations are closely associated with the

clinicopathological features of PTC. Fusco et al. first reported the

RET chromosomal rearrangement was in PTC. RET is a proto-

oncogene that encodes a plasma membrane-bound RET tyrosine

kinase receptor for ligands of the glial-derived neurotrophic

factor family (7). Chromosomal rearrangements cause RET/

PTC-related carcinogenesis (8).

Thus far, at least 13 different forms of RET/PTC

rearrangements have been found; these rearrangements are

a lmost exc lus ive ly found in PTC (9) . Among al l

rearrangement forms, RET/PTC3 and RET/PTC1 are the most

common, accounting for >90% of all rearrangements. The

prognostic role of RET rearrangements has been confirmed in

other studies as the presence of RET/PTC3 rearrangements and

both large tumors size and advanced tumor stage at the time of

diagnosis are positively associated; these studies highlight that

RET/PTC3 has a significant role in metastatic spread (10–13).

However, RET/PTC1 rearrangement is more prevalent than

RET/PTC3 in less aggressive classical variants (14, 15).

Ultrasound is the primary imaging technique for the

evaluation of thyroid nodules. Predicting molecular alterations

in PTC by analyzing conventional ultrasound features is

controversial, mainly due to the limitation of conventional

ultrasound images and high interobserver variability (16).
02
Radiomics can automatically extract innumerable high-

dimensional features from images; however, these features

cannot be assessed visually. Radiomics has recently shown

clinical importance in the thyroid (17). Radiomics based on

ultrasound images has been used to predict molecular properties

in thyroid cancer (18–20).

Machine learning is the scientific technique that emphasizes

how computers learn from data. It can be found at the

intersection of statistics and computer science (21). Deep

transfer learning (DTL) is a new type of machine learning

method developed via the advancement of artificial neural

networks. DTL depends on a network of computational units

that gradually extract higher-lever features from the input data

(22). DTL is widely used in medicine, including in the field of the

thyroid (23, 24).

To our knowledge, there are no published studies aimed at

identifying the presence of RET rearrangement in PTC using

ultrasound radiomics combined with DTL. Therefore, we

evaluated the association between RET rearrangement and

ultrasound radiomics DTL and established a deep learning

radiomics nomogram (DLRN) to predict RET rearrangement

in PTC.
2 Materials and methods

2.1 Ethics statement

This study was approved by the Ethics Committee of the

First Affiliated Hospital of Zhengzhou University (Number:

2022-KY-1002-002).
2.2 Clinical data

Between June 2020 and June 2022, we enrolled consecutive

patients from the Department of Thyroid Surgery of the First

Affiliated Hospital of Zhengzhou University; informed consent

from patients was exempted. The inclusion criteria were as
frontiersin.org
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follows: (1) patients who were treated for the first time; (2)

patients who preoperatively underwent ultrasound examination

within 2 weeks; (3) patients who had pathologically confirmed

PTC; and (4) patients with well-preserved clinical data, imaging

data, and pathological specimens. The exclusion criteria were as

follows: (1) patients who underwent preoperative radiotherapy,

chemotherapy, or radiofrequency ablation; (2) patients who

presented with other head and neck tumor diseases; (3)

patients with multifocal or bilateral PTC; and (4) patients with

poor quality ultrasound images. Figure 1 shows the patient

recruitment pathway. The patients were divided into training

and test cohorts using a 5-fold cross-validation method.
2.3 Ultrasound examination and
image acquisition

All enrolled patients underwent a preoperative neck

ultrasound examination. The ultrasound machines included

HITACHI HI VISION Ascendus (Japan), TOSHIBA aplio500

(Japan), SAMSUNG LA3-16A (Korea), and PHILIPS RPIQ5

(Netherlands). The ultrasound examinations were performed

with a 5–12 MHz transducer by radiologists with 5–10 years of

experience in thyroid ultrasound evaluation. After placing the

patients in the supine position, longitudinal and transverse

continuous scanning were performed to obtain longitudinal
Frontiers in Endocrinology 03
and transverse images of the thyroid nodules. All selected

thyroid nodules were evaluated for the following ultrasound

feature composition (mixed cystic and solid, cystic, or solid),

echogenicity (hypoechoic, isoechoic, or hyperechoic), tumor

margin (irregular, ill-defined, or smooth), vertical and

horizontal diameter ratio (<1 or ≥1), shape (irregular, ill-

defined, or regular), and calcification (macrocalcification,

microcalcification, non-calcification, or cluster calcification);

the American College of Radiology Thyroid Imaging

Reporting and Data System (ACR-TI-RADS) score of each

nodule was calculated by the same radiologists. Supplement

Tables 1, 2 show the detailed process of calculating the ACR-

TI-RADS score and category.
2.4 Region of interest segmentation

Two radiologists with >3 years of experience who were

blinded to the pathological results reviewed the ultrasound

images of the enrolled patients using Picture Archiving and

Communication Systems, selected appropriate images, stored

the selected images in BMP format, and then converted them to

NII format. The open-source software 3D Slicer (version

4.1.13.0, available at https://www.slicer.org/) was used for

texture analysis. The region of interest of the target nodule

was manually segmented using a 3D Slicer. The interobserver
FIGURE 1

The patient recruitment pathway.
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and intraobserver agreements were measured using random 130

nodules delineated by a radiologist twice within 2 weeks. The

interclass correlation coefficient was used to evaluate the

interobserver and intraobserver agreement of the feature

extraction. An interclass correlation coefficient larger than 0.75

was considered a satisfactory agreement.
2.5 Features extraction and
signature building

All handcrafted features were extracted using an in-house

feature analysis program implemented in Pyradiomics (http://

pyradiomics.readthedocs.io); 1477 handcrafted features were

extracted from each ultrasound image. After the least absolute

shrinkage and selection operator (LASSO) feature screening, we

input the final features into the machine learning models such as

LR, SVM, random forest, XGBoost, and so on for prediction

model construction.

Deep learning features were extracted from pre-trained

convolutional neural networks via transfer learning. In this

study, resnet50 was chosen as the pre-trained convolutional

neural network model18. The resnet50 model was trained on the

ILSVRC-2012 dataset. The image that had the largest tumor area

was selected to represent each patient; the gray values were

normalized to the range [−1, 1] using min-max transformation.

Then, each cropped subregion image was resized to 224 × 224

with the nearest interpolation. The obtained images were used as

the model input. Since the dimension of deep migration features

was 2048, we used the principal component analysis to reduce

the dimension of deep migration features and ensure the balance

between features. We reduced the dimension of deep learning to

128 dimensions for improving the generalization ability of the

model and reducing the risk of overfitting. After compressing the

deep learning feature by principal component analysis, all

compressed features were standardized using the Z-score

method, and the mean and variance (standard deviation) of

each column of features were calculated. Each column of features

was subtracted from the mean, divided by variance, and

transformed into a standard normal distribution. We used the

least absolute shrinkage and selection operator (LASSO) to filter

out features whose coefficients were not 0, selected and reduced

the dimension of fusion features, and obtained the optimal

subset of fusion features.

Based on the selected radiomics features and 128

compressed DTL features, we aimed to create a deep learning

radiomics (DLR) signature. We followed the same path as the

radiomics signature or DTL signature. After LASSO feature

screening, we input the final features into the machine

learning models for predictive model construction to obtain

the final DLR signature.
Frontiers in Endocrinology 04
2.6 Construction of DLRN and
predictive performance

We referred to clinical data with the conventional

ultrasound features commonly referred to as clinical features.

First, the features used for building clinical signatures were

selected by baseline statistics with a p-value of <0.05. We also

used the same machine learning model in the radiomics

signature-building process.

DLRN was prepared in combination with clinical and DLR

signatures. The diagnostic efficacy of the nomogram was tested

in the test cohort; the receiver operating characteristic curves

were drawn to assess the diagnostic efficacy of the nomogram.

The calibration efficiency of the nomogram was estimated by

drawing calibration curves; the Hosmer–Lemeshow analytical fit

was used to evaluate the calibration ability of the nomogram.

Decision curve analysis (DCA) was mapped to evaluate the

clinical utility of predictive models. Figure 2 shows the whole

process of model building.
2.7 Detection of RET/PTC
rearrangements

Genomic DNA was extracted from postoperative specimens

using AmoyDX provided by Amoy Diagnostics Co., Ltd.

(Xiamen, China). RET rearrangements were analyzed using the

next-generation sequencing method. Amplification and analysis

were conducted on an ABI 7500 Real-Time PCR System

(Applied Biosystem, CA, USA). Next, we performed a real-

time fluorescence amplification refractory mutation system-

polymerase chain reaction. Each rearrangement was further

confirmed by direct Sanger sequencing; the results of RET

rearrangement to be tested were finally read.
2.8 Statistical analysis

Descriptive statistics of continuous variables were expressed

as mean ± standard deviation; categorical variables were

presented as median (interquartile range) and frequency (%).

The independent sample t-test was used for continuous factors

with normal distribution; the Mann–Whitney U test was used

for continuous factors without normal distribution. The

categorical variables were compared using the c2 test or Fisher
exact test. The Delong’s test was used to compare the area under

the curve (AUC). The Hosmer–Lemeshow test was used to

assess whether the expected and actual probabilities were

calculated with the prediction model. P < 0.05 was considered

statistically significant.
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3 Results

3.1 Features statistics

We enrolled 650 patients with PTC: 103 patients had RET/

PTC rearrangement and 547 had non-RET/PTC rearrangement.

Table 1 shows the clinical features of all patients. Significant
Frontiers in Endocrinology 05
differences were noted in the clinical characteristics between the

two cohorts, including age, tumor size, sex, TPOAb, TGAb,

echogenicity, vertical and horizontal diameter ratio, calcification,

and ACR-TI-RADS score.

In radiomics, 1477 handcrafted features were extracted,

including 306 first-order features, 14 shape features, and the

last texture features. In DTL, we compared and visualized the
FIGURE 2

The process of model building.
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TABLE 1 The clinical features of all enrolled patients.

Feature name All RET/PTC rearrangement p-value
No Yes

Age, mean ± SD (years) 42.8 ± 11.2 43.7 ± 11.0 37.9 ± 11.2 <0.001

Tumor size, mean ± SD (mm) 9.3 ± 6.9 8.5 ± 6.4 13.6 ± 7.9 <0.001

Sex

Female 505 (77.7) 417 (76.2) 88 (85.4) 0.0396

Male 145 (22.3) 130 (23.8) 15 (14.6)

TPOAb

Normal 520 (80.0) 472 (86.3) 48 (46.6) <0.001

Abnormal 130 (20.0) 75 (13.7) 55 (53.4)

TGAb

Normal 513 (78.9) 459 (83.9) 54 (52.4) <0.001

Abnormal 137 (21.1) 88 (16.1) 49 (47.6)

Primary site

Right lobe 334 (51.4) 290 (53.0) 44 (42.7) 0.1446

Isthmus 22 (3.4) 14 (2.6) 8 (7.8)

Left lobe 294 (45.2) 243 (44.4) 51 (49.5)

Tumor location

Upper pole 162 (24.9) 140 (25.6) 22 (21.4) 0.2072

Lower pole 221 (34.0) 188 (34.4) 33 (32.0)

Middle 267 (41.1) 219 (40.0) 48 (46.6)

Composition

Mixed cystic and solid 23 (3.5) 19 (3.5) 4 (3.9) 0.8384

Cystic 1 (0.2) 1 (0.2) 0 (0)

Solid 626 (96.3) 527 (96.3) 99 (96.1)

Echogenicity

Hypoechoic 610 (93.9) 526 (96.2) 84 (81.6) <0.001

Isoechoic 30 (4.6) 20 (3.7) 10 (9.7)

Hyperechoic 10 (1.5) 1 (0.1) 9 (8.7)

Tumor margin

Irregular 319 (49.1) 278 (50.8) 41 (39.8) 0.4145

Ill-defined 269 (41.4) 215 (39.3) 54 (52.4)

Smooth 62 (9.5) 54 (9.9) 8 (7.8)

The vertical and horizontal diameter ratio

<1 300 (46.2) 219 (40.0) 81 (78.6) <0.001

≥1 350 (53.8) 328 (60.0) 22 (21.4)

Shape

Irregular 220 (33.9) 173 (31.6) 47 (45.6) 0.2833

(Continued)
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correlation coefficients of the deep learning features. We

established that the collinearity between the features was weak,

indicating that deep learning stil l further captured

the differences.

For investigating the interpretability of the DLR, we

visualized the network by applying the gradient-weighted class

activation mapping, which could provide a rough localization

map highlighting the import regions for the classification target.

The last convolutional layer of the last res-block was made

transparent (Figure 3).

Next, 19 features of nonzero coefficients were selected from

radiomics features and deep learning features to obtain the DLR-

score with a LASSO logistic regression model in the training

cohort. Coefficients, mean standard error of 10 folds validation,

and the value of the coefficients in the final selected none zero

features are shown in Figure 4. The DLR score is shown below:

DLR_score = 0.15893069804681456–− 0.000667 ×

exponential_gldm_SmallDependenceLowGrayLevelEmphasis +

0.010403 × gradient_firstorder_Range + 0.005532 ×

lbp_3D_m2_glszm_GrayLevelNonUniformity − 0.039521 ×

original_shape_Elongation + 0.002556 × square_gldm_

GrayLevelNonUniformity + 0.005940 × squareroot_firstorder_

90Percentile + 0.003671 × wavelet_HHH_firstorder_Mean −

0.013805 × wavelet_HHH_glszm_ZonePercentage − 0.032163 ×

wavelet_HLL_firstorder_Mean + 0.016144 × wavelet_HLL_

glcm_JointAverage + 0.005555 × wavelet_LLH_firstorder_

RobustMeanAbsoluteDeviation + 0.007702 × wavelet_LLL_

glcm_DifferenceVariance + 0.019646 × wavelet_LLL_glszm_

GrayLevelVariance − 0.053602 × DL-0 − 0.050075 × DL-1 −

0.057482 × DL-2 − 0.030163 × DL-4 + 0.025809 × DL-9 −

0.008247 × DL-16
Frontiers in Endocrinology 07
3.2 Signature efficiency comparison

A 5-fold cross-validation method was used; we divided all

patients into the training and test cohorts, and the test cohort

was to be fixed for a fair comparison. To compare the efficiency

of each signature, we further selected the best model from each

signature-building process.

The optimal model was obtained using radiomics features

compared with an LR, SVM, KNN, Decision Tree, Random

Forest, Extra Trees, XGBoost, and LightGBM classifier. The

features of other categories were similarly related and

modeled. LR performs almost the best performance in each

model of the RET/PTC rearrangement respectively. Figure 5

shows the receiver operating characteristic analysis of different

models on the test cohort.
3.3 Establishment and validation of
the Nomogram

In the training cohort, with both clinical signature AUC =

0.8442 [95% confidence interval (CI): 0.8009–0.8874] and

radiomics signature AUC = 0.8638 (95% CI: 0.8262–0.9014),

DLR is combined radiomics and DTL features achieved AUC =

0.9335 (95% CI: 0.9119–0.9551). In the test cohort, with both

clinical signature AUC = 0.8959 (95% CI: 0.8141–0.9777) and

radiomics signature AUC = 0.8991 (95% CI: 0.8325–0.9656),

DLR was also the best model between radiomics signature and

DLR signature [(DLR: 0.9150) vs. (Rad: 0.8991, DTL: 0.8709)].

DLRN using the logistic regression algorithm was performed to

combine the clinical signature and DLR signature, which shows
TABLE 1 Continued

Feature name All RET/PTC rearrangement p-value
No Yes

Ill-defined 283 (43.5) 255 (46.6) 28 (27.2)

Regular 147 (22.6) 119 (21.8) 28 (27.2)

Calcification

Macrocalcification 62 (9.5) 54 (9.9) 8 (7.8) <0.001

Microcalcification 209 (32.2) 170 (31.1) 39 (37.9)

Non-calcification 235 (36.2) 227 (41.5) 8 (7.7)

Cluster calcification 144 (22.1) 96 (17.5) 48 (46.6)

ACR-TI-RADS category

3 (Mildly suspicious) 18 (2.8) 13 (2.4) 5 (4.9) <0.001

4 (Moderately suspicious) 367 (56.4) 330 (60.3) 37 (35.9)

5 (Highly suspicious) 265 (40.8) 204 (37.3) 61 (59.2)

PTC, papillary thyroid carcinoma; TGAb, thyroglobulin antibody; TPOAb, thyroid peroxidase antibody; ACR-TI-RADS, American College of Radiology Thyroid Imaging Reporting
and Data System.
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that the best performance AUC was 0.9545 (95% CI 0.9133–

0.9958). Table 2 shows all models that we used to predict the

RET/PTC rearrangement. Figure 6 shows the AUC in both the

training and test cohorts. To compare the clinical signature, DTL

signature, DLR signature, radiomics signature, and Nomogram,

the Delong test was used (Table 3).

The Nomogram calibration curves showed good agreement

between the predicted and observed RET/PTC rearrangement in

the training and test cohorts. The p-values of the Hosmer–

Lemeshow test were 0.5655, 0.4756, 0.3451, 0.9988, and 0.2142

inspections of clinical signature, radiomics signature, DTL

signature, DLR signature, and Nomogram (Table 4). This
Frontiers in Endocrinology 08
shows that Nomogram perfectly fits in both the training and

test cohorts. Figure 7 shows the calibration curves in the training

and test cohorts.

We also evaluated each model through DCA. DCA for the

clinical signature, radiomics signature, DTL signature, DLR

signature, and Nomogram is presented in Figure 8. The

preoperative prediction of RET/PTC rearrangement using a

radiomics nomogram has been shown to have better

clinical benefits.

Based on the clinical signature and DLR signature, we

established the nomogram to predict the RET/PTC

rearrangement (Figure 9).
FIGURE 3

Grad-CAM visualization. Grad-CAM, gradient-weighted class activation mapping.
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4 Discussion

Most patients with PTC have an excellent prognosis for

long-term survival; however, some subtypes of PTC have an

aggressive tumor process wherein RET rearrangements are

positively associated with high-risk pathological factors for

PTC, such as early occurrence, large tumor, rapid growth, and

high metastatic capacity (12). RET rearrangements play an

important role in the occurrence and development of PTC and

can be used as a significant indicator for the diagnosis of PTC.

The RET/PTC3 rearrangement is more aggressive than the RET/

PTC1 rearrangement, among the most common subtypes of

RET rearrangements (14) . Therefore , preoperat ive

determination of RET rearrangement will successfully assist in

making more aggressive treatment strategies for patients with

high-risk PTC. However, due to the low incidence of RET

rearrangement in sporadic PTC (approximately 20%), as a

routine preoperative examination, the RET gene test is not of

good clinical utility.
Frontiers in Endocrinology 09
In this study, we created a novel model built by ultrasound

radiomics combined with DTL for the preoperative prediction of

RET rearrangement in patients with PTC. We developed and

validated five models, the clinical, radiomics, DTL, DLR, and

DLRN signatures, for the prediction of the presence of RET/PTC

rearrangement by quantitative analysis of thyroid ultrasound

images. In both training and test cohorts, DLRN demonstrated

the best-predicted performance compared with the other

models. The AUC of DLRN in the test cohort could reach

0.9545 (95% CI: 0.9133–0.9558) in the test cohort and 0.9396

(95% CI: 0.9185–0.9607) in the training cohort. DCA showed

that DLRN can improve preoperative RET rearrangement

prediction. Thus, our results are valuable and can be

distinguished from previous studies as the first attempt at

combining DLR based on ultrasound images and the clinically

rare RET/PTC rearrangement; we also demonstrated the clinical

feasibility of DLRN. Furthermore, our study provides a

preoperative method to non-invasively assess RET information

and assist in design-making when clinicians are faced with
B

C

A

FIGURE 4

Deep learning radiomics (DLR) feature selection using the least absolute shrinkage and selection operator (LASSO) logistic regression model in
the training cohort and the histogram of the DLR-score based on the selected features. (A) Coefficients of 10-fold cross-validation. (B) Mean
square error of 10-fold validation. (C) The histogram of the DLR-score based on the selected features. Depending on the regulation weight l,
LASSO shrinks all regression coefficients towards zero and sets the coefficients of many irrelevant features exactly to zero. To find an optimal l,
10-fold cross-validation with minimum criteria was employed, where the final value of l yielded minimum cross-validation error. The retained
features with nonzero coefficients were used for regression model fitting and combined into a DLR signature. Subsequently, we obtained a DLR
score for each patient by a linear combination of retained features weighed by their model coefficients.
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ultrasound images that are difficult to determine with the

naked eye.

Radiomics uses high-throughput automated extraction

algorithms to evaluate the geometry, texture, and echo

intensity of nodules; it also shifts from the traditional use of

images for visual interpretation to their conversion to

quantitative features (25, 26). Radiomics has been used to

predict the molecular characteristics of various tumors (27).

Concerning thyroid, radiomics has been proposed based on

ultrasound images to predict the BRAF mutation (19, 20, 28);

however, the models showed limited ability. Moreover, the

BRAF mutation is the most representative mutation in PTC

and has low specificity among all molecular features. Meanwhile,

the significance of traditional ultrasound features for prediction

is neglected. Although conventional ultrasound examinations

rely only on the radiologist’s visual description of the nodal

features and cannot dig deeper into the information and the

interpretation of ultrasound images is operator-dependent, there

is interobserver variability. By designing the DLR model using

ultrasound images and clinical factors, we simultaneously

incorporated the DLR and traditional ultrasound features. In

this study, four traditional ultrasound features, such as

hypoechoic, vertical and horizontal diameter ratio of <1,
Frontiers in Endocrinology 10
cluster calcification, and ACR-TI-RADS 5 (highly suspicious),

were associated with RET/PTC rearrangement. However, data

on the association between RET rearrangement and traditional

ultrasound features of PTC are very scarce and frequently

inconsistent (16). Previous studies have pointed out that the

BRAF mutation of PTC is associated with ultrasound features,

such as hypoechoic, microcalcification, and irregular margins

(29). Therefore, the traditional ultrasound features with RET/

PTC rearrangement in our study were not very representative;

however, our results can be used as a reference for further study

of RET/PTC rearrangement in ultrasound radiomics. Compared

with the DLR signature based on only containing DLR features,

incorporating traditional ultrasound features of the nomogram

showed a better predictive performance. The ultrasound features

are supposed to be included in the analysis along with radiomics

parameters for enhancing the diagnostic abil ity of

gene mutation.

Deep learning has shown remarkable progress in medical

image analysis, advancing the field forward at a quick pace. DLR

has more advantages than hand-crafted and radiomics features.

For example, deep learning can extract multilevel features from

original images via a hierarchical neural network and

automatically identify tumor boundaries. In this study, 19
B

C D

A

FIGURE 5

Receiver operating characteristic (ROC) curves of different models in the test cohort. (A) ROC curves of different models on Clinical signature.
(B) ROC curves of different models on Rad signature. (C) ROC curves of different models on DTL signature. (D) ROC curves of different models
on DLR signature.
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TABLE 2 Predictive efficacy of all models in training cohort and test cohort.

Training Cohort Test Cohort
DLR Signa-

ture
Nomogram Clinic Signa-

ture
Rad Signa-

ture
DTL Signa-

ture
DLR Signa-

ture
Nomogram

0.8154 0.8538 0.8692 0.8769 0.7692 0.7385 0.8769

0.9335 0.9396 0.8959 0.8991 0.8709 0.9150 0.9545

0.9119 - 0.9551 0.9185 -
0.9607

0.8141 - 0.9777 0.8325 - 0.9656 0.7986 - 0.9432 0.8601 - 0.9699 0.9133 -
0.9958

0.9639 0.9157 0.8000 0.8500 0.8500 1.0000 0.9500

0.7872 0.8421 0.8818 0.8818 0.7545 0.6909 0.8636

0.4624 0.5241 0.5517 0.5667 0.3864 0.3704 0.5588

0.9914 0.9813 0.9604 0.9700 0.9651 1.0000 0.9896

0.4624 0.5241 0.5517 0.5667 0.3864 0.3704 0.5588

0.9639 0.9157 0.8000 0.8500 0.8500 1.0000 0.9500

0.6250 0.6667 0.6531 0.6800 0.5313 0.5405 0.7037

0.1103 0.1123 0.2194 0.1974 0.0798 0.0876 0.1463

negative predictive value.

Y
u
e
t
al.

10
.3
3
8
9
/fe

n
d
o
.2
0
2
2
.10

6
2
5
71

Fro
n
tie

rs
in

E
n
d
o
crin

o
lo
g
y

fro
n
tie

rsin
.o
rg

11
Signature Clinic Signa-
ture

Rad Signa-
ture

DTL Signa-
ture

Accuracy 0.8096 0.7615 0.8192

AUC 0.8442 0.8638 0.9283

95%CI 0.8009 - 0.8874 0.8262 - 0.9014 0.9035 - 0.9531

Sensitivity 0.6988 0.8313 0.9398

Specificity 0.8307 0.7483 0.7963

PPV 0.4394 0.3855 0.4671

NPV 0.9356 0.9589 0.9858

Precision 0.4394 0.3855 0.4671

Recall 0.6988 0.8313 0.9398

F1 0.5395 0.5267 0.6240

Threshold 0.2115 0.1400 0.1255

AUC, area under curve; CI, confidence interval; PPV, positive predictive value; NPV,
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BA

FIGURE 6

Receiver operating characteristic (ROC) curves of clinic signature, Rad signature, DTL signature, DLR signature and Nomogram. (A) in training
cohort; (B) in test cohort.
TABLE 3 Delong test for each model.

Cohort Nomogram Vs Clinical Nomogram Vs Rad Nomogram Vs DTL Nomogram Vs DLR

Train <0.0001 <0.0001 0.2898 0.2027

Test 0.1020 0.0771 0.0176 0.0626
F
rontiers in Endocrin
ology
 12
TABLE 4 Hosmer–Lemeshow test.

Cohort Clinic Signature Rad Signature DTL Signature DLR Signature Nomogram

Train 0.8457 0.7195 0.9141 0.5513 0.0787

Test 0.5655 0.4756 0.3451 0.9988 0.2142
BA

FIGURE 7

The calibration curves clinic signature, Rad signature, DTL signature, DLR signature and Nomogram. (A) in the training cohort; (B) in the test cohort.
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features with nonzero coefficients were filtered from radiomics

and DTL features to create the DLR signature. Among the

selected DTL features, there were four most significant and

robust features associated with RET rearrangement. For the

selected radiomics features, most reflected the image texture

and voxel intensity. The human visual system cannot recognize

these features; however, these DLR features can serve as an

auxiliary tool for the prediction of RET rearrangement in PTC.

There are certain limitations to our study: (1) First, the

samples of RET rearrangement were not compared by different

subtypes, such as RET/PTC1 and RET/PTC3, due to the

insufficient sample size, concluding that this study could only

perform primary screening of patients with RET rearrangement

in PTC and not predict the specific subtypes. (2) Second, as this

was a retrospective study, a selection bias may exist. Therefore,

we aim to conduct a prospective study in the future to control for

confounding variables. (3) Lastly, there was a lack of external

validation as it was a single-center, small-sample study;

therefore, this model needs to be further validated in a multi-

center, larger sample size survey.
Frontiers in Endocrinology 13
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