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LASSO-based machine learning
models for the prediction of
central lymph node metastasis
in clinically negative patients
with papillary thyroid carcinoma

Jia-Wei Feng †, Jing Ye †, Gao-Feng Qi, Li-Zhao Hong,
Fei Wang, Sheng-Yong Liu and Yong Jiang*

The Third Affiliated Hospital of Soochow University, Changzhou First People’s Hospital, Changzhou,
Jiangsu, China
Background: The presence of central lymph nodemetastasis (CLNM) is crucial for

surgical decision-making in clinical N0 (cN0) papillary thyroid carcinoma (PTC)

patients. We aimed to develop and validate machine learning (ML) algorithms-

based models for predicting the risk of CLNM in cN0 patients.

Methods: A total of 1099 PTC patients with cN0 central neck from July 2019 to

March 2022 at our institution were retrospectively analyzed. All patients were

randomly split into the training dataset (70%) and the validation dataset (30%). Eight

ML algorithms, including the Logistic Regression, Gradient Boosting Machine,

Extreme Gradient Boosting (XGB), Random Forest (RF), Decision Tree, Neural

Network, Support Vector Machine and Bayesian Network were used to evaluate

the risk of CLNM. The performance of MLmodels was evaluated by the area under

curve (AUC), sensitivity, specificity, and decision curve analysis (DCA).

Results: We firstly used the LASSO Logistic regression method to select the

most relevant factors for predicting CLNM. The AUC of XGB was slightly higher

than RF (0.907 and 0.902, respectively). According to DCA, RF model

significantly outperformed XGB model at most threshold points and was

therefore used to develop the predictive model. The diagnostic performance

of RF algorithm was dependent on the following nine top-rank variables: size,

margin, extrathyroidal extension, sex, echogenic foci, shape, number, lateral

lymph node metastasis and chronic lymphocytic thyroiditis.

Conclusion: By incorporating clinicopathological and sonographic

characteristics, we developed ML-based models, suggesting that this non-

invasive method can be applied to facilitate individualized prediction of occult

CLNM in cN0 central neck PTC patients.

KEYWORDS

papillary thyroid carcinoma, central lymph node metastasis, machine learning,
prediction model, random forest
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Introduction

Thyroid papillary carcinoma (PTC), the most common

histological type of thyroid cancer, has been increasing rapidly

(1). The incidence of lymph node metastasis (LNM) is high,

ranging from 49% to 90% (2, 3). Central compartment is the first

area for the metastasis of PTC. This area extends from the

inferior border of the hyoid bone to the superior border of the

sternum and is bilaterally bounded by the bilateral common

carotid arteries. According to previous studies, PTC patients

with central lymph node metastasis (CLNM) have an increased

risk of regional recurrence (4, 5).

It is still controversial whether clinically negative (cN0)

central neck patients should routinely perform preventive

central node dissection (CND). Guidelines from China and

Japan are more aggressive, and they suggest that prophylactic

CND should be routinely performed with appropriate protection

of the parathyroid glands and recurrent laryngeal nerve (6, 7).

Conversely, for T1 or T2, non-invasive and cN0 PTC patients,

the American Thyroid Association (ATA) guidelines do not

recommend prophylactic CND (8). Therefore, the status of the

central lymph nodes is crucial for the management of PTC

patients, especially the decision-making of surgical methods.

Currently, high-resolution ultrasound is still the first choice

for preoperative evaluation of cervical lymph nodes in patients

with PTC. However, its sensitivity is low, resulting in some false-

negative rates. As reported, the diagnostic sensitivity of

ultrasound to cervical LNM is only about 20% to 40% (9, 10).

Hence, occult LNM has been reported to occur in about 27% to

55% of PTC patients with cN0 neck (11, 12).

Although the risk factors of CLNM have been reported and

several prediction models have been established, these results are

inconsistent. This is mainly due t

o the complexity of medical data, and there are significant

differences in the calculation methods of the model. Therefore,

we intend to use a new type of artificial intelligence, namely

machine learning (ML), to analyze the connections between

important data and make accurate decisions (13–17).

By using clinical and sonographical characteristics

associated with CLNM, we aimed to develop models based on

eight ML algorithms to predict CLNM in patients with cN0

central neck. And then, by selecting one model that performs

best in predicting the risk of CLNM, personal strategies could be

proposed to help clinicians to make therapeutic decisions.
Materials and methods

Study population

This retrospective study was approved by the Ethics

Committee of Changzhou First People’s Hospital, and written
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informed consent was obtained from all patients. Consecutive

patients who underwent initial thyroid surgery at our institution

between July 2019 and March 2022 were retrospectively

reviewed. Exclusion criteria were as follows: (1) non-PTCs or

other subtypes than classic PTC; (2) preoperative ultrasound

suspected CLNM; (3) history of prior treatment for head and

neck cancer; (4) history of cervical radiation exposure in

childhood; (5) family history of thyroid cancer; (6) history

with other malignancy; (7) incomplete clinical data; (8) loss to

follow-up; (9) patients who underwent non-curative surgery

(residual tumor or lymph node detected within 6 months of

initial surgery). A total of 1099 patients were enrolled in

this study.
Surgical strategy

All patients were treated for thyroid nodules and confirmed

as Bethesda Categories V or VI based on ultrasound-guided fine

needle aspiration cytology (FNAC). Cervical lymph nodes with

the following characteristics were suspected of metastases:

hyperechoic changes, roundness or necrosis, loss of the fatty

hilum, microcalcification or peripheral vascularity (18). FNAC

was performed preoperatively to confirm the histopathological

diagnosis of suspicious lateral lymph nodes.

All patients underwent total thyroidectomy or thyroid

lobectomy. According to the Chinese guidelines for diagnosis

and treatment of differentiated thyroid carcinoma, on the

premise of effectively protecting the parathyroid gland and

recurrent laryngeal nerve, CND is routinely performed for

PTC patients, even in patients with cN0 central neck.

Ipsilateral CND is performed for ipsilateral lesion; bilateral

CND is performed for isthmus lesion and bilateral lesions.

According to the ATA guidelines (8) and Chinese guidelines,

lateral neck dissection (LND) is not recommended for patients

with cN0 lateral neck. In our institution, LND was performed

only in patients with high suspicion of lateral lymph node

metastasis (LLNM) based on preoperative imaging data

and FNAC.
Clinical characteristics and
sonographical features

A total of 17 variables were analyzed in this study.

Clinicopathological characteristics included sex, age, body

mass index (BMI), diabetes, BRAF V600E mutation, chronic

lymphocytic thyroiditis (CLT), maximum tumor size, the

number of foci, bilaterality, location, extrathyroidal extension

(ETE) detected during surgery, and LLNM. BMI (kg/m2) was

defined as weight (kg) divided by height (m) squared. According

to the World Health Organization-BMI standard, enrolled PTC
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patients were divided into normal (BMI < 25 kg/m2), overweight

(25 ≤ BMI < 30 kg/m2), and obese (BMI ≥ 30 kg/m2) group. The

diagnosis of CLT included any of the following: (i) elevated

antibodies to thyroid peroxidase level (>50 IU/mL), and/or (ii)

findings of diffuse heterogeneity on ultrasound, and/or (iii)

diffuse lymphocytic thyroiditis on histopathology (19). ETE

detected during surgery was defined as the primary tumor

extending through the thyroid capsule to perithyroidal soft

tissue such as perithyroidal fat, or involving strap muscles, or

extending to surrounding structures such as larynx, trachea,

esophagus, recurrent laryngeal nerve, subcutaneous soft tissue,

skin, internal jugular vein, or carotid artery (20).

Preoperative sonographical characteristics of each nodule

included the following features: nodular composition,

echogenicity, echogenic foci (calcification), shape (aspect ratio)

and margin (including irregular shape and ETE). ETE detected

by ultrasound was defined as a tumor with capsular abutment of

more than 25% of its perimeter on ultrasound (21). More than

two radiologists with 10 years of experience in thyroid cancer

ultrasound diagnosis evaluated the ultrasound images.
Feature selection

The datasets were randomly assigned 70% of datasets to the

training set (769 patients) and 30% of datasets to the validation

set (330 patients). Feature selection plays an important role in

reducing computational complexity and improving classification

accuracy. We used the LASSO Logistic regression method to

select the best predictive features from the 17 features mentioned

above, and finally got the 13 features that were most relevant for

predicting CLNM (Figure 1).
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Construction, validation, and
performance of ML-based models

Eight ML algorithms, including Logistic Regression (LR),

Gradient Boosting Machine (GBM), Extreme Gradient Boosting

(XGB), Random Forest (RF), Decision Tree (DT), Neural

Network (NNET), Support Vector Machine (SVM) and

Bayesian Network (BN) were applied in this study (16, 17,

22–24).

By using the same thresholds determined in the training set,

we further tested the predictive performance of eight models in

the independent validation set. We adopted 10-fold cross-

validation method to minimize the adverse effect of overfitting

and verify the accuracy of the models. The predictive

performance of the above models was assessed by the receiver

operating characteristic (ROC) curve and area under the curve

(AUC). The closer the AUC was to 1, the better performance of

the model. The sensitivity and specificity of the above models

were also calculated. Additionally, we employed decision curve

analysis (DCA) to assess the clinical utility of the above models

s (25).
Statistical analysis

All statistical analysis was performed by using SPSS Version

25.0 software (Chicago, IL, USA), and R software Version 3.5.3

(The R Foundation for Statistical Computing). Pearson Chi-

square test or Fisher’s exact test was used for categorical data.

Normally distributed quantitative parameters were compared by

Student’s t-test, while non- normally distributed parameters

were compared by the Mann-Whitney U test. A P value < 0.05
FIGURE 1

Selection of significant parameters in clinicopathologic variables in the training set. The values of the coefficients and the corresponding lambda
values, each curve represents each feature in the model.
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was considered statistically significant. R software (Version

3.5.3) was used to develop ML-based models and DCA.
Results

Demographics and sonographic features
of PTC patients

Table 1 shows the clinical and sonographic characteristics of

the PTC patients in the training set, validation set, CLNM-

positive and CLNM-negative group in the training set. The 1099

patients were divided into two groups randomly: approximately

769 (70%) cases were conducted as the training set, and the

remaining around 330 (30%) cases were used as the validation

set. There were no significant differences in clinicopathological

and sonographic features between the training set and the

validation set (P >0.05 for all comparisons), justifying their

use as training and validation cohorts.

In the training set, CLNM were observed in 389 (50.6%)

cases. A significant difference was found in gender between

CLNM-positive and CLNM-negative patients; 38.8% of males

and 61.2% of females were CLNM-positive patients (P<0.001).

Sonographic features, such as shape, margin and echogenic foci

were all associated with CLNM. Moreover, CLNM presented the

significant association with tumor size, the number of foci,

bilaterality, location, ETE detected during surgery and LLNM

(all P<0.05).
Feature selection

We used the LASSO Logistic regression method to further

select the optimal predictive features from the above

characteristics. The optimal set of features that were most

relevant to the prediction of CLNM included the following 13

features: sex, age, CLT, echogenicity, echogenic foci, shape,

margin, size, location, bilaterality, number, ETE detected

during surgery, LLNM (Figure 1).
Predictive performance of
ML-based models

Figure 2 and Table 2 show the predictive performance of

ML-based models. In the training set, the AUCs of LR, GBM,

XGB, RF, DT, NNET, SVM and BN were 0.744, 0.878, 0.907,

0.902, 0.692, 0.889, 0.771 and 0.781, respectively (Figure 2A). In

the validation set, the AUCs of LR, GBM, XGB, RF, DT, NNET,

SVM and BN were 0.693, 0.858, 0.849, 0.843, 0.652, 0.811, 0.750

and 0.777, respectively (Figure 2B). In the training cohort, the

XGB model performed the best, followed by RF, NNET, and

GBM. However, the sensitivity and specificity of RF were higher
Frontiers in Endocrinology 04
than that of XGB. All ML-based models except DT

(AUC=0.777) and SVM (AUC=0.824) were better than the

conventional method, LR (AUC=0.837). Apart from the DT,

All ML-based models were better than the conventional

method (LR).

Moreover, the mixed Lift curves of the eight MLmodels were

applied in the training and validation set (Figure 3). Different

from the ROC curve, the Lift curve takes into account the

accuracy of the classifier: the ratio of the number of positive

classes obtained with the classifier to the number of positive

classes obtained randomly without the classifier. XGB achieves

the best diagnostic performance among the current mix Lift

curves, followed by RF, NNET and GBM.
Clinical usefulness of ML-based models

DCA was further used to evaluate the clinical values of these

models (Figures 4). The solid black line (None line) represents

the net benefit is zero when none of patients receive CND,

assuming that all patients have no positive nodes in the central

compartment. On the contrary, the solid grey line (All line)

represents the net benefits at the time when all patients have

CLNM and receive CND. Most of these models presented better

net benefits than two control models that were represented by

solid black and solid grey lines. Four models (RF, XGB, NNET,

and GBM) performed significantly better than the others at most

of threshold points. In the training cohort, RF performed

significantly better than the others at most of threshold points,

followed by XGB (Figures 4A). In the validation cohort, GBM

performed the best at the threshold range of 0.2 to 0.4, but

sharply decreased at the threshold range of 0.4 to 0.7. RF

performed the best at the threshold range of 0.4 to 0.7, but

sharply decreased at the threshold range of 0.8 to

0.9 (Figures 4B).
Relative importance of variables in ML-
based models

Considering favorable AUCs and clinical benefits based on

the DCA, we selected XGB, RF, NNET, and GBM as the models

with the most potential for predicting CLNM in cN0 PTC

patients. By the feature selection approach, we ranked 13

variables based on their predictive importance in each

potential model. The ranks of each variable in different models

were described in Figure 5. Size, margin and sex were considered

as the relatively important variables for predicting CLNM in the

vast majority of models.

The AUCs of RF and XGB reached the highest when 9

variables were introduced (Figure 6). As for GBM and NNET

reached the highest when 11 and 10 variables were

introduced (Figure 6).
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TABLE 1 Clinical and ultrasonic characteristics of the PTC patients.

Characteristics Training set Validation set (n = 330) P value*

Total (n = 769) CLNM+(n = 389) CLNM−(n = 380) P value

Sex

Male 246 (32.0%) 151 (38.8%) 95 (25.0%) 100 (30.3%)

Female 523 (68.0%) 238 (61.2%) 285 (75.0%) <0.001 230 (69.7%) 0.581

Age (Y)

≥55 142 (18.5%) 62 (15.9%) 80 (21.1%) 64 (19.4%)

<55 627 (81.5%) 327 (84.1%) 300 (78.9%) 0.068 266 (80.6%) 0.718

BMI (kg/m2)

Normal 32 (4.2%) 21 (5.4%) 11 (2.9%) 12 (3.6%)

Overweight 467 (60.7%) 225 (57.8%) 242 (63.7%) 207 (62.7%)

Obesity 270 (35.1%) 143 (36.8%) 127 (33.4%) 0.101 111 (33.6%) 0.797

Diabetes

Absence 677 (88.0%) 349 (89.7%) 328 (86.3%) 288 (87.3%)

Presence 92 (12.0%) 40 (10.3%) 52 (13.7%) 0.146 42 (12.7%) 0.723

BRAF V600E mutation

Negative 85 (11.1%) 43 (11.1%) 42 (11.1%) 41 (12.4%)

Positive 684 (88.9%) 346 (88.9%) 338 (88.9%) 1.000 289 (87.6%) 0.513

CLT

Presence 234 (30.4%) 112 (28.8%) 122 (32.1%) 118 (35.8%)

Absence 535 (69.6%) 277 (71.2%) 258 (67.9%) 0.318 212 (64.2%) 0.083

Maximum tumor size (cm)

≤1 470 (61.1%) 176 (45.2%) 294 (77.4%) 208 (63.0%)

>1 to ≤2 201 (26.1%) 141 (36.2%) 60 (15.8%) 87 (26.4%)

>2 to ≤4 80 (10.4%) 58 (14.9%) 22 (5.8%) 28 (8.5%)

>4 18 (2.3%) 14 (3.6%) 4 (1.1%) <0.001 7 (2.1%) 0.788

The number of foci

1 513 (66.7%) 226 (58.1%) 287 (75.5%) 230 (69.7%)

2 188 (24.4%) 123 (31.6%) 65 (17.1%) 72 (21.8%)

3 or more 68 (8.8%) 40 (10.3%) 28 (7.4%) <0.001 28 (8.5%) 0.603

Bilaterality

Absence 607 (78.9%) 282 (72.5%) 325 (85.5%) 270 (81.8%)

Presence 162 (21.1%) 107 (27.5%) 55 (14.5%) <0.001 60 (18.2%) 0.275

Location

Middle/Lower 516 (67.1%) 311 (79.9%) 205 (53.9%) 235 (71.2%)

Upper 253 (32.9%) 78 (20.1%) 175 (46.1%) <0.001 95 (28.8%) 0.179

Nodular composition

Mixed cystic and solid 7 (0.9%) 4 (1.0%) 3 (0.8%) 5 (1.5%)

Solid 762 (99.1%) 385 (99.0%) 377 (99.2%) 0.727 325 (98.5%) 0.376

Echogenicity

Hyperechoic or isoechoic 25 (3.3%) 16 (4.1%) 9 (2.4%) 12 (3.6%)

Hyperechoic 731 (95.1%) 365 (93.8%) 366 (96.3%) 317 (96.1%)

Very hypoechoic 13 (1.7%) 8 (2.1%) 5 (1.3%) 0.280 1 (0.3%) 0.164

Shape

A/T ≤1 273 (35.5%) 108 (27.8%) 165 (43.4%) 128 (38.8%)

A/T >1 496 (64.5%) 281 (72.2%) 215 (56.6%) <0.001 202 (61.2%) 0.299

Margin

Smooth 487 (63.3%) 222 (57.1%) 265 (69.7%) 210 (63.6%)

Lobulated or irregular 178 (23.1%) 97 (24.9%) 81 (21.3%) 80 (24.2%)

(Continued)
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Taking into account the sensitivity, specificity, AUC, Lift

curve and DCA of the model, we chose RF as the best predictive

model in this study. The nine top-rank variables were identified

to construct the best predictive model, including size, margin,

ETE, sex, echogenic foci, shape, number, LLNM and CLT.
Discussion

At present, some risk factors related to CLNM have been

identified, such as tumor differentiation, gene types, etc (26).

However, these risk factors are only available after surgery, and
Frontiers in Endocrinology 06
they can not provide important information for the preoperative

therapeutic decisions. In addition, due to the air in the trachea and

the complex structure of the sternum and clavicle, ultrasound is

difficult to detect CLNM accurately (9, 10). Combined with the

above considerations, we incorporated some variables that can be

obtained before and during the operation to build non-invasive

and valuable ML models to predict CLNM.

The advantage of ML algorithms is their ability to

automatically learn from input data and identify patterns and

trends in these data. At present, several studies have used ML for

the differential diagnosis of benign and malignant thyroid

nodules (27, 28). In addition, ML has also been used to predict
TABLE 1 Continued

Characteristics Training set Validation set (n = 330) P value*

Total (n = 769) CLNM+(n = 389) CLNM−(n = 380) P value

ETE 104 (13.5%) 70 (18.0%) 34 (8.9%) <0.001 40 (12.1%) 0.791

Echogenic foci

None/large comet-tail artifacts 234 (30.4%) 87 (22.4%) 147 (38.7%) 104 (31.5%)

Macrocalcifications 43 (5.6%) 24 (6.2%) 19 (5.0%) 19 (5.8%)

Peripheral calcifications 7 (0.9%) 5 (1.3%) 2 (0.5%) 2 (0.6%)

Punctate echogenic foci 485 (63.1%) 273 (70.2%) 212 (55.8%) <0.001 205 (62.1%) 0.938

ETE detected during surgery

Absence 628 (81.7%) 275 (70.7%) 353 (92.9%) 284 (86.1%)

Presence 141 (18.3%) 114 (29.3%) 27 (7.1%) <0.001 46 (13.9%) 0.075

LLNM

Absence 703 (91.4%) 337 (86.6%) 366 (96.3%) 306 (92.7%)

Presence 66 (8.6%) 52 (13.4%) 14 (3.7%) <0.001 24 (7.3%) 0.468
fron
PTC, papillary thyroid carcinoma; Y, year; BMI, body mass index; CLT, chronic lymphocytic thyroiditis; A/T, aspect ratio (height divided by width on transverse views); ETE, extrathyroidal
extension; CLNM, central lymph node metastasis; LLNM, lateral lymph node metastasis.
P value < 0.05 indicates a significant difference between CLNM+ and CLNM− group in the training set.
P value* < 0.05 indicates a significant difference between training and validation sets.
BA

FIGURE 2

The mixed ROC curves of the eight machine learning models for prediction of CLNM. (A) The mixed ROC curves in the training cohort; (B) The
mixed ROC curves in the validation cohort. ROC, receiver operating characteristic; CLNM, Central lymph node metastasis; LR, Logistic
Regression; GBM, Gradient Boosting Machine; XGB, Extreme Gradient Boosting; RF, Random Forest; DT, Decision Tree; NNET, Neural Network;
SVM, Support Vector Machine; BN, Bayesian Network.
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LNM in some other malignant tumors, such as breast cancer and

osteosarcoma, etc (29, 30). However, there is little research on

the application of ML model predicting LNM in PTC patients.

Lee et al. (31) applied clinical records for 804 consecutive

patients to develop a computer-aided diagnosis system to

identify and differentiate metastatic lymph nodes in thyroid

cancer. However, the specificity of the model is relatively low,

and the screening results should also be verified by experienced

physicians. In addition, they used only one ML model and did

not compare the performance of multiple ML models in

distinguishing metastatic lymph nodes in patients with thyroid

cancer. The predictive performance of different machine

learning algorithms is different. We adopted the eight most

important ML algorithms to construct the CLNM prediction

model, and selected an optimal prediction model from these to

ensure the effectiveness.
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We first used the LASSO Logistic regression method to

exclude four variables (BMI, nodular composition, BRAF

V600E mutation and diabetes) that would affect the fitting.

And then, modeling the training set of 769 cases of data

showed that four excellent models (XGB, RF, NNET, and

GBM) performed better in both the ROC analysis and mix Lift

curves. The AUC of XGB was slightly higher than RF. However,

the RF model performed significantly better than the XGBmodel

at most of threshold points according to DCA. Therefore, we

choose RF as the best predictive model in this study to

distinguish CLNM from non-CLNM. The structure of RF is

simple. It is operated by constructing a large number of decision

trees and outputting classes as a single tree (classification) or

average prediction (regression) model. Compared with similar

methods, RF is more efficient. From a computational point of

view, RF has the advantage of handling both regression and
TABLE 2 Predictive performance comparison of the eight types of machine learning algorithms in the training and validation dataset.

Methods Training dataset Validation dataset

AUC Sensitivity Specificity AUC Sensitivity Specificity

LR 0.744 0.615 0.771 0.693 0.881 0.433

GBM 0.878 0.692 0.937 0.858 0.742 0.837

XGB 0.907 0.762 0.934 0.849 0.682 0.865

RF 0.902 0.767 0.950 0.843 0.795 0.798

DT 0.692 0.659 0.724 0.652 0.603 0.680

NNET 0.889 0.692 0.945 0.811 0.656 0.837

SVM 0.771 0.541 0.876 0.750 0.642 0.764

BN 0.781 0.674 0.755 0.777 0.675 0.792
fro
AUC, the area under the curve; LR, logistic regression; GBM, gradient boosting machine; XGB, extreme gradient boosting; RF, random forest; DT, decision tree; NNET, neural network;
SVM, support vector machine; BN, Bayesian network.
BA

FIGURE 3

The mixed Lift curves of the eight machine learning models for prediction of CLNM. The drawing process of the Lift curve is similar to the ROC
curve, the difference is that the Lift value and the robust plane pose change in opposite directions, forming the opposite form of the Lift curve
and the ROC curve. (A) The mixed Lift curves in the training cohort; (B) The mixed Lift curves in the validation cohort. CLNM, Central lymph
node metastasis; ROC, receiver operating characteristic; LR, Logistic Regression; GBM, Gradient Boosting Machine; XGB, Extreme Gradient
Boosting; RF, Random Forest; DT, Decision Tree; NNET, Neural Network; SVM, Support Vector Machine; BN, Bayesian Network.
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classification problems. High dimensional problems can also be

directly handled through RF (32). From a statistical point of

view, RF has the following characteristics, that is, the priority of

characteristics, different weight coefficients fall into different
Frontiers in Endocrinology 08
categories, and illustration and unsupervised learning ability

(33). According to previous meta-analysis of metastatic lymph

node studies, computed tomography (CT) demonstrated a

pooled sensitivity of 57% and a specificity of 85% in detecting
BA

FIGURE 4

Decision curve for predictive models based on machine learning models for prediction of CLNM. (A) The decision curve in the training cohort;
(B) The decision curve in the validation cohort. CLNM, Central lymph node metastasis; LR, Logistic Regression; GBM, Gradient Boosting
Machine; XGB, Extreme Gradient Boosting; RF, Random Forest; DT, Decision Tree; NNET, Neural Network; SVM, Support Vector Machine; BN,
Bayesian Network.
B

C D

A

FIGURE 5

Relative importance ranking of each input variable for prediction of CLNM in the machine learning models. (A) RF model; (B) XGB model; (C)
GBM model; (D) NNET model. CLNM, Central lymph node metastasis; ETE, extrathyroidal extension; LLNM, lateral lymph node metastasis; CLT,
chronic lymphocytic thyroiditis; RF, Random Forest; XGB, Extreme Gradient Boosting; GBM, Gradient Boosting Machine; NNET, Neural Network.
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CLNM, and ultrasound demonstrated a pooled sensitivity of

38% and a specificity of 91%. Combined CT/ultrasound

demonstrated a pooled sensitivity of 69% and a specificity of

81% (34). When we compared the diagnostic performance of the

RF model with that in the meta-analysis, our RF model achieved

better sensitivity (0.767) and specificity (0.950).

The connection between variables and results in most ML-

basedmodels is invisible. By using classifier-specific estimators, we

got the predictive importance of variables in each model

(Figure 5). Therefore, the nine top-rank variables were identified

to be the most important risk factors for CLNM in the RF model:

size, margin, ETE, sex, echogenic foci, shape, number, LLNM and

CLT. It is important to note that size was the largest contributor to

scores in most models (including RF, XGB and GBM), which was

consistent with other reports (35). Tumor size is widely used in

several staging systems, including the American Joint Committee

on Cancer staging system. And larger tumor size was associated

withmore aggressive features in PTC (35). Based on the combined

RF model incorporating clinicopathological and sonographic

features, for patients with several risk factors of CLNM,

prophylactic CND is strongly recommended to reduce

recurrence rates. In addition, it is recommended that

experienced surgeons perform detailed operations on these

high-risk patients, during which carbon nanoparticles

suspension injection can be used to prevent miss of small

metastatic lymph nodes. Otherwise, prophylactic CND should

be avoided to reduce complications of parathyroid glands and

recurrent laryngeal nerve. In addition, for high-risk patients who

did not undergo CND, these patients should be followed up more

closely after surgery to increase vigilance against occult CLNM.

The strength of this research lies in the innovation of

technology and method. Although CLNM is predicted by

filtering the best model from eight ML methods, there are also

limitations. The first is to retrospectively study the inherent

limitations in the design. This study is a single-center
Frontiers in Endocrinology 09
retrospective study, our results may be biased and lack

generalizability and robustness assessments. Second, the

patients who participated in our study were the local

population of China, most of whom were women. Residual

confounding variables of unmeasurable factors such as race

and region cannot be ruled out. Prospective multi-center

clinical trials need to be carried out in subsequent studies to

obtain more objective conclusions. Third, the criteria used to

evaluate ultrasound characteristics were subjective. Nevertheless,

the consistency between the observers of each feature in this

study was very good. Last, most of algorithms are invisible to

users. In the future study, by using the web-based calculator

which established based on our prediction model, we can apply

our findings to other population.

In conclusion, by incorporating clinicopathological and

sonographic characteristics, we developed ML-based models,

suggesting that this non-invasive method can be applied to

facilitate individualized prediction of occult CLNM in cN0

central neck PTC patients. The status of lymph nodes is

evaluated through the RF model, and it is recommended to

perform prophylactic CND for high-risk patients.
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FIGURE 6

Predictive performance of the RF, XGB, GBM, NNET models with different numbers of variables. RF, Random Forest; XGB, Extreme Gradient
Boosting; GBM, Gradient Boosting Machine; NNET, Neural Network.
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