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Recent advances in pedagogical research have called attention to the dynamic 
nature of the teaching and learning process in which the actors mutually influence 
one another. The understanding of how this works in the brain—the specialized 
neural networks related to this process—is often limited to neuroscientists but 
are slowly becoming available to other learning scientists, including teachers. 
A transdisciplinary approach combining the best information about observable 
teaching-learning processes from education with newer information from the 
neurosciences may aid in resolving fundamental questions in the learning process. 
Teachers’ professional formation and development is often structured in segmented 
topical ways (e.g., pedagogy, evaluation, planning, classroom management, 
social–emotional learning), to identify important content knowledge (e.g., art, 
reading, mathematics, STEM), or to appreciate life skills (e.g., collaboration, 
critical thinking, social–emotional learning). While important, knowledge about 
the brain, the organ responsible for learning, is typically absent from teacher 
education. This paper reexamines the evidence from neuroconstructivism and the 
hierarchy of learning trajectories and combines it with evidence from psychology 
and the ways humans interact during the teaching-learning process to suggest 
radical neuroconstructivism as a framework within which to organize teachers’ 
professional development. The radical neuroconstructivism framework may 
contribute to making the content knowledge of teachers’ continual professional 
development more visible.
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1. Introduction

The quality of education hinges on the quality of teachers (Barber and Mourshed, 2007; 
Engelbrecht and Ankiewicz, 2016; Boeren, 2019; Organisation for Economic Cooperation and 
Development, 2020). Teachers’ continual professional development (TCPD) covers a wide range 
of topics (e.g., pedagogy, evaluation, planning, classroom management, social–emotional 
learning), subject areas (e.g., art, reading, mathematics, STEM), life skills appreciation (e.g., 
collaboration, critical thinking, social–emotional learning), and should exists throughout one’s 
professional career (Sancar et al., 2021). There are few if any opportunities, however, for teachers 
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to learn how these topics, subject areas, and life skills are supported by 
neural networks in the brain (Dubinsky et al., 2022), and fewer still 
about how to improve them (Peters et al., 2020). Understanding the 
neural underpinnings of knowledge building in the brain—or 
neuroconstructivism—may create useable knowledge for teachers.

Placing TCPD within the “messiness” of classrooms (Tokuhama-
Espinosa, 2014) and the relevance of cultural contexts (Hammond, 
2014) may also contribute to improved learning outcomes as it 
acknowledges the ways one’s learning is influenced by other actors. 
This dynamic exchange between students-to-students and students-
to-teachers and vice versa influences what a learner takes from 
teaching and, consequently, changes what is learned (Bevilacqua et al., 
2019). Recent research shows how individuals co-construct learning 
experiences (Vieluf and Klieme, 2023), which elevates the role of 
“others” in individual learning to the extent of deserving the label 
“radical” (Von Glasersfeld, 1995, 2013). Radical constructivism 
suggests that an individual’s ability to learn is changed by context. To 
unite neuroconstructivism with the dynamic exchange of learning 
between actors, we propose a new theory of radical neurocontructivism.

The transdisciplinary field of Mind, Brain, and Education is 
uniquely positioned to support research into the theory of radical 
neuroconstructivism as it encompasses micro-level research at the 
level of neurons, to consideration of individual genetic and epigenetics 
traits, to the individual in within classroom dynamics, and all the way 
to macro-level research that consider social and cultural influences on 
learning (see Figure 1).

Despite the growth of the International Mind, Brain, and 
Education Society founded in 2007, and the Neuroscience and 
Education Special Interest Group of the European Association for 
Research on Learning and Instruction founded in 2010, advancements 

in designing a curriculum for teachers’ professional development 
around concepts from neuroscience have been few and far between. 
To explore the potential contributions of radical neuroconstructivism 
theory to benefit teacher education, the first part of this paper defines 
and uses holonic thinking, a Greek word meaning something that is 
once a part and a whole. Holonic thinking is a newer conceptual 
framework to explain the relationships between the many elements in 
the educational process. This is followed by a brief historical overview 
of teachers’ professional development between the 1980s and today, 
which shows radical neuroconstructivism as a natural outgrowth of 
past advances. The second part of the paper offers an example of early 
childhood education in math and language using studies from 
neuroscience that are the puzzle pieces of learning trajectories in these 
two domains. The paper concludes by summarizing how the how 
(pedagogy), what (curriculum), and why (Mind, Brain, and Education 
science) of radical neuroconstructivism may improve teacher 
education (Figure 2).

2. Part 1: Holons

In one of the most famous philosophical psychological 
undertakings, Arthur Koestler’s The Ghost in the Machine (Koestler, 
1967) observes that all things are both parts and wholes, which 
he  labeled holons. “A holon, as Koestler devised the term, is an 
identifiable part of a system that has a unique identity yet is made up 
of sub-ordinate parts and in turn is part of a larger whole” (Edwards, 
2003, para. 19). Later, Ken Wilber used holons to explain his All 
Quadrants, All Levels framework (AQAL), which showed the 
hierarchical nature of each part and whole (Wilber, 2001). This 

FIGURE 1

Mind, brain, and education research on multiple data collection levels (Tokuhama-Espinosa, 2017).
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allowed Gallifa (2019, p. 15) to describe “integral thinking” using a 
holonic approach to explain the complex nature of all learning 
through relationships build on hierarchies.

Based on Koestler’s definition, everything in the natural world is 
a holon. A child, for example, is a holon as he is a whole on his own, 
but he is also a part of a family. A leaf is a holon because it is a whole 
unto itself, but it can also be a part of a tree. A person’s brain is a holon 
as it is a whole entity on its own, but also part of the person’s body. 
Holonic thinking embraces the idea that not only can everything be a 
part of something bigger, but each holon can be broken down into 
smaller parts as well. The child is made up of body parts, which in turn 
are made of flesh, blood, bones, and muscles (that can themselves also 
be broken down into ever smaller parts). The leaf can also be broken 
down into fibers and chemicals, which in turn can also be broken 
down further. A person’s brain can also be broken down into different 
types of cells, proteins, and so on. In short, everything is a holon, a 
whole on its own and a part of bigger things that can also be broken 
down into smaller elements.

2.1. Holonic thinking and teachers 
professional development

Holonic thinking offers a new lens through which to view 
challenges in teaching and learning. Education is a holon. It can 
be considered a part of the Learning Sciences, as well as an academic 
field on its own, and can be  broken down into smaller elements. 
Teacher education is also a holon. It is part of Education, but can also 
be broken down into elements, such as how to teach [pedagogy and 
didactics (methodology, activities and strategies)] and what to teach 
(content, curriculum, learning how to learn). The ability to evaluate 

and give good feedback; how to use technology appropriately; what is 
needed to create inclusive classrooms; how to differentiate; the 
cultivation of social–emotional skills to nurture oneself and others, 
among other elements, are all holons and sub-elements of teachers’ 
continual education. Both pedagogy and curriculum are parts and 
wholes, as are all of the other topics and skills that contribute to good 
teaching and successful learning.

Merging the how (e.g., pedagogy) with the what (e.g., curriculum) 
of the teaching-learning dynamic yields teachers’ pedagogical content 
knowledge (TPCK) (Gess-Newsome, 2013). In contrast to general best 
practice teaching, TPCK displays a more nuanced understanding of 
the interventions that are most appropriate given a specific subject 
matter and age group. For example, the specialized knowledge 
teachers must have to anticipate the errors and knowledge of how to 
correct them differs when teaching math to 3rd graders versus 
teaching English to high school students. Shulman’s (1987) seminal 
work in this field elevated the mechanistic approach of teaching from 
a simple delivery system of facts to include a more subtle and precise 
knowledge base required of teachers both of their subject matter and 
for the correct pedagogical interventions that can be used to reach 
educational objectives.

Technology was added to TPCK around 2004 and yielded what 
many now call the TPACK (Technology, Pedagogy, and Content 
Knowledge) Model (Mishra and Koehler, 2006). Technology, and 
specifically educational technology tools, both aid traditional learning 
as in the correction of objective assessments (e.g., multiple-choice 
question quizzes), for instance, as well as force society to rethink the 
role of traditional educational design. If the only goal of schooling is to 
gain knowledge and knowledge can be learned using mobile devices, 
then why go to school at all?, one might ask. Such reflections help 
elevate the expectations of schooling and also change the expectations 

FIGURE 2

The educator as a learning scientist (Tokuhama-Espinosa, 2021a,b). Used with permission of the author.
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of what teachers’ roles are within those schools. For example, the 
existence of technology that provides content knowledge in a subject 
area like math reduces the expectation that teachers use time in class 
reciting math facts (knowledge) (Donahoe et al., 2019) and elevates 
expectations that they now use their time applying the use of that 
information (skills), or how to cultivate values around the information, 
such as learning how to think like a mathematician (attitudes) (Seufert 
et  al., 2021). Some argue that the role of school was never about 
transmitting factual knowledge, but rather to nurturing of the whole 
child (Perkins, 2009) by considering his context, likes and dislikes, and 
particular learning needs (Moon et al., 2020), and that technology can 
give teachers more time to personalize the teaching-learning 
experience (Schmid et al., 2022).

Technology has also introduced Artificial Intelligence and 
machine learning into educational processes (e.g., ChatGPT) which 
has forced teachers to pivot in ways that will likely change the 
teaching-learning dynamic forever. Whereas in the past students were 
judged by their ability to produce answers on standardized tests 
(Cunningham, 2018), large language models like ChatGPT will force 
students to come up with better questions relevant to their unique 
contexts (Lund et al., 2023). Technology can serve to make some types 
of learning more personalized and tailored to individual needs, 
enhancing learning outcomes. To learn to leverage these new 
technologies and to participate in their design, teachers will necessarily 
also need to learn more about the ways that both artificial intelligence 
and real human intelligence work. This new need has catalyzed a 
renewed interest in the learning sciences, specifically Mind, Brain, and 
Education (MBE) science.

In viewing the teacher as a learning scientist one can combine 
pedagogy, content, technology and MBE to suggest a new approach to 
teacher formation (Tokuhama-Espinosa, 2021a,b). Mind, Brain, and 
Education science adds a why to the how and what of teaching as it 
explains the reasoning behind certain teaching interventions 
(pedagogy: how) and content (curriculum: what).

As the newest addition to teachers’ basic skills, Mind, Brain, and 
Education science and the International Mind, Brain, and Education 
Society (IMBES) were founded in 2007 to help practitioners 
understand how the brain learns in order to verify the best teaching 
methods to reach the most students (Tokuhama-Espinosa, 2010). 
MBE has proven implications for pedagogical interventions 
(Tokuhama-Espinosa, 2014, 2021a,b; Wilson and Conyers, 2020) as 
well as has made inroads in curriculum (Larrison, 2013). According 
to Dubinsky et al. (2022, p. 267), “the foundational contributions from 
neuroscience regarding how learning occurs in the brain reside within 
one of Shulman’s seven components of teacher knowledge (Shulman, 
1987, p.  8), Knowledge of Students… teachers must also (and 
increasingly) know what happens inside students’ brains.” It has been 
suggested that “knowledge of learners and their characteristics” 
(Shulman, 1987, p. 8) should now include clarity about how the brain 
understands concepts in domain-specific areas (e.g., Hawes and 
Ansari, 2020), leverages emotions for better cognition (e.g., Li et al., 
2020), and co-constructs meaning making in group situations 
(Immordino-Yang et al., 2019).

Holonic thinking can be used to reframe the way we view teacher 
education and our understanding about the teaching and learning 
process. Both philosophers (e.g., Procter, 2011) and neuroscientists 
(e.g., Lamme, 2006) believe learning is based on fundamental building 
blocks of knowledge, which permit the construction of increasingly 

complex thinking (Hernández Armenta et al., 2019). Thinking is a 
holon that is part of the learning process itself, and it can be broken 
down into smaller and smaller parts. Disaggregating this thinking 
process into its smaller parts allows for a more precise understanding 
of all of the elements that contribute to how people learn both in 
classroom settings and in the world more broadly. To construct new 
learning, people build on previous knowledge using the foundation of 
what have been called core notions (Bada, 2015). Some of the building 
blocks of learning are explained in neuroscientific studies, but few 
teachers benefit from this information in their initial teacher training 
or in continual professional development (Deans for Impact, 2015). 
Furthermore, the majority of the contributions from neuroscience to 
education are related to pedagogy, not curriculum. In a review of all 
the articles from the Mind, Brain, and Education journal 2007–2018, 
just 24 of 312, less than 1%, related to curriculum (Nouri et al., 2022, 
pp.  58–59). This confirms Dubinsky and colleagues’ belief that 
“Neuroscience professional development provides neuroscience 
principles that teachers can learn and apply to distinguish among 
pedagogical choices, plan lessons, guide in-the-moment classroom 
decisions, and inform the views of students. Neuroscience does not 
directly invent new pedagogies. Rather, knowledge of neuroscience 
guides teachers in choosing appropriate pedagogies, pragmatically 
informing teaching” (Dubinsky et al., 2022, p. 267).

One potential way to extend MBE into Education both 
pedagogically and through curriculum is through radical 
neuroconstructivism. Radical neuroconstructivism is an as-of-yet 
untested theoretical framework for understanding the teaching-
learning dynamic. It is difficult to prove as it rests against the backdrop 
of a student’s prior experiences and contexts which vary greatly. It also 
depends, however, on universal building blocks, meaning some 
generalizations relating to all humans can be posited.

3. Radical neuroconstructivism

Constructivism has been used successfully as a framework to 
explain the way the mind orders the hierarchy of learning concepts, 
beginning with an approach from developmental psychology and 
spilling into education (Piaget, 1923). To construct new learning, 
people build on previous knowledge using the foundation of these 
core notions (Solis-Stovall, 2020). The individual does not live in the 
world alone, however, so many researchers, especially those in social 
learning theory (e.g., Bandura, 1977), raise the importance of 
constructivism within environments and social contexts. When the 
environment and the role of others is also incorporated into the 
constructivist learning model, this is called radical constructivism 
(Von Glasersfeld, 1995, 2013). Ernst Von Glaserfeld used the 
constructivist ideas suggested by Vico (1710), Ceccato (1964/1966), 
and Piaget (1968) to which he added on the cyclical, iterative processes 
that occurs as people try “to order the as such amorphous flow of 
experience by establishing repeatable experiences and relatively 
reliable relations between them,” (Von Glasersfeld, 1984, p. 5). Von 
Glaserfeld’s ideas were firmly grounded in strong philosophical roots 
but they carried over naturally into the teaching and learning 
environment as the means by which societies devise formal education. 
Von Glasersfeld (1984, p.  20) uses “radical” to emphasize the 
relationship of a person to reality and explains that rather than a 
“picture-like (iconic) correspondence or match, radical constructivism 
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sees it as an adaptation in the functional sense.” This means that the 
very contact with others or with new information would change a 
person’s understanding of it. An idea in one’s head about how to 
approach a problem, a work of art, or a piece of literature, is changed 
by the simple act of articulating it out loud for another person. While 
words facilitate thinking, they are not the same thing as thinking. 
One’s understanding of one’s own ideas require no explanation to one’s 
self; once put “out in the world” one must modify the choice of words 
to meet others’ levels of understanding. Furthermore, teachers must 
modify this language use to meet a variety of learners’ needs in the 
same setting. This means that what is thought cannot always 
be articulated clearly to others, resulting in the voice in our heads 
being different than the one we hear as we speak (LaValley, 2022).

A second aspect of the “radical” nature of thinking and learning 
relates to the individual themselves in time. As all new learning passes 
through the filter of prior experience (Tokuhama-Espinosa, 2008), and 
the older we get the more experiences we have, our interpretation of 
the world becomes more colored by what we  already know. For 
example, reading The Diary of Anne Frank at age 13 is different at age 
18 or 30 or 50, not because the book is different, but you and your 
context are different.

Radical constructivism emphasizes the role that others can play 
in influencing how an individual thinks about information. A person 
may have one kind of idea in their mind, but when they articulate this 
in words to another person, the idea changes Hitchcock, (2018). And 
by listening to the response of the other to the idea, the idea is again 
changed. This dynamic process of idea transformation is what turns 
constructivism within the individual into a social exchange in the 
world (De Soto, 2022). Teachers know that classroom exchanges 
between students and with themselves modify the way they think 
about information.

After radical constructivism, a newer concept from neuroscience, 
neuroconstructivism, took hold. Neuroconstructivism, like its 
predecessor constructivism, requires that lower or base level concepts 
be learned before more complex ideas can be built upon them and that 
this occurs in a neurophysiological way structuring primary networks 
before secondary ones can be  scaffolded upon them. Dekker and 
Karmiloff-Smith (2011) were some of the first to suggest that the 
combination of behavioral studies, neuroimaging, and genetics 
research in both typical and atypical populations pointed to the 
existence of neuroconstructivism. By Karmiloff-Smith et al. (2018) 
were able to formulate a new theory of human development based 
on neuroconstructivism.

“Neuroconstructivism” is a term used to explain the physical 
scaffolding of core notions and conceptual knowledge (Broadbent and 
Mareschal, 2019) “that influence the emergence of mental 
representations in postnatal development,” (Westermann et al., 2007, 
p. 75). The brain makes basic neural connections, then successively 
more complex ones based on experiences which are unique to the 
individual (Mareschal et al., 2007; Westermann et al., 2007, 2011; 
Karmiloff-Smith et al., 2018). As Westermann and colleagues pointed 
out in their seminal article Neuroconstructivism (Westermann et al., 
2007, p. 75), “Cognitive development is explained as emerging from 
the experience-dependent development of neural structures 
supporting mental representations.” The scaffolding of conceptual 
understanding permits the construction of neural networks that 
eventually become the learning manifested in observable behavior, 
such as the ability to read a story or to do a math problem. Earlier 

studies in neuroconstructivism showed that when certain fundamental 
networks were missing, a child was unable to perform certain tasks 
and future tasks that relied on that initial task. For example, a child 
can scaffold a new understanding of subtraction upon the basis of 
addition. If the child knows how to add well, then learning to subtract 
takes relatively few steps to master. However, many children have gaps 
in core notions in mathematics and because they have missing 
conceptual knowledge in addition, they are unable to easily learn 
subtraction. This is not only true for math but for every other subject 
taught in school or experienced in the real world.

In 2019, Tokuhama-Espinosa suggested that this promising new 
idea could be merged with Von Glaserfeld’s thinking and coined the 
term radical neuroconstructivism. Building off both the dynamic, 
iterative exchange of an individual with his or her surroundings, and 
the constant co-construction of neural networks of the brain’s design 
and on a natural hierarchy of conceptual knowledge, this paper 
suggests that radical neuroconstructivism can potentially create the 
framework to explain how people learn.

3.1. Meaning making

This paper suggests that the radical aspect of radical 
neuroconstructivism involves “meaning making,” made popular 
thanks to Neil Postman and Charles Weingartner’s chapter in Teaching 
as a Subversive Activity (Postman and Weingartner, 1969). In their 
work they point out that “meaning making also forces us to focus on 
the individuality and the uniqueness of the meaning maker,” (Postman 
and Weingartner, 1969, p. 91). This was a shift from prior teaching and 
learning models in which school subjects (math, language, art, history, 
and so on) were meant to be learned by all individuals in the same way 
without much consideration for the variability among students. 
Postman and Weingatner valued that the way people understand their 
world and make meaning depends to a great extent on what they 
already know and how they have already habituated responses to 
certain contexts and stimuli. When one begins with the meaning 
makers (students) in mind, and the many differences they each have, 
it becomes clear why the learning processes in school do not always 
go to plan; the individuality of the learner changes the outcomes.

To make meaning of one’s world, an individual first perceives the 
environment through the senses, as Aristotle suggested 2,500 years ago 
(Caston, 2020). This sense perception is perceived and interpreted in 
the brain by comparing what is known from prior experiences to the 
incoming information from the outside world (Tokuhama-Espinosa, 
2008). The prior experiences a person can have are grounded in both 
formal and informal learning, as well as based on life experience. Life 
experiences and a person’s environment also includes one’s culture, 
which like all social environments, influences learning (Gay, 2018). 
People then construct meaning by taking the new information that is 
being perceived in the brain and comparing it with what they already 
know from prior experiences including their cultures and contexts. 
Contexts and cultures include contact with other people in settings 
like schools and with teachers and students.

Complementary to Postman and Weingartner (1969) work is a 
newer interpretation of meaning making from Mary Helen 
Immordino-Yang’s lab. She suggests knowing how others feel 
(empathy) and think (mentalizing), then comparing that to one’s own 
thinking and feeling, helps derive meaning (Immordino-Yang and 
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Knecht, 2020). That is, seeing how others react in situations and 
comparing that to how one would act themselves in the same situation 
helps people make meaning out of the world: “Radical 
neuroconstructivism changes based on the student-teacher and 
student–student dynamics, and other human exchanges converging 
with what the student already knew about the information mediated 
by the pedagogical choices of the instructor,” (Nouri et  al., 2022, 
p.  115). The interaction with the outside world, compared with 
internal knowledge and memories, is modified by other students and 
by the teacher, making it “radical” as compared to static (Nouri et al., 
2022). Radical neuroconstructivism explains why different students 
react differently to teaching strategies and activities. The unique 
reaction of each student to what the teacher and other students do in 
the classroom changes the way the student thinks about the 
information, and ultimately how he or she learns.

Students come to class with their past experiences, their cultures, 
and their genetic profiles which then interacts with exchanges they 
have with other students, with their teacher, and the teacher’s choice 
of pedagogies. The intricate interaction between this large number of 
complex variables results in learning. As shared in Crossing Mind, 
Brain, and Education Boundaries we contend:

Rather than a simple “Teach A-Learn A” scenario, MBE (Mind, 
Brain, and Education) teachers appreciate that learning is 
complex, and influenced by multiple factors. MBE practitioners 
understand that:

(a) students come to class on an uneven playing field due to 
genetic inheritance;
(b) students do not share the same prior experiences;
(c) what the student already knows influences how they learn;
(d) knowledge, skills, and attitudes influence learning;
(e) the student’s relationship with the other learners 
influences learning;
(f) the student’s relationship with the teacher influences learning;
(g) the teacher’s execution of the methodology, strategy, or activity 
influences learning;
(h) the learner’s self-perception in the class context/environment 
influences learning;
(i) what else is vying for the student’s attention can 
influence learning.

These different actors, actions, reactions, and interactions can all 
influence learning outcomes (Nouri et al., 2022, pp. 115–116).

Taken as a whole, radical constructivism suggests that the 
individual’s conceptual knowledge of the world is shaped by what 
he or she already knows, and how, when, why, and by and with whom 
the stimuli occurs.

4. Core notions as basic building 
blocks of cognition

The concept of core notions has been posited in philosophy (e.g., 
Schaffer et  al., 2009), demonstrated in cognitive psychology (e.g., 
Tuominen and Kallio, 2020), and imaged in neuroscience (e.g., Skerry 
and Saxe, 2016). Core notions are pre-requisite knowledge at each 
stage of the learning process. Furthermore, each progressive level of 

knowledge has its own core notions and depends on those that 
proceed them (Sporns, 2022); counting has different core notions than 
calculus, for example, and calculus depends on counting. Similarly, 
higher order language depends on the lower notions that sustain 
them; the core notions within word choice are different from higher 
order language notions such as metaphorical thinking, for example. 
Metaphorical thinking, in turn, depends on word choice (Black, 1962). 
In the best-case scenario, the curriculum or order of subjects a child 
learns, should first introduce fundamental core notions and once 
mastered, advance to subsequently more complex notions.

Countries around the world use the evaluation of math and 
language as proxies for intelligence (Tokuhama-Espinosa, 2019) often 
in combination with more complex tools that depend on them, such 
as reasoning (Flanagan and McDonough, 2018). Both math and 
language are comprised of “core notions” or fundamental building 
blocks of knowledge, which permit the construction of learning and 
progressively more complex thinking (Hernández Armenta et  al., 
2019; Solis-Stovall, 2020). Examples of “core notions” include any 
fundamental or pre-requisite knowledge needed to complete a higher 
order task and are characterized by thinking states rather than process 
memorization. For example, zero (“0”) is a complex notion, which, if 
misunderstood, can lead to problems with understanding “ones” and 
“tens” and eventually decimals, negative integers, and other key 
notions in mathematics (Hansen et al., 2020). In a second example, the 
core notion of a mental number line can be used to see addition or 
subtraction problems inside one’s head (Dehaene, 2003; Haman and 
Lipowska, 2021). Problems like “1 + 2 = 3” are visualized in the mind’s 
eye and such visualization is vital to developing efficient, accurate and 
speedy arithmetic skills (Sari and Olkun, 2020). An understanding of 
zero combined with a mental number line permits a visualization and 
understanding of negative numbers, and eventually the addition and 
subtraction of both positive and negative integers (Vest and Alibali, 
2021). If zero or the mental number line are not learned by children, 
they will be unsuccessful in early math, and consequently higher math. 
Missing core notions in children are a primary reason kids “hate math” 
(Liu, 2016); the inability of teachers to identify these gaps is 
exacerbated by the fact that teachers themselves often have missing 
core notions (Ball, 2017). Missing core notions in teacher knowledge 
are also responsible for poor math and language learning by their 
students (Loch et al., 2015), signifying a systemic problem.

Unfortunately, many students advance through the education 
system with progressively complex missing core notions (Rist, 2017) 
for which teachers are unprepared. Bartelet et al. (2014, p. 657) noted 
that learning difficulties in math can spring from at least six different 
origins: “(a) a weak mental number line group, (b) weak ANS 
(Approximate Number System) group, (c) spatial difficulties group, 
(d) access deficit group, (e) no numerical cognitive deficit group and 
(f) a garden-variety group,” suggesting that a more nuanced look at 
both gaps in mathematical instruction as well as diagnosis of 
mathematical sub-types of errors is necessary to help students achieve. 
If teachers do not know about core notions or their hierarchy in 
brains, they cannot easily identify the types of errors being committed 
by students. This is an example of what Dubinsky and colleagues 
meant by improving teacher Knowledge of Students “and what 
happens inside their brains,” (Dubinsky et al., 2022, p. 267).

Research into language has also identified many core notions which 
can go unattended in early childhood education. One area that has 
received a lot of attention is vocabulary. Educational research has 
demonstrated for years that rich, age-appropriate vocabulary lays the 
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foundation for complex thinking (Hirsh-Pasek and Golinkoff, 2003) 
and that poor vocabulary is correlated with academic failure (Baker, 
1995). Hart and Risley (2003) “The Early Catastrophe,” showed a “30 
million word gap by the age of 3” for children from lower social 
economic status homes due to less exposure to rich conversational 
exchanges, fewer books in the home, and parental knowledge of 
language development (Johnson et al., 2017). Researchers warn that 
“denying the existence of the 30-million-word gap” suffered by 
underserved children “has serious consequences” (Golinkoff et al., 2019, 
p. 985). Therefore, explicit vocabulary instruction is a part of several 
early childhood training programs, but not all. Despite neuroscientific 
evidence showing that “children’s conversational exposure is associated 
with language related brain function,” (Romeo et al., 2018, p. 700) that 
do not exist without human conversation, other researchers have 
pointed out that “talk alone will not close the 30-million word gap” 
(Wasik and Hindman, 2015, p. 50) and that meaningful interactions 
with language use in varied contexts are necessary to fill in the gap. 
Appropriate word use in the right context with increasingly complex 
patterns is fundamental to language development but not all early 
childhood education programs emphasize this and not all teachers 
know vocabulary is a fundamental building block in learning.

Other core notions in language development relate to normal 
speech patterns, including the grammar and syntax that is acceptable 
in local cultural contexts. While all humans learn to speak from an 
innate language sense (Chomsky, 2000; Pinker, 2009), the parameters 
of acceptable speech differs by country (e.g., British to American), 
region (e.g., Hawaii to Texas), district (e.g., English in the Bronx versus 
English in upper Manhattan), and even neighborhood (e.g., East Los 
Angeles versus West). Furthermore, the way humans speak differs 
greatly from how they write, especially from informal to academic 
contexts (Chafe, 1985). This puts children whose core notions of 
grammar and syntax that differ from standard English in school at an 
academic disadvantage from the start (Au, 2009). When the school’s 
standard English differs greatly from the home language, students first 
need to learn the “foreign” language of school before they can 
be successful in other subjects. This sets up many for failure. Many 
find learning the school language a burden and decide they are not 
“cut out for school,” and/or “hate reading,” (Hale and Crowe, 2001), 
and too many drop out (Rumberger and Lim, 2008) for this reason. 
This paper proposes that teaching core notions in language in a more 
orderly trajectory may change students’ negative attitudes toward 
education as the neuroconstruction of core notions in an orderly way 
may ease the path by creating a more solid early learning foundation.

In this paper it is suggested that a deeper and better understanding 
of the radical neuroconstructivist building blocks of cognition may 
permit a more precise and orderly introduction of skills that would 
be coherent with the brain’s natural progression from lower-to-higher-
level knowledge. This would improve the design of the curriculum, 
allowing more children to succeed.

5. Teaching and learning: practical 
applications of radical 
neuroconstructivism

While psychology has contributed to educational best practice for 
over 100 years (Berliner and Calfee, 2014), contributions from 
neuroscience have only recently been regularly incorporated into 

teacher professional development (Deans for Impact, 2015). Thanks 
to neuroscientific insights, there have been improvements in 
pedagogy, didactics, strategies, activities, and methodologies for 
learning at all levels of education (K-16). This is especially true of new 
knowledge about the dynamic exchange between cognition and affect 
(e.g., Immordino-Yang, 2015), meaning making (e.g., Zittoun and 
Brinkmann, 2012) at the crossroads of culture and cognition 
(Rawlings and Childress, 2021), and the importance of student-
teacher relationships (e.g., Hattie and Zierer, 2017).

While how to teach has benefitted greatly from neuroscientific 
insights, what to teach has received less attention; the promise of 
neuroscientific insights into shaping the design of curriculum, such as 
in early literacy or math learning, is an underexplored area for 
educators. A key impediment to the use of neuroscientific knowledge 
in education is that the puzzle as a whole has not been constructed 
using all of the parts that are available.

6. Part II: learning trajectories and 
radical neuroconstructivism

The second part of this paper uses the examples of early years 
language and math to explain the holonic thinking from Neuroscience, 
Psychology and Education that can lead to a better neuroconstructivist 
curriculum design for schools. Education and Psychology have helped 
construct a relatively orderly curriculum (Tokuhama-Espinosa, 2019), 
which takes into consideration human variability (e.g., Mezirow, 
2018). It is possible that additional evidence from Neuroscience can 
bring a more nuanced understanding of typical gaps in notions that 
children may experience. We propose that the ability to diagnose 
missing core notions earlier will allow more timely and accurate 
interventions in early childhood education.

Learning depends on the quantity, quality, and timing of exposure 
to learning objectives (Paolini, 2015). The literature suggests the 
earlier an academic competency is introduced to a learner, and the 
stronger its subsequent constructivist development, the more likely a 
positive learning outcome in that competency (Bakken et al., 2017) 
due to the quantity and quality of exposure. The literature also suggests 
that quality experiences at pre-school benefits both kids who had 
enriching home experiences and those who did not (Fuson et al., 
2015). Klein and Starkey’s research showed that a broad socioeconomic 
gap in informational mathematical knowledge was present at the 
beginning of the pre-kindergarten year. This gap included not just 
numerical concepts and arithmetic reasoning, but also spatial concepts 
and geometric reasoning, knowledge of patterns, and nonstandard 
measurement (Klein and Starkey, 2004). One theory for this 
occurrence relates to the kinds of play experienced by different socio-
economic groups (Missall et al., 2015). This means some kids arrive at 
school with missing core notions as compared with their peers due to 
the contexts in which they were raised. Quantity, quality, and timing 
are aided by exposure to core notions in a logical order which 
strengthens neural pathways for future learning (Karmiloff-Smith, 
2009; Galván, 2010). Nowhere is this more evident than in research 
on early language development and early math.

The stimulation of language development (i.e., vocabulary, correct 
word order, social cues for interaction, and so on) begins in the home 
with the family and is generally developed further in regular school 
settings by trained educational professionals. Similarly, pre-numeracy 
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skills (ordinality as parents count a child’s fingers and toes out loud; 
magnitude as he  is given “more” or “less” of an object; symbolic 
numeric representation as he blows out the candles on a birthday cake, 
and so on) aid in the development of a child’s number sense (Dehaene, 
2011) and are cultivated in a similar pattern (Campbell, 2014) through 
adult-child interaction. High-quality early childhood education can 
play an important role in the effective development of early academic 
skills development (Campbell et  al., 2012) but requires a home 
(parent)-school (teacher) partnership with a shared plan (Missall 
et al., 2015). We suggest that by disaggregating math and language into 
sub-skills in a neuroconstructivist trajectory for mastery, we  may 
potentially improve the diagnosis of problems and aid in the selection 
of more accurate remediating activities with the goal of ensuring all 
children have a successful start to school.

It is only since the turn of the century that neuroimaging studies 
have offered definitive proof of the changes in the brain during infant 
learning. This includes cognitive development such as typical growth 
rate, myelination, top-down modulation, and changes in cortical hubs, 
(Deoni et al., 2011; Fransson et al., 2011; Holland et al., 2014; Dempsey 
et al., 2015; Emberson et al., 2015). While teachers and parents generally 
understand that infants learn at an astounding rate, few are aware that 
infants have a preverbal early number sense that permits them to 
estimate quantities, gauge relative size and judge spatial orientation 
(Dehaene, 2011). One way to make these ideas clearer to parents and 
teachers is by showing neuroconstructivist studies alongside more 
familiar learning trajectories shared by pediatricians (Morris et al., 
2020). To do this, it is important to update basic professional knowledge 
in the learning sciences for both math and language.

6.1. Four categories of networks found in 
the literature

Understanding the neural networks of learning requires holonic 
thinking in which the smallest of parts are placed in context with their 
larger wholes. Between 2013 and 2023 we reviewed over 1,000 studies 
on early math and literacy and sought to create a taxonomy of early 
learning using their content. Initially, research was limited to domain-
specific studies that looked at language and mathematical networks in 
the brain in young children. Domain-specific networks overlap 
significantly between language and math (Caravolas et al., 2012), and 
include pathways for symbols, patterns, order, relationships, and 
categories (Tokuhama-Espinosa, 2019). It soon became apparent, 
however, that while learning to read or do math involves domain-
specific areas, learning also depends heavily on the general cognitive 
abilities of memory, attention, and executive functions (specifically 
inhibitory control, cognitive flexibility, and working memory), and in 
fact, without well-functioning general cognition, it was all but 
impossible to have domain specific instruction.

In addition to domain-specific networks and general cognitive 
networks, the literature also identified numerous studies related to the 
context in which a person learns. A learner’s relationships with others 
in the class and with the teacher influence learning (Frey et al., 2019), 
as does the student’s self-esteem and belief in him or herself to learn 
(Agir, 2019). Motivation is also part and parcel of the learner context 
(Ahn et  al., 2019), and one’s awareness of the impact their social 
contexts, including culture, has an important influence on one’s ability 
to learn in a given classroom setting (Osher et al., 2020). The literature 

clearly shows the uneven playing fields upon which different children 
begin their lives. The risk and protective factors of family (parents’ 
education, SES, marital status), homes (homelessness, proximity to 
parks and libraries, daycare options), as well as the impact of culture 
and social contagion on well-being influence learning.

Finally, there were also several studies concerned with the 
physiological sensory networks related to the senses, specifically 
hearing, vision, and touch. Well-functioning sensory systems 
influence learning. While there were fewer studies about the role of 
gustatory and taste influence on learning, a student’s ability to see, 
hear, and learn through touch or haptic knowledge (Connolly, 2019) 
was vital to every learning encounter. Vision and hearing tests are 
standard procedure in many early childhood education programs, but 
not in all (Oosthuizen et al., 2023). This suggests 16 neural networks 
divided into four categories explained below (Figure 3).

The four categories have a total of 16 distinct neural networks 
within them, and those networks sub-divide into numerous pathways, 
which we define as core notions in domain areas such as math (Table 1) 
and language (Table 2). For the purposes of this paper, the neural 
pathways are considered “distinct” if one or more brain areas is 
different. For example, auditory working memory and visual working 
memory differ in the sensory input but not in memory areas and are 
treated as distinct networks (Figure 3).

6.2. Domain specific networks

The concept of “learning trajectories” (Gorard, 2006) is based on 
research into “hierarchies of skills” (Kuhn et al., 2000) and the general 
concept of constructivism proposed in the mid-1900s in which basic 
concepts are established before higher-order thinking occurs (Piaget, 
1967). We  generally presume that the curriculum structure of a 
country, state, or district should order the information we consider 
valuable to teach into the right trajectory so that students can logically 
advance from one concept to another. Curriculum structures around 
the world are surprisingly similar in terms of subject area content. The 
same subjects are taught all around the world at roughly the same time 
(Tokuhama-Espinosa, 2019), which allows for international 
comparative studies like TIMMS (Trends in International Mathematics 
and Science Study) and PIRLS (Progress in International Reading 
Literacy Study). Independent of country values, social economic 
status, culture, public-private-parochial status, political inclination, 
age group, and rural–urban status, all school systems, large and small, 
teach math and language. Language and mathematics are cornerstones 
of all educational programs worldwide (Pinar, 2013), and are vital to 
both an individual’s success as well as country competitiveness 
(Organisation for Economic Cooperation and Development, 2021). 
Among countries that conduct national exams, these are the only two 
universally tested subject areas due to the foundations they lay for 
other academic fields (Martin and Mullis, 2013), including history, art, 
the natural, social, computer, and hard sciences. Despite their 
importance, even within-country studies show there is no consensus 
on the best ways to teach core subjects such as math and language.

6.2.1. Neuroconstructivist mathematics
Constructivism can explain why some learning goals are not met. 

As mentioned earlier, a child cannot learn subtraction (learning goal) 
if he  does not understand addition (pre-requisite knowledge). To 

https://doi.org/10.3389/feduc.2023.1215510
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Tokuhama-Espinosa and Borja 10.3389/feduc.2023.1215510

Frontiers in Education 09 frontiersin.org

be  successful in basic arithmetic, he will first need to understand 
everything underpinning the concept of addition, and then make his 
way to the higher-order skill of subtraction, which involves dozens of 
core notions. If any one of the pre-requisite skills laid out in the 
hierarchy is not developed properly, the child will not be unable to 
master the new knowledge upon which it is based (Vergnaud, 1982). 
It is important to acknowledge that some children will learn to 
mechanically identify the pattern of subtraction questions and appear 
to dominate that skill, but in reality, they will simply be using extended 
working memory and knowledge of patterns to feign knowledge (Ball, 
2017). True understanding means the learner can comprehend, 
identify, explain, use, and transfer knowledge as evidenced by creating 
their own problems correctly (Ringel and Springer, 1980).

Math, like all subject area, has four categories of networks were 
sub-divided by 16 neural networks. In math, we have further divided 
the networks into smaller parts—core notions—or neural pathways. 
In our review of the literature on the neural correlates of math, 
we have identified over 130 distinct pathways (Table 1), which can 
be  observed in over 180 behaviors related to mathematical 
development. For example, the observable, visible behavior of 
counting can be observed in a classroom as the student counts on his 
fingers, counts objects, sings a song about counting, labels number 
symbols on a number line, among dozens of other activities. The 
invisible neural pathways involved in counting include decoding, 
discrimination and enumeration; distance and congruity; finger 
counting; inhibitory control and visual processing; number versus 
non-number symbols, among others (Table 1). In both math and 

language there are more observable behaviors than invisible 
networks, suggesting that the same networks sub-serve more than 
one behavior.

The main ways neuroscience can contribute to educational 
practices is by (a) assuring all neural pathways are stimulated through 
a variety of activities so that (b) all sub-skills and prerequisite 
knowledge are learned. This can be  done if (c) core notions are 
approached in an orderly, hierarchical way. Additional benefits include 
the ability to (d) identify missing core notions early, therefore (e) 
making teaching interventions more precise, which would prevent 
children from school failure.

Table 1 is not exhaustive, and offers just a sampling of possible 
core notions, some of which have additional sub-elements.

Other evidence shows how the brain learns to code 
mathematical symbols and to distinguish between “3,” “three,” and 
“***” in a triple code (Dehaene, 1992; Dehaene and Cohen, 1995; 
Dehaene et al., 2003; Schmithorst and Brown, 2004; Klein et al., 
2014), and estimate magnitude (i.e., Lourenco and Longo, 2011; 
Notebaert et al., 2011; Linsen et al., 2015; Lyons and Ansari, 2015). 
The brain also rotates shapes (i.e., Harris and Miniussi, 2003; Frick 
et al., 2013; Thompson et al., 2013; Bruce and Hawes, 2015), and 
understands the role and meaning of place value (i.e., Butterworth 
et al., 2011; Ferguson, 2015; Lambert and Moeller, 2019).

Yet other research clarifies the neural networks related to the role 
of fixed sequence (Grafton et al., 1995; Orban et al., 2011; Kidd et al., 
2012; Pariyadath et al., 2012), and how the brain determines a general 
sense of numerosity (i.e., Piazza et al., 2004, 2006; Xu et al., 2005; 

FIGURE 3

Four categories of networks found in the literature.
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TABLE 1 Examples of differences in the math literature between educational curriculum and neuroconstructivist design.

Early mathematics

Educational curriculum
(Observable, visible behavior)

Neuroconstructivist design
(Invisible neural pathways that must be stimulated to produce visible behavior)

Counting  • Decoding (e.g., Cho et al., 2011)

 • Discrimination and enumeration (e.g., Nan et al., 2006)

 • Distance and congruity (e.g., Kaufmann et al., 2005)

 • Finger counting (e.g., Soylu et al., 2018)

 • Inhibitory control and visual processing (e.g., Fan et al., 2014)

 • Number vs. non-number symbols (e.g., Zhang et al., 2012)

 • Numerosity (e.g., Zago et al., 2010; Hannula-Sormunen, 2015)

 • Sequential sensory and motor event (e.g., Kansaku et al., 2006)

 • Visual enumeration (e.g., Demeyere et al., 2012)

 • Numerical and non-numerical ordinality (Kaufmann et al., 2009; Lyons and Beilock, 2013)

Comparing and ordering  • Categories and concepts (e.g., Miller et al., 2003)

 • Format comparison (e.g., Olkun et al., 2015)

 • Number words vs. digits (e.g., Hung et al., 2015)

 • Number-size inference (e.g., Kaufmann et al., 2006)

 • Numerical analogical reasoning (e.g., Wu et al., 2016)

 • Numerical magnitude and working memory (e.g., Knops, 2006)

 • Numerical ordering and symbolic arithmetic (e.g., Knops and Willmes, 2014)

 • Ordinal representation (e.g., Attout et al., 2014)

 • Relational reasoning and symbolic distance (e.g., Hinton et al., 2010)

 • Semantic and perceptual processing of number symbols (e.g., Holloway et al., 2013)

 • Spontaneous focus on numerosity (e.g., Hannula-Sormunen et al., 2016)

 • Symbolic number comparison (e.g., Ansari et al., 2005; Mussolin et al., 2010; Goffin and Ansari, 2016)

Recognizing numbers and “subitizing”  • Difference between subitizing and counting (e.g., Yue-jia et al., 2004; Vuokko et al., 2013)

 • Difference between subitizing and estimation (e.g., Burr et al., 2010; Cutini et al., 2014)

 • Gestalt perception in visual quantification (e.g., Bloechle et al., 2018)

 • Multiple object individuation (e.g., Mazza and Caramazza, 2015)

 • Pre-attentive and serial processing (e.g., Piazza et al., 2003)

 • Tactile consciousness (e.g., Gallace and Spence, 2008)

Coding and codification  • Symbolic vs. non-symbolic number identification (e.g., De Smedt and Gilmore, 2011; Skagenholt et al., 2018)

 • Math, Letter and Other symbols (e.g., Cantlon et al., 2011; Grotheer et al., 2016)

 • Analogical thinking (e.g., Vendetti et al., 2015; Marchand and Barner, 2018; Park, 2020)

 • Abstract to symbolic to concrete (e.g., Donovan and Fyfe, 2019)

Composing numbers  • Approximate quantification categories (e.g., Gandini et al., 2008)

 • Number processing (e.g., Knops, 2017)

 • Quantifiers, numbers and numerosity (cardinality) (e.g., Wei et al., 2014; Goffin, 2019)

 • Roman vs. Arabic numbers (e.g., Masataka et al., 2007)

 • Triple code (e.g., Skagenholt et al., 2018)

Forms, shapes  • Part vs. Whole comprehension (e.g., Hallowell et al., 2015; Zambrzycka et al., 2017)

 • Shape descriptions (e.g., Dillon, 2017)

 • Shape identification (e.g., Scherf et al., 2009; Chen et al., 2021)

 • Shape reproduction (e.g., Williams et al., 2014)

 • Preliminary alignment (e.g., Ons and Wagemans, 2012; Fragaszy et al., 2015)

 • Shape mapping (e.g., Du et al., 2018)

Adding and subtracting  • Abacus mental calculation (e.g., Chen et al., 2006)

 • Adult vs. child arithmetic processing (e.g., Peters, 2016)

 • Arithmetic and language (e.g., Baldo and Dronkers, 2007)

 • Calculation (e.g., Davis et al., 2009)

 • Manual calculation (e.g., Masataka et al., 2006)

 • Mental arithmetic (e.g., Artemenko et al., 2018)

 • Mental calculation (e.g., Gruber, 2001)

 • Number sense (e.g., Dehaene et al., 2004)

 • Simple calculation (e.g., Zago et al., 2001)

 • Symbolic and non-symbolic arithmetic (e.g., Venkatraman et al., 2005)

(Continued)
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TABLE 1 (Continued)

Early mathematics

Educational curriculum
(Observable, visible behavior)

Neuroconstructivist design
(Invisible neural pathways that must be stimulated to produce visible behavior)

Multiplying and dividing  • Component processes of inductive reasoning (e.g., Jia et al., 2011)

 • Developmental dissociation (e.g., Prado et al., 2014)

 • Error detection (e.g., Kroeger, 2012)

 • Fractionating and working memory (e.g., Metcalfe et al., 2013)

 • Mental calculation (e.g., Gruber, 2001; Hanakawa et al., 2003)

 • Naming actions versus naming spatial relations (e.g., Damasio et al., 2001)

 • Problem solving (e.g., Lin et al., 2015)

 • Problem-size effect (e.g., Prado et al., 2013)

 • Working memory (e.g., Metcalfe et al., 2013)

Measuring  • Number-size interference (e.g., Kaufmann et al., 2006)

 • Numeral classifiers (e.g., Cui et al., 2013)

 • Numerical distance effect (e.g., Mussolin et al., 2013)

 • Perceptual similarity (e.g., Axelrod et al., 2017)

 • Quantity processing of quantifiers, numbers, and numerosity (e.g., Wei et al., 2014)

 • Repetition and regularity (e.g., Dehaene et al., 2015)

 • Attributes (e.g., Vingerhoets, 2008; Clements et al., 2022)

 • Comparisons (e.g., Kaufmann et al., 2006)

Naming geometric shapes  • Description (e.g., Dillon, 2017)

 • Identification (e.g., Benischek, 2018)

 • Features of (e.g., Biederman, 2013)

 • Meaning making (e.g., Voss et al., 2010)

 • Naming and spatial relations (e.g., Damasio et al., 2001)

 • Object-based attention (e.g., Ongchoco and Scholl, 2019)

 • Shape-form shading (e.g., Hou et al., 2006)

 • Unfamiliar shapes (e.g., Voss and Paller, 2010)

 • Visual perception (e.g., Pollen, 1999)

 • Visual context (e.g., Ejima et al., 2007)

 • Visual search (e.g., Fockert et al., 2004)

Ordinal(ity)  • Fixed order (e.g., Rubinsten et al., 2013)

 • Unique (e.g., Lyons et al., 2016)

 • Relative (e.g., Attout et al., 2014)

 • Counting out loud (e.g., Gordon and Ramani, 2021)

 • Rank (including before and after) (e.g., Nieder, 2005)

 • Inverse (e.g., Berch et al., 2016)

 • Sequence (e.g., Hedenius et al., 2013; Steinemann et al., 2016)

 • Place value (e.g., Varma et al., 2008; Möller, 2010; Kraut and Pixner, 2023)

Comparing geometric shapes  • Eye tracking (e.g., Verdine et al., 2017)

 • Haptic to visual (e.g., McLaughlin, 2000)

 • Letter matching (e.g., Fecteau and Enns, 2005)

 • Name and shape matching (e.g., Monaghan and Pollmann, 2003)

 • Multi-sensory processing (e.g., Hulme et al., 1987)

 • Muscle movement and tracing (e.g., Portnoy et al., 2015)

 • Small and to-scale figures (e.g., Snapp-Childs et al., 2018)

 • Spatial rotation (e.g., Knouse, 2006)

 • Tracing and copying (e.g., Bernbaum et al., 1974)

 • Visual processing in haptic representation (e.g., Kalenine et al., 2011)

Composing geometric shapes  • Manual imitation (e.g., Braadbaart et al., 2012)

 • Motor control (e.g., Palmis et al., 2017)

 • Motor expertise (e.g., Calmels, 2020)

 • Object categorization (e.g., Athanasopoulos and Casaponsa, 2020)

 • Object vs. spatial imagery (e.g., Kozhevnikov and Blazhenkova, 2013)

 • Spatial rotation (e.g., Judd and Klingberg, 2021)

 • Tactile memory (e.g., Gallace and Spence, 2009)

(Continued)
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Domahs et  al., 2010; Anobile et  al., 2013). These overlap but are 
distinct from neural networks related to approximations, estimations 
(Gilmore et al., 2014; Kibbe and Feigenson, 2015), and equivalencies 
(Mix, 1999; Hunt, 2011; Price et al., 2013; Chesney et al., 2014). There 
is also extensive work describing the brain and how it comprehends 
arithmetic, including division (i.e., LeFevre and Morris, 1999; Fehr 
et al., 2007; Grabner et al., 2009; Ischebeck et al., 2009; Andres et al., 
2011; Rosenberg-Lee et al., 2011; Venneri and Semenza, 2011; Bugden 
et  al., 2012), and grasps proportions (i.e., Sophian, 2000; Jacob 
et al., 2012).

Teachers can turn this list of neural pathways for math into 
useable knowledge in three ways. First and foremost, teachers can 
embrace the complexity of the brain and the sheer number of 
pathways involved in learning and resisting simplistic formulas for 
teaching and learning. Second, teachers can learn how observable 
behavior maps onto different types of neural networks which will help 

them better diagnose learning problems or gaps in student knowledge. 
And third, by understanding that different neural pathways are 
stimulated by different classroom and life experiences, they can select 
more efficient and effective learning interventions.

6.2.2. Neuroconstructivist language
Learning trajectories in language are similar to those found in 

math. In language, the four categories of networks were sub-divided 
by 16 neural networks that sub-divided into over 90 neural pathways. 
When matched with the educational literature, there were over 171 
observable behaviors related to early language development.

To devise elements for the educational curriculum (left column in 
Table 2) studies from public policy, pediatrics, and literacy were combined. 
These studies span from the role of parents in pre-literacy development 
as correlated with social-economic status (Fernald et al., 2013), racial 
disparity (Hoff, 2013), current practices in nursery schools around the 

TABLE 1 (Continued)

Early mathematics

Educational curriculum
(Observable, visible behavior)

Neuroconstructivist design
(Invisible neural pathways that must be stimulated to produce visible behavior)

Classifications  • Characteristics (e.g., Augustine et al., 2015)

 • Sets (e.g., Li et al., 2021a,b)

Spatial sense and motion  • Child vs. adult (e.g., Kucian et al., 2007)

 • Manual training (e.g., Wiedenbauer and Jansen-Osmann, 2008)

 • Motor development (e.g., Jansen and Heil, 2010)

 • Sex difference (e.g., Hahn et al., 2010)

 • Experience (e.g., Hertanti et al., 2019)

 • Working memory to visuomotor learning (e.g., Anguera et al., 2010)

 • Two- and three-dimensional shapes (e.g., Neubauer et al., 2010)

Patterning and early algebra  • Alphanumeric equations (e.g., Lee et al., 2007)

 • Core number systems (e.g., Abreu-Mendoza et al., 2020)

 • Gesture-based instruction (e.g., Wakefield et al., 2019)

 • Insight and ordinary problem solving (e.g., Lin et al., 2021)

 • Math symbols and numbers (e.g., Zhang et al., 2012)

 • Mathematical mindsets (e.g., Daly et al., 2019)

 • Pattern analysis (e.g., Johnson et al., 2009)

 • Relationship of words to math (e.g., Bates et al., 1992)

 • Strategies (e.g., Rosenberg-Lee et al., 2009)

 • Rhythmic patterns (Bergeson and Trehub, 2006)

 • Patterns in music (Geist et al., 2012)

Classifying and analyzing data  • Concept processing (e.g., Ghio, 2013)

 • Error detection (e.g., Kroeger, 2012)

 • Object recognition (e.g., DiCarlo et al., 2012)

 • Syntactic classification (e.g., Forkstam et al., 2006)

Equivalencies  • Spatial-numerical (e.g., Hubbard et al., 2009)

 • Matching (e.g., Emerson and Cantlon, 2012)

 • Reproduction (copying) (e.g., Gerván, 2012)

 • Decomposition (equivalencies) (e.g., Rosenberg-Lee et al., 2015; Xu and LeFevre, 2016)

 • Division (e.g., Ellis, 2015; Meng and Moriguchi, 2021)

 • Fractions (e.g., Wortha et al., 2020)

Approximations or estimations  • Calculation (e.g., Gunderson and Hildebrand, 2021)

 • Spatial orientation (e.g., Sutton et al., 2010; Cheng et al., 2013)

 • Spatial rotation (e.g., Newcombe et al., 2013)

 • Length, weight and quantity (e.g., Siegler and Booth, 2004)
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TABLE 2 Examples of differences in the language literature between educational curriculum and neuroconstructivist design.

Language and pre-literacy

Educational curriculum
(Observable, visible behavior)

Neuroconstructivist design
(Invisible neural pathways that must be stimulated to produce visible behavior)

Receptive language  • Action observation (e.g., Marshall et al., 2011)

 • Auditory discrimination (e.g., Zhao et al., 2021)

 • Follows multiple-step instructions (good working memory) (e.g., Schneider et al., 2005; Yang et al., 2014)

 • Joint attention and understanding (e.g., Woodward, 2005; Saby et al., 2012)

 • Points to appropriate object on command (e.g., Melinder et al., 2015)

 • Responds to one word commands (“no”) (e.g., Mestres Missé, 2007)

 • Speech perception and comprehension (e.g., Friederici and Männel, 2013)

 • Understands role of pointing (e.g., Gredebäck et al., 2010)

 • Semantic and syntactic sentence processing (Schneider and Maguire, 2019)

 • Speech discrimination and later grammar (Zhao et al., 2021)

 • Syntax (Klein et al., 2022)

Productive language  • Speech imitation (spontaneous) (e.g., Garnier et al., 2013; Kokkinaki and Vitalaki, 2013; Szczepek Reed, 2020)

 • Adjective generation (e.g., Zhang and Pylkkänen, 2018)

 • Affective contributions to lexical decisions (e.g., Sylvester et al., 2021)

 • First and second language speech (e.g., Petitto et al., 2012; Cristia et al., 2014)

 • From auditory to speech perception (e.g., Dehaene-Lambertz et al., 2005)

 • High frequency sounds, novel sounds (e.g., Gervain et al., 2016)

 • Human action sounds vs. other sounds (e.g., Geangu et al., 2015)

 • Intelligible speech (e.g., Khandaker, 2015; Friederici et al., 2017).

 • Morphology and syntax (e.g., Benavides-Varela and Gervain, 2017)

 • Noun generation (e.g., Schipke et al., 2012; Takashima et al., 2019)

 • Plurals and semantic numbers (e.g., Dunagan et al., 2022)

 • Sentence construction (e.g., Schneider and Maguire, 2019)

 • Syntactic processing (e.g., Oberecker et al., 2005)

 • Two-word sentences; three-word sentences (e.g., Werker and Vouloumanos, 2001)

 • Phonological processing (Powers et al., 2016)

 • Words and syntax (Takashima et al., 2020)

Vocabulary  • Meaning to object (point to correct picture) (e.g., Takashima et al., 2019)

 • Movement/gesture and vocabulary (e.g., Skoning et al., 2017)

 • Object-to-meaning (semantic memory) (e.g., Ferreira et al., 2015; Peeters et al., 2017)

 • Phonotactic processing (e.g., Steber and Rossi, 2020)

 • Social cues (e.g., Yu and Ballard, 2007)

 • Verbs vs. action verbs (e.g., den Ouden et al., 2009; Zhang et al., 2018)

 • Visual literacy and picture naming (e.g., Deetsch et al., 2018)

 • Word classification (e.g., Saccuman et al., 2006)

 • Gesture and semantic memory (de Marco et al., 2022)

Storytelling  • Alliteration (e.g., Pedott et al., 2017)

 • Audio vs. Illustrated vs. Animated (e.g., Hutton et al., 2020)

 • Beginning-middle-end (working memory) (e.g., Veraksa et al., 2020)

 • Gestures and visual support (e.g., Schaadt, 2015; Kartalkanat and Göksun, 2020)

 • Illustrations and visual support (e.g., D’Angiulli et al., 2015)

 • Intonation, prosody (e.g., Hupp and Jungers, 2013; List, 2019)

 • Lexical tone perception (e.g., Liang and Du, 2018)

 • Pitch and meaning (e.g., Morrill et al., 2015)

 • Prediction (e.g., Misyak et al., 2010; Lehne et al., 2015; Veraksa et al., 2019; Hasegawa et al., 2021)

 • Questioning (e.g., Frank et al., 2012; Schipke et al., 2012; Schouwenaars et al., 2018)

 • Rhythming (e.g., Wagensveld et al., 2013; Hurschler, 2015)

Alphabet  • Audiotactile processing (blind) (e.g., Pishnamazi et al., 2016)

 • Letters, symbols and digits (e.g., Carreiras et al., 2015)

 • Symbol vs. non-symbol recognition (e.g., Yamada et al., 2011)

 • Symbol-to-phoneme recognition (e.g., Katzir et al., 2005; Widmann et al., 2007)

(Continued)
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TABLE 2 (Continued)

Language and pre-literacy

Educational curriculum
(Observable, visible behavior)

Neuroconstructivist design
(Invisible neural pathways that must be stimulated to produce visible behavior)

Story generation  • Natural skill (e.g., Bers and Cassell, 2000)

 • Thought to text (e.g., Fayol et al., 2012)

 • Voice-to-text (e.g., Whitney et al., 2009; Fudickar, 2018; Siok and Luke, 2020; Romanovska et al., 2021)

Spelling  • Isolated impairment (e.g., Gebauer et al., 2012)

 • Lexicality (e.g., Weiss and Booth, 2017)

 • Misspelling (e.g., Purcell et al., 2011a)

 • Phonemic awareness (e.g., Katzir et al., 2005; Booth et al., 2007; Kemény et al., 2018)

 • Priming (e.g., Cao et al., 2010)

Morphology  • Prefixes and suffixes (Gao et al., 2023)

 • Morphological processing (Louleli et al., 2022)

Reading  • Fluid reading (e.g., Christodoulou, 2010)

 • Phonological processing (e.g., Orechwa, 2009; Cherodath et al., 2017)

 • Syllables to sentences (e.g., Friederici, 2005)

 • Concrete vs. abstract words (D’Angiulli et al., 2015)

 • Silently vs. aloud (Xia et al., 2018)

 • Universal reading network (Feng et al., 2020)

 • Audio-visual integration (Li et al., 2023)

 • Functional reading network (Benischek et al., 2020)

Sight words  • Rapid naming (e.g., Misra et al., 2004; Saletta, 2019)

 • Phonological and semantic processing (Mathur et al., 2020)

Sentence construction  • Sentence reading (e.g., Simos et al., 2011)

 • Transcription vs. writing (e.g., Wallis et al., 2017)

 • Syntax and semantic overlap (Fish, 2020)

Text  • Capital vs. small letters (e.g., Dehaene and Cohen, 2010; Augustine et al., 2015; Jung et al., 2015)

 • Fonts (e.g., Vinci-Booher and James, 2020; Fabiani et al., 2023)

 • Handwriting vs. print text (e.g., Longcamp et al., 2006; Downey, 2014; Roux et al., 2021)

 • Mirror reading (e.g., Dehaene et al., 2010)

 • Print vs. cursive (e.g., Gilet et al., 2011)

Handwriting  • Drawing pictures for meaning (e.g., Gansler et al., 2011; Schlegel et al., 2015; Yuan et al., 2018)

 • Geometrical shapes to letter formation (e.g., Norton, 2012)

 • Haptic memory (e.g., Gallace and Spence, 2009)

 • Motor control (e.g., Simiona, 2016; Palmis et al., 2017)

 • Tablet versus handwriting (e.g., Lin et al., 2021)

 • Word shapes and hand gestures (e.g., Nakamura et al., 2012)

Writing  • Symbol systems (Li et al., 2021a,b)

 • Central and peripheral processing (Purcell et al., 2011b)

 • Orthographic loop (Richards et al., 2012)

 • Imagined writing (Baumann et al., 2022)

 • Global networks of good vs. poor writers (Costa et al., 2022)

 • Visual-motor networks (Vinci-Booher and James, 2021)

 • Differences of pencil, keyboard, tablet (Mayer et al., 2020)

world (Halden et al., 2011); and the ways that literacy parallels other 
milestones in growth (Hoff, 2009). Furthermore, there is documentation 
of the natural ordering of language skills in children 0–6 (Luinge et al., 
2006) described as a natural hierarchy of pre-literacy skills. Literacy 
understanding from the contributions made by research from second 
language learners (e.g., Kuhl, 2011) as well as that from language learning 
delays caused by congenital defects and in cases of autism (McDuffie and 
Haebig, 2013) have also highlighted the core notions underpinning 
successful language acquisition. As with Tables 1, 2 right-hand column is 

comprised of a representative sampling of the various sub-skills or core 
notions needed to achieve the educational curriculum indicated in the 
left column.

This sampling of the many pathways found within the networks 
makes the precision of their activation more targeted than general 
guidelines found in education. For example, educators often talk 
about “language problems,” whereas a neuroscientist might speak 
about the precise problem of semantic memory, non-letter symbols 
used in reading, or the way that prosody influences meaning. 
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Educators can learn from neuroscientists as the more precise the 
diagnosis, the better, more accurate the cure. That is, if a teacher 
know the “language problem” is one of symbol-to-sound (phoneme) 
difficulties, they will use a different intervention than if the problem 
is one of semantic retrieval.

The domain-specific areas of math and language were subdivided 
into (a) innate sense (i.e., innate number sense; innate language sense), 

(b) symbols, (c) patterns, (d) order and (e) categories, and (f) 
relationships.

One way to use the terminology from Education and Neuroscience 
together is in Figure 4.

To display a transdisciplinary understanding of early math and 
pre-literacy, it is necessary to travel from visible behavior to invisible 
neural networks, as seen in Figure 5.

FIGURE 4

From academic domains to the brain and back.

FIGURE 5

From invisible core notions to the visible educational curriculum.
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The domain specific neural networks for math and language are 
important when students encounter problems limited to those subject 
areas. If the student has both math and language problems, however, 
it is more likely than not that the student has a general cognitive 
network problem (Figure 6).

6.3. General cognition networks

All domain specific learning in math and language also depend 
on general cognition as well. General cognition is founded on two core 
pillars of learning: well-functioning (a) memory systems and well-
functioning (b) attention systems (Tokuhama-Espinosa et al., 2020). 
Based on evidence from neuroimaging, both memory and attention 
make up (c) Executive Functions. Memory is sub-divided into 
complex (1) long-term memory, which in turn is divided into (i) 
non-declarative and (ii) declarative, (2) working memory, and (3) 
short-term memory. Executive Functions are sub-divided into (1) 
working memory, (2) cognitive flexibility, and (3) inhibitory control. 
Attention is sub-divided into (1) executive or sustained attention, (2) 
alerting, and (3) orienting systems (Fan and Posner, 2004). Just as each 
network in the domain specific areas of math and language sub-divide 
into numerous neural pathways (core notions), so do general cognitive 
networks. For example, long-term declarative memory networks can 
be  further divided into semantic, autobiographical and episodic 
memory pathways, and there are likely many more.

6.4. Context networks

It is now commonly accepted that the context within which one 
learns influences the learning itself (National Academies of Sciences, 
Engineering, and Medicine, 2018). The literature review revealed studies 

of learning context related to the role of (a) social contagion in learning, 
how (b) relationships with caregivers influenced learning, the role of (c) 
self-esteem in learning, and how (d) motivation impacts learning 
(Figure 7). These pathways, in turn, were sub-divided even further. For 
example, social contagion (a) was viewed differently in studies related 
to (1) cultural awareness and context as compared with (2) theory of 
mind research.

6.5. Sensory networks

All learning occurs through the senses, as Aristotle pointed out 
over 2,500 years ago. Without sensory perception no learning is 
possible, let alone math and language. Hearing, Sight, and Touch 
studies were included in the review. Smell and taste were less prevalent 
in both the neuroscientific and educational literature and were 
therefore not included though future studies should consider their 
possible roles in learning math and language (Figures 8–10).

There are 10 identifiable pathways that emerge from the 
Hearing network, including distinct pathways for (a) pitch, (b) 
tempo, (c) tone, (d) prosody, and (e) loudness. Related to 
orientation within hearing were two distinct pathways related to 
echolocation or sounds that come from the (f ) left versus right 
and from (g) foreground versus background sounds. Other 
pathways relate to the integration of sight and hearing through 
the interpretation and use of (h) hand gestures to support 
auditory compression. It was also found that the brain perceives 
and interprets (i) human voices distinctly from other sounds. 
Finally, there were multiple studies on (j) auditory processing, 
which combined sensory, motor, memory, and attention 
sub-systems.

Within Vision, it was found that there are 11 distinct pathways 
including those for (a) color, (b) luminance, (c) size, and (d) proximity. 

FIGURE 6

Neural pathways within the general cognition networks.
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Visual pathways also distinguish (e) perception vs. action, (f) motion, 
and (g) spatial–temporal contrast. It was also found that as the most 
studied human sense, (h) visual crowding, occupies a distinct neural 
pathway from (i) spatial frequency, which is also distinct from the brain’s 
ability to search and determine (j) saliency in its surroundings. Finally, 
after 40 years of debate, it appears clear that the brain distinguished (k) 
human faces from other objects (Burns and Bukach, 2019).

The sense of Touch involves at least seven different neural 
pathways, but as the least studied of the senses, it is likely that additional 
research may extend these findings related to haptics and perception. 
There are distinct neural pathways for (a) visual motor integration, (b) 
scribbling, (c) fine motor tracing, and the (d) tactile recognition of 
shapes. Additionally, (e) writing—distinct from scribbling—(f) 
drawing, and the understanding of the (g) variant expressions of 
writing (such as capital versus small letters and cursive versus print, as 
well as different font forms) are also in distinct neural networks.

Of the four types of neural networks (domain specific, general 
cognitive, context, and sensory), sensory networks have the most 

research and the longest history. The sensory networks are based on 
perception from outside stimuli and memories of stimuli. Sensory 
networks were the gateways into the other three categories of 
networks. All four network categories are vital for learning to occur 
and should become part of teachers’ knowledge. We suggest that 
sharing these 16 neural networks in teacher training can potentially 
improve teacher diagnosis of learning problems by increasing their 
nuanced understanding of “language problems” or “math problems” 
and relating them to the core notions of these subjects.

7. Discussion

On the basis of evidence from the learning sciences, we present a 
novel theory called Radical Neuroconstructivism, which is supported by 
extensive research from psychology, neuroscience, and education (Von 
Glasersfeld, 1984, 1995, 2013; Westermann et al., 2007, 2011; Dekker and 
Karmiloff-Smith, 2011; Hitchcock, 2018; Karmiloff-Smith et al., 2018; 

FIGURE 8

Neural pathways within the hearing network.

FIGURE 7

Neural pathways within the context network.
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Broadbent and Mareschal, 2019; Tokuhama-Espinosa, 2019; De Soto, 
2022). To further explain Radical Neuroconstructivism, we incorporate 
the concept of Meaning Making (Postman and Weingartner, 1969; Gay, 
2018; Immordino-Yang and Knecht, 2020; Nouri et al., 2022) and Core 
Notions as the fundamental building blocks of cognition (Skerry and 
Saxe, 2016; Rist, 2017; Hernández Armenta et al., 2019; Solis-Stovall, 
2020; Tuominen and Kallio, 2020; Sporns, 2022). We  also provide 
examples of Math and Language learning trajectories that can 
be designed using neuroconstructivist principles, with more than 100 
sources supporting each trajectory. Each of these studies holds individual 
significance and, when synthesized, we consider them to establish a 
powerful foundation for the proposed theory. We  propose that the 
theory of Radical Neuroconstructivism offers a new framework for 
teacher education.

We suggest that teacher education can be seen as a holon, a 
complex system that consists of different parts that are interrelated 
and interdependent. However, not all parts of this system have 
received equal attention from academic disciplines such as 

psychology and education. While the question of how to teach has 
been widely researched, followed by the question of what to teach, 
the why of teaching has been less explored. This is where Mind, 
Brain, and Education (MBE) science can offer valuable insights. In 
Figure 11, in the first panel (Figure 5 “From Invisible Core Notions 
to the Visible Educational Curriculum”), the child learns the core 
notions in their own brain, but that same child (second panel) 
interacts with other children and the teacher. This dynamic 
exchange in the classroom is combined with the genetics, social-
economic status and cultural context of the learner (third panel).

Evidence from MBE science can integrate the different subparts 
of teacher education by providing a better understanding of the 
why, which has been often neglected in traditional educational and 
psychological approaches. Radical neuroconstructivism is one 
framework that can inform teachers’ professional development and 
complete the holonic perspective of teaching.

In relation to the how of teaching, radical neurosconstrutivism 
suggests that teachers should encourage active exploration and 

FIGURE 10

Neural pathways within the touch (haptic) network.

FIGURE 9

Neural pathways within the vision network.
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discovery in their students, rather than transmitting information 
passively. This approach allows students to engage with the material 
in a meaningful way, and to construct their own representations 
based on prior knowledge and experience. Evidence as to why this 
is important suggests that active exploration can improve students’ 
motivation, curiosity, creativity, and memory retention.

Regarding the what, radical neuroconstructivism suggests that 
teachers should be aware of students’ developmental trajectories 
and individual differences, and tailor instruction accordingly. 
Teachers should identify difficulties and provide appropriate 
scaffolding and support to help students overcome them. Moreover, 
teachers should integrate different domains of learning in their 
curriculum to facilitate the formation of more abstract and 
generalizable representations, as well as the transfer of skills and 
knowledge across contexts.

To extend this perspective to the why, teachers need a solid 
understanding of core notions and the trajectories through which neural 
networks are constructed. This approach improves the order of skill 
acquisition by using a neuroconstructivist hierarchy, which may help 
create a more orderly curriculum built on insights from MBE science. 
Compared with MBE advancements from 2007 to present, by integrating 
research from neuroscience, psychology, and education, this new idea 
has the potential to inform the design of curriculum and instructional 
strategies that not only consider the what and how of teaching, but also 
the why, ensuring alignment with the brain’s natural learning processes.

In conclusion, MBE science offers a hol(on)istic perspective on 
teacher education that takes into account the what, how, and why of 
teaching and learning. Radical neuroconstructivism is a useful 
framework for organizing teachers” professional development and 
applying insights from MBE science into curriculum design and 

instructional strategies. By using MBE science to inform teaching 
practices, teachers can create a more effective and engaging learning 
environment for students.
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FIGURE 11

Radical neuroconstructivism in context.
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