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Understanding the relationship between symbolic numerical abilities and individual differences in
mathematical competencies has become a central research endeavor in the last years. Evidence
on this foundational relationship is often based on two behavioral signatures of numerical
magnitude and numerical order processing: the canonical and the reverse distance effect. The
former indicates faster reaction times for the comparison of numerals that are far in distance (e.g.,
2 8) compared to numerals that are close in distance (e.g., 2 3). The latter indicates faster reaction
times for the ordinal judgment of numerals (i.e., are numerals in ascending/descending order)
that are close in distance (e.g., 2 3 4) compared to numerals that are far in distance (e.g., 2 4 6).
While a substantial body of literature has reported consistent associations between the canonical
distance effect and arithmetic abilities, rather inconsistent findings have been found for the
reverse distance effect. Here, we tested the hypothesis that estimates of the reverse distance
effect show qualitative differences (i.e., not all participants show a reverse distance effect in the
expected direction) rather than quantitative differences (i.e., all individuals show a reverse
distance effect, but to a different degree), and that inconsistent findings might be a
consequence of this variation. We analyzed data from 397 adults who performed a
computerized numerical comparison task, a computerized numerical order verification task
(i.e., are three numerals presented in order or not), a paper pencil test of arithmetic fluency, as
well as a standardized test to assess more complex forms of mathematical competencies. We
found discriminatory evidence for the two distance effects. While estimates of the canonical
distance effect showed quantitative differences, estimates of the reverse distance effect showed
qualitative differences. Comparisons between individuals who demonstrated an effect and
individuals who demonstrated no reverse distance effect confirmed a significant moderation on
the correlationwithmathematical abilities. Significantly larger effectswere found in the groupwho
showedan effect. These findings confirm that estimates of the reverse distance effect are subject
to qualitative differences and that we need to better characterize the underlying mechanisms/
strategies that might lead to these qualitative differences.
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INTRODUCTION

In the past years, there has been an increase in interest to better
understand the cognitive foundation of symbolic numerical abilities
and its relationship to arithmetic and mathematical competencies.
This upsurge has emerged from the observation that arithmetic
abilities are equally important for life success as literacy (Parsons and
Bynner, 2005) and that deficits in this domain can have detrimental
effects on individuals wellbeing aswell as on nation’s economy (Gross
et al., 2009). Results of this research have provided evidence that
measures of two symbolic concepts are associated with arithmetic
abilities: numerical magnitude (i.e., knowledge about which numeral
is larger or smaller) and numerical order (i.e., knowledge about the
relative rank or position of a numeral with a sequence).

The existing evidence on the relationship of these basic numerical
abilities with arithmetic abilities is largely based on two behavioral
signatures: The canonical distance effect and the reverse distance effect.
The canonical distance effect emerges when participants decide as fast
as possible, withoutmakingmistakes, which of two numerals is larger/
smaller (e.g., 2 6). Reaction timemeasures of this comparison task have
been shown to be inversely related to the numerical distance of the
numerals (Moyer and Landauer, 1967). In other words, participants
are faster when the distance between the numerals is larger (e.g., 8 2)
compared to when it is smaller (e.g., 2 3). The canonical distance effect
is a well replicated finding (e.g., De Smedt et al., 2009; Holloway and
Ansari, 2009; Lonnemann et al., 2011; Sasanguie et al., 2012; Vogel
et al., 2015; Goffin and Ansari, 2016) and, although still debated, it is
assumed to reflect the internal representation of numerical quantities
(Moyer and Landauer, 1967; for alternative explanations see; Van
Opstal et al., 2008; Zorzi and Butterworth, 1999).

Individual differences of the canonical distance effect show a
consistent negative correlation with arithmetic performance
(i.e., the smaller the canonical distance effect, the better arithmetic
performance) in children (e.g., De Smedt et al., 2009; Holloway and
Ansari, 2009; Lonnemann et al., 2011; Sasanguie et al., 2012; Vogel
et al., 2015) as well as in adults (e.g., Goffin and Ansari, 2016;
Maloney et al., 2010). In other words, individuals who perform better
in arithmetic demonstrate a smaller canonical distance effect
compared to individuals who perform worse, possibly due to a
more precise representation of symbolic numerical quantities
(Holloway and Ansari, 2009). Significant differences in the size of
the canonical distance effect have also been reported for individuals
with learning difficulties (i.e., developmental dyscalculia; e.g.,
Ashkenazi et al., 2008; Delazer et al., 2006; Price et al., 2007;
Rousselle and Noël, 2007). Together, these findings indicate a
significant correlative association with arithmetic and
mathematical abilities, which a meta-analysis quantified with a
small effect size of r � 0.1351 (Schneider et al., 2017; for a review
see; De Smedt et al., 2013).

The reverse distance effect relates to the numerical order verification
task (Franklin et al., 2009; Lyons and Beilock, 2011). In this task
participants verify as fast as possible, without making mistakes,
whether the order of three numerals is correct (e.g., 2 3 4) or
incorrect (e.g., 3 4 2). Several studies have shown that ordinal
judgment tends to be faster for adjacent numbers (e.g., 2 3 4)
compared to distant numbers (e.g., 2 4 6) in the correct order
condition (i.e., numbers that are in correct ascending or
descending order). Because of its opposite direction, i.e., faster
reaction times for small distances, the effect has been labeled as the
reversal of the canonical distance effect (Turconi et al., 2006; Franklin
et al., 2009; Lyons and Beilock, 2011; Lyons and Beilock, 2013). Several
studies have confirmed the existence of a reverse distance effect in
children (Lyons and Ansari, 2015; Vogel et al., 2015) as well as in
adults (Franklin et al., 2009; Lyons and Beilock, 2011; Lyons and
Beilock, 2013;Vogel et al., 2017;Vogel et al., 2019;Vos et al., 2017; Sella
et al., 2020). And although the nature of the reverse distance effect is not
well understood, some research indicates that it is associated with an
effective retrieval mechanism of learned ordinal sequences from long-
term memory (Lyons et al., 2016; Sasanguie and Vos, 2018; Vogel
et al., 2019; Sella et al., 2020; Sommerauer et al., 2020). While items
with larger distances might be solved via a sequential and procedural
comparison process (e.g., 2 4 6 � 2 > 4 and 4 > 6), small distances
(especially consecutive items)might be retrieved as sequence-lists (e.g.,
chunks, Dehaene et al., 2015) from long-term memory.

In contrast to the canonical distance effect, inconsistent
findings have been reported in the few studies that have
investigated the correlative association between the reverse
distance effect and arithmetic abilities. Some studies have
found a negative (i.e., the smaller the reverse distance effect,
the better arithmetic performance; Goffin and Ansari, 2016),
while other studies have found a positive (i.e., the larger the
reverse distance effect, the better arithmetic performance; Vogel
et al., 2019) or no relationship at all (Orrantia et al., 2019; Vogel
et al., 2015; Vogel et al., 2017; Vos et al., 2017). These findings are
in contrast to the consistently positive correlations reported for
the canonical distance effect.

One possible explanation for the inconsistent findings is that
the reverse distance effect is not a quantitative (i.e., all individuals
show a reverse distance effect, but to a different degree), but
rather a qualitative measure of individual differences (i.e., not all
participants show a reverse distance effect in the expected
direction; see also Faulkenberry and Bowman, 2020; Haaf and
Rouder, 2019). More specifically, the involvement of two (or even
more) strategies in the numerical order verification task could
introduce combinatorial variations that lead to qualitative
differences in how the task is performed. As discussed above,
the processing of ordinal information has been associated with at
least two different strategies: an effective retrieval of learned and
automatized sequences (mainly used with small distances; e.g., 1 2
3) and a less effective sequential magnitude comparison process
(mainly used with larger distances; e.g., 2 4 6). Individual
variations of these strategies could result in qualitative
differences (e.g., some might use magnitude comparison
mechanisms more often than others) that might have
obscured the correlation of the reverse distance effect with
arithmetic and mathematical abilities in previous studies.

1Please note that the calculated effect size did not differentiate between the
canonical distance effect derived from symbolic (i.e., using Arabic numerals)
and non-symbolic (i.e., dot arrays) comparison tasks. Since larger correlations
with mathematical abilities are typically observed with symbolic measurements
(De Smedt et al., 2013; Schneider et al., 2017), a larger effect size might be expected
for the symbolic canonical distance effect.
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Evidence to answer this question is extremely sparse, since
existing studies have assumed a quantitative structure for the
reverse distance effect (e.g., Goffin and Ansari, 2016; Vogel et al.,
2017; Vogel et al., 2019). The possibility of a qualitative structure
has, to the best of our knowledge, not been systematically
investigated or described. Nevertheless, important information
can be gained from studies that have investigated both distance
effects within the same individuals. For instance, (Goffin and
Ansari, 2016) collected data from a sample of 68 adults. The
participants performed a computerized numerical comparison
task to measure the canonical distance effect, a numerical ordinal
verification task to measure the reverse distance effect and a test of
arithmetic performance (i.e., Woodcock Johnson III Tests of
Achievement; Woodcock et al., 2001). The results of the
reaction time analyses showed that the distance effect
measures were uncorrelated with one another (r � 0.17, p �
n.s.) and that both effects explained unique variance in their
relationship with arithmetic performance (canonical distance
effect: r � −0.310, p < 0.05; reverse distance effect: r � −0.422,
p < 0.01). However, the authors did not assess the structure of
individual differences for the reverse and the canonical distance
effect in detail. Figure 2 of that study (p.73; Goffin and Ansari,
2016) indicates that some individuals did not show the expected
reverse distance effect in the ordinal verification task but the
opposite: a canonical distance effect. This finding contrasts the
numerical comparison task in which almost all individuals
showed the expected canonical distance effect. Thus, the result
pattern indicates that estimates of the reverse distance effectmight
be subject to qualitative differences, while estimates of the
canonical distance effect might be of quantitative nature.

In the present work we tested this hypothesis and explored
whether a qualitative individual differences structure for the
estimates of the reverse distance effect moderate the association
with arithmetic and more complex forms of mathematical
abilities. We used the approach of Haaf and Rouder (2017)
and Haaf and Rouder (2019) to investigate the structure of
individual differences for the estimates of the reverse and the
canonical distance effects. Their Bayesian approach instantiates
different models which place varying levels of constraint on
individual differences. Key among these are two models which
reflect qualitative and quantitative individual differences: an
unconstrained model and a positive-effects model. The
unconstrained model allows individual differences to vary
among all possible values (positive or negative), and thus
reflects qualitative differences. The positive-effects model
assumes that all effects are positive. This model reflects
quantitative differences—since all individuals show an effect in
the expected direction (positive values) the only variation is in the
magnitude of the effect. The common-effect model places even
more constraint on individual variation by assuming that
everyone’s distance effect is the same value (i.e., there is an
effect in the expected direction, and the size of the effect is
equal across individuals). The null model is the most constrained
and it specifies that the effect is zero (i.e., there is no effect across
all individuals). The best model fit is then tested using a Bayes
factor model comparison. This novel approach has been
successfully implemented to test the structure of individual

differences in numerical priming effects (Haaf and Rouder,
2019), location and color Stroop effects (Haaf and Rouder,
2019), numerical size congruity effects (Faulkenberry and
Bowman, 2020), and the truth effect (Schnuerch et al., 2020).

As an alternative, clustering methods (e.g., latent profile
analysis) could be used to model individual differences in the
various distance effects. Such methods work by collapsing the
high dimensional space of response variables into configural
profiles (or clusters), allowing the analyst to classify
individuals based on cluster membership. One limitation of
such methods is that they do not clearly account for the
qualitative distinctions between positive and negative effects.
As Haaf and Rouder (2019) point out, a cluster analysis would
likely place two individuals with true distance effects of −20 and
20 ms into the same cluster, whereas two individuals with true
effects of 20 and 200 ms would not be placed together. We believe
that the distinction between positive and negative distance effects
is important, as each points to a different theoretical mechanisms
of number processing. Thus, instead of using a single model (e.g.,
a clustering model), we compared several different models, each
of which specified a different level of constraint on the true
distance effects that could be present among individuals.

Using data from a group of adults who performed a
computerized numerical comparison task, a numerical order
verification task, a paper-pencil test of arithmetic fluency, as
well as a standardized measure assessing mathematical abilities,
we tested the following hypotheses: 1) Is there a canonical and a
reverse distance effect on the group level? Based on a large body of
evidence we expected to replicate a) significant faster reaction
times for large distances compared to small distances in the
numerical comparison task, and b) significant faster reaction
times for small distances compared to large distances in the
correct order condition of the numerical order verification task.
2) Are individual differences in the distance effects quantitative or
qualitative? Based on our hypothesis described above, we
expected that the best Bayesian model fit for the estimates of
the reversed distance effect would be an unconstrained model
(i.e., not all participants show a distance effect in the expected
direction), while the best fit for the estimates of the canonical
distance effectwould be a positive-effect model (i.e., all individuals
show a canonical distance effect, but to a different degree). 3) Do
the model estimates of the reverse distance effect moderate the
association with arithmetic and mathematical abilities? Based on
our hypothesis, we expected that if the estimates of the reverse
distance effect are subject to qualitative differences, the correlative
association with arithmetic and mathematical abilities should be
significantly larger in a selected group of individuals who truly
show a reverse distance effect, in comparison to a group of
individuals who show no evidence for a reverse distance effect.

METHODS

Participants
We collected behavioral data from 450 adult participants (273
females; Mage � 22.32; SD � 4.66, range � 17–50). From this data
set, we removed individuals with missing data (n � 18) and
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individuals who reported neurological disorders and/or learning
disabilities (n � 35). Thus, the final sample comprised 397 healthy
participants (258 females; 354 right-handed, 29 left-handed, 14
ambidextrous) with a Mage of 22.32 (SD � 4.74; range � 17–50)
years. All subsequent analyses are based on this final sample.
Approximately 43% of the participants were students and
reported to be enrolled in psychology, 19% in science, 18% in
humanities, 11% in engineering, 5% in law or economics, and 3%
without categorization. All participants gave written informed
consent prior to participation and received feedback regarding
their intellectual abilities after testing as incentive for taking part
in the study. The local ethics board of the University of Graz
approved the study.

Materials
RawData, analyses scripts and supplementalmaterials can be accessed
via the open science framework (OSF) using the following link: https://
osf.io/jvmc2/?view_only�64abdcbd0cac4ca0b8154ebbcc4437a2.

Numerical Comparison Task
Two single-digit numerals were horizontally presented on a
computer screen (e.g., 2 8), and participants had to indicate as
accurately and as fast as possible which of the two numbers is
numerically larger (see Figure 1A; see also supplemental
materials for a detailed list of the stimuli). The reason for
including only single-digit numbers is that the comparison (or
the ordinal verification) of two-digit numbers introduces
additional reaction time effects that are not the focus of the
present work (e.g., compatibility effect, decade crossing; Franklin
et al., 2009; Nuerk et al., 2001). Therefore, the stimuli consisted of
the Hindu-Arabic numerals 1 to 9. In half of the trials, the larger
numeral was presented on the left side. In the other half, the larger
numeral was presented on the right side. The numerical distance
between the numerals (i.e., inter-item distance) was

systematically manipulated to measure the canonical distance
effect. We categorized trials (80 in total) into small (40 trials with a
numerical distance of one and two: e.g., 2 3; 5 3) and large inter-
item distance trials (40 trials with a numerical distance of five and
six: e.g., 2 7; 8 2).

The presentation of the stimuli started with a fixation
(500 ms), then the two numerals were simultaneously
presented until a key response was given (maximum
presentation time of the two numerals 1500 ms), followed by a
blank screen with a variable jitter (calculated as the difference
between 1500 ms and the response time of the trial). Reaction
time data were recorded to estimate individual’s canonical
distance effect for correct trials.

Numerical Order Verification Task
This task was adapted from Vogel et al. (2017) and Vogel et al.
(2019). Three single-digit Arabic numerals were horizontally
presented on a computer screen (see Figure 1B; see also
Supplementary Material for a detailed list of the stimuli) and
participants had to evaluate, as accurately and as fast as possible,
whether the three numbers represent a correct (e.g., 2 3 4) or
incorrect numerical order (e.g., 2 4 3). Again, only single-digit
numbers were used to avoid additional reaction time effects. The
stimuli consisted of the Hindu-Arabic numerals 1 to 9. In half of
the trials, the numerals were arranged in a correct ascending/
descending order (e.g., 2 3 4; 6 5 4). In the other half, the numerals
were arranged in an incorrect mixed order (e.g., 2 4 3; 4 2 3).
Again, the inter-item distance was manipulated in order to
measure the reverse distance effect. We categorized items into
small (30 trials with a numerical distance of one: e.g., 2 3 4) and
large distance trials (30 trials with a numerical distance of two or
three: e.g., 2 4 6, 2 5 8).

Stimuli presentation started with a fixation cross (500 ms),
then the three numerals were simultaneously presented on the
screen until a key response was given (maximum presentation
time of 2000 ms). A blank screen with a variable jitter (calculated
as the difference between 2000 ms–response time) was presented
at the end of each trial. We recorded reaction time data to
estimate the reverse distance effect for the correct order condition.

Arithmetic Fluency
We assessed arithmetic performance with a paper-pencil task
designed in our laboratory (Schillinger et al., 2018; Vogel et al.,
2017; Vogel et al., 2019; the assessment with all items can be
found on OSF) based on the French kit test (French et al., 1963).
The task measures the ease with which individuals can solve small
and large multiplications, additions, and subtractions problems.

Small problems include 64 single-digit multiplications (e.g.,
5 × 7), 128 single-digit additions (e.g., 4 + 7), and 128 subtractions
with a minuend between 4 and 20 and a single-digit subtrahend
(e.g., 16–8). Research has shown that adults solve such simple
arithmetic problems, especially multiplications and additions, by
retrieving the respective solution from long-term memory
(Ashcraft, 1992; Campbell and Xue, 2001; Grabner and De
Smedt, 2011).

Large problems included 60 problems for each operation.
Multiplications were composed of a double-digit number

FIGURE 1 | Timing of a trial in (A) the numerical comparison and (B) the
numerical order verification task. After showing a fixation cross, the numbers
were presented on the screen. Participants responded via a button press.
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(smaller than 100) and a single-digit number (e.g., 39 × 5),
additions required to sum up three double-digit numbers (e.g.,
30 + 98 + 59), and subtractions consisted of two double-digit
numbers (e.g., 82–31). Research has shown that such complex
arithmetic problems usually require the application of an
arithmetic procedure to be solved (Ashcraft, 1992; Campbell
and Xue, 2001; Grabner and De Smedt, 2011).

In the test session, participants solved as many problems as
possible on each sheet (the operations were printed on separate
sheets) within a limited time (90 s for small and 120 s for large
problems). Instead of a composite score, we calculated scores
(number of correctly solved items) for each operation and
problem sizes (i.e., small subtraction, large subtraction, small
additions, large additions, small multiplications, and large
multiplications).

Mathematics Test (M-PA)
We used the short version of the German mathematics test for
selection of personnel (Mathematiktest für die Personalauswahl,
M-PA; Jasper and Wagener, 2011) to asses individual differences
in higher-order mathematics. The M-PA was developed to assess
mathematical competencies of individuals with at least lower
secondary education between the ages of 16 and 40. The short
version consists of 31 mathematical problems with a multiple-
choice (MC) or open answer (OA) format. Problems cover a wide
range of mathematical topics including fractions (3 OA),
conversion of units (3 OA), exponentiation (7 OA), division
with decimals (2 OA), algebra (1 MC), geometry (1 MC), roots (7
OA), and logarithms (7 OA). Following instructions, participants
had a total of 15 min to solve the problems. The short version of
the M-PA has been reported to have good internal consistency
(Cronbach alpha � 0.89) and to be highly correlated with the long
version of the M-PA (r � 0.93), which contains a total of 77 items
(Jasper and Wagener, 2011). We calculated the total number of
correctly solved items for our statistical analysis.

Procedure
Data collection took place between 2015 and 2019 in a group
testing room at the Institute of Psychology, University of Graz, as
part of a larger and ongoing investigation. We tested participants
in small groups (the size of each group varied from four to twelve
individuals). Upon arriving, participants were seated in front of a
computer screen and a test booklet. Participants worked through
the test booklet and took a pause whenever they reached a page
with a red stop sign. For all speeded tests (e.g., M-PA: 15 min and
arithmetic fluency test: 10.5 min), our experimenters took the
time and informed participants when they had to stop working on
the respective test. Please note that in addition to the above-
described tasks, the test booklet contained several additional
assessments (e.g., tests assessing creativity and personality as
well as questionnaires on math anxiety and general anxiety)
that are not within the scope of the present study. At the end,
participants were asked to answer demographic questions
regarding sex, age, field of study, and final high school grade
in mathematics.

Next, we collected the data from the computerized tasks. The
computerized tasks (i.e., numerical comparison task and the

numerical order verification task) were presented on a Dell
computer (Windows 10 64-bit operating, Intel i5-4590
processor @ 3,3 gigahertz and 8 gigabyte ram) with the stimuli
presentation software Psychopy (version 1.85.3; Peirce, 2008).
Stimuli were visualized with a Samsung S24C450 monitor (24
inch) using a sampling rate of 60 Hz. Before each task,
participants solved 6 practice trials in which they received a
feedback on whether their response was correct or incorrect. The
entire testing took about 2h and 30 min.

MODELING AND ANALYSIS

We used frequentist and Bayesian analyses to answer the
questions of this project. All statistical analyses, including
Bayesian modeling of individual differences, were calculated in
R (R Core Team, 2020). Descriptive statistics provide cumulative
information about all variables and their distributional
properties, whereas inferential statistics are based on reaction
time data (see also Goffin and Ansari, 2016).

Testing Distance Effects on the Group Level
First, we calculated two analysis of variance (ANOVA) for
repeated measurements, including inter-item distance
(distances 1, 2, 5, 6 in the numerical comparison task, and
distances 1, 2, 3 in the numerical ordinal verification task) as
the main factor. Greenhouse Geisser corrected estimates
(Greenhouse and Geisser, 1959) are reported as the data
violated the assumption of equal variance differences across
the conditions (Mauchly’s test of sphericity are all p < 0.05;
Field et al., 2012). We used pairwise t-tests, corrected for multiple
comparisons (false discovery rate (FDR) method; Benjamini and
Hochberg, 1995), to test for significant differences between the
single inter-item distance conditions. Partial-eta (ƞp2) and
Cohen’s d are reported as effect sizes for the ANOVA and t-tests.

Testing the Model Fit of the Distributional
Properties of the Distance Effects
In a second step, we tested the hypothesis of a qualitative model of
the estimates of the reverse distance effect (i.e., not all participants
show the expected reverse distance effect) and the hypothesis of a
quantitative model of the estimates of the canonical distance effect
(i.e., all individuals show the expected canonical distance effect, but
to a different degree). To investigate the structure of individual
differences, we used the approach of Haaf and Rouder (2017) see
also Faulkenberry and Bowman (2020) to develop and to test a set
of four hierarchical Bayesian models. Thus, each of these models
reflects a different underlying distributional structure of the
distance effects θi (see Supplemental Material for a more
detailed description of model specification):

1) The unconstrained model places no constraints on the
individual distance effects. In this model, we allow subjects’
distance effects to vary among all possible values (positive or
negative), so we use this model to capture qualitative
individual differences.
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Mu : θi ∼ Normal(ν, η2) (1)

Here ν and η2 represent the mean and variance, respectively, of
the distribution of individual distance effects θi. The values of ν
and η2 are estimated from the observed data.

2) The positive-effects model places constraints on the
distribution of the distance effects by assuming that all
distance effects are positive. Thus, we use this model to
capture quantitative differences.

M+ : θi ∼ Normal+(ν, η2) (2)

3) The common-effect model places even more constraint on the
distribution of the distance effects by assuming that everyone’s
distance effect is the same value.

M1 : θi � ν (3)

We note that if the common-effect model is the best predictor of our
observed data, then such results would call into question the efficiency
of our experimental design as a test to elicit individual differences.

4) The null model is the most constrained of the four, and it
specifies that each participant’s distance effect is zero:

M0 : θi � 0 (4)

In this model, any observed variation in response times would be
due to sampling noise.

We then used Bayes factors (Jeffreys, 1968; Kass and Raftery,
1995) to test which of the four competing models is the best
predictor of our observed data. Bayes factors index the relative
predictive adequacy of two models by comparing the marginal
likelihood of observed data under one model compared to another
(Faulkenberry et al., 2020). For example, a Bayes factor of 5
indicates that the observed data are five times more likely under
onemodel compared to another (see also SupplementaryMaterial
for a more detailed description of the procedure). To find out how
much these results depended on our choice of prior specification,
we also conducted a sensitivity analysis (see also Supplementary
Material for prior specification). For this we adjusted the prior
scales on the size of our expected reverse and canonical distance
effects, relative to overall variability as well as on the by-subject
variability of the effect, relative to overall variability.

In the case that the model comparisons reveal evidence for an
unconstrained model (i.e., qualitative individual differences), we
further classified individuals according to the type of distance effect
individuals exhibited; that is, either positive, negative, or
undecided. If at least 75% of the posterior samples for a specific
θi were positive [i.e., p(θi > 0 |data)> 0.75], we classified subject i’s
distance effect as “positive”. On the other hand, if at least 75% of
the posterior samples were negative [i.e., p(θi < 0 |data)> 0.75], we
classified subject i’s distance effect as “negative”. In cases where less
than 75% of the samples were positive or negative, we classified
subject i’s distance effect as “undecided”. Based on this
classification we calculated the percentage of individuals who
showed a “positive”, a “negative” or no (undecided) distance
effect. The benchmark for choosing a positive/negative

classification was based on a similar classification by Schnuerch
et al. (2020). Please note that a posterior probability of 0.75 equates
to an odds ratio of 3-to-1, which is considered a minimum
threshold of evidence in Bayesian model comparison.

Testing the Associations of the Reverse
Distance Effect With Arithmetic and
Mathematical Performance
Based on the above model specification, we estimated individual
distance effects θi for each subject and distance effect. This was
done by obtaining 10,000 posterior samples from the unconstrained
model for the parameters θi. Then, the estimate θ̂i of each subject’s
distance effect θi was defined as the mean of these posterior samples.

We then used these individual estimates to explore the impact of
a possible qualitative distribution on the association with arithmetic
and mathematical performance measures. More specifically, we
analyzed whether the size of the correlation coefficients differs as a
factor of whether we include all individuals (as has been done in
previous research) or a selection of individuals (individuals with
evidence for a reverse distance effect) into the analysis. In the first
analysis, we used the entire sample (regardless of whether
individuals showed a distance effect or not) to calculate zero-
order and partial correlations (controlling for age and the other
distance effect) between the distance effects and our measures of
arithmetic fluency (i.e., small and large subtractions, additions and
multiplications) and mathematical competencies (M-PA).

We then repeated the above described correlation analyses
with two selected groups: one group in which all individuals
showed a “positive” reverse distance effect, and another group in
which individuals showed “no-positive effect”.

Finally, we tested whether the size of the observed correlation
coefficients differed across these groups. In other words, we tested
whether correlation coefficients (e.g., the correlation between reverse
distance effect and small subtraction problems) in the “positive
effect” group are significant larger compared to the “no-positive
effect” group. We used r.test from the psych package (Revelle, 2020)
to test for the significance of correlation differences between two
different sample sizes. For this a z-score is calculated that finds the
difference between the z transformed correlations divided by the
standard error of the difference of two z-scores (Cohen et al., 2013).

z � z1 − z2���������
1

(n1−3)+(n2−3)
√ (5)

Obtained p-values from all analyses were FDR corrected for
multiple comparisons. This procedure enabled us to test whether
the association between the reverse distance effect and arithmetic/
mathematical abilities is moderated by group composition.

RESULTS

Descriptive Statistics
Tables 1, 2 depict descriptive statistics of the computerized tasks
(i.e., numerical comparison and numerical order verification), the
arithmetic fluency measures and the M-PA.
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Shapiro-Wilk tests indicated that all measures of the
arithmetic fluency test and the scores from the M-PA differed
significantly from a normal distribution. The distributions of the
small problems showed the following characteristics: The
subtraction scale was right-skewed with a leptokurtic
distribution, the addition scale was right-skewed with a
leptokurtic distribution, the multiplication scale was not
skewed but showed a platykurtic distribution. The
distributions of the large problems showed the following
characteristics: The subtraction scale was right-skewed with a
leptokurtic distribution, the addition scale was right-skewed with
a leptokurtic distribution, and the multiplication scale was right-
skewed with a leptokurtic distribution. The M-PA scale was left-
skewed with a platykurtic distribution.

Inferential Statistics
Distance Effects on the Group Level
We calculated two ANOVAs to test the presence of distance
effects on the group-level. As expected, the results of these
analyses showed significant distance effects for both conditions.
The ANOVA performed on the data in the numerical
comparison task showed a significant effect of inter-item
distance, F(2.02, 801.39) � 967.235, p < 0.001, ƞp2 � 0.71.
T-test comparisons revealed significant differences across all
distances (all comparisons pFDR-adjusted < 0.001; effect sizes
ranged from small, distance 5 ∼ distance 6, d � 0.420, to

large, distance 1 ∼ distance 6, d � 1.819). This pattern is
consistent with the canonical distance effect typically
observed in the numerical comparison task (Moyer and
Landauer, 1967).

The ANOVA performed on the in-order condition of the
numerical order verification task showed a significant effect of
inter-item distance, F(1.86, 738.46) � 22.381, p < 0.001, ƞp2 �
0.053. T-tests revealed that distance 1 trials were significantly
faster than distance 2 trials, t(396) � −5.67, pFDR-adj < 0.001, d �
−0.285 and significantly faster than distance 3 trials, t(396) �
-5.28, pFDR-adj < 0.001, d � −0.265. No significant difference was
found between distance 2 and distance 3 trials, t(396) � -0.04, n.s.,
d � 0.002 (see also Table 1). This pattern is consistent with the
reverse distance effect, i.e., fast reaction times for distance 1 trials
compared to distance 2 and 3 trials (Goffin and Ansari, 2016;
Vogel et al., 2017). The effect sizes of the reverse distance effect are,
however, small.

Individual Difference Structure for the Reverse and
Canonical Distance Effects
To investigate the structure of individual differences associated
with the distance effects, we assessed whether the two effects are
best described by the unconstrained or the positive effects model.
Figure 2 shows the results of the modeling for both distance
effects, Table 3 depicts the results of the Bayes factor comparisons
between the four models.

TABLE 1 | Descriptive statistics of mean reaction time and accuracy measures of the computerized tasks.

Numerical comparison distance 1 distance 2 distance 5 distance 6

RT in ms 489(69) 470(60) 429(50) 422(47)
AC in % correct 93.12(7.19) 95.13(6.00) 99.33(3.28) 99.48(3.16)

Ordinal verification In-order condition Mixed-order condition

distance 1 distance 2 distance 3 distance 1 distance 2 distance 3

RT in ms 745(119) 760(129) 760(127) 851(137) 813(129) 780(134)
AC in % correct 92.88(6.43) 92.69(7.19) 93.54(6.90) 82.06(15.10) 85.68(16.82) 91.14(15.44)

Note: Standard deviations in parenthesis.

TABLE 2 | Descriptive statistics of the arithmetic measures and the M-PA.

Min 1st Qu Median Mean 3rd Qu Max Skew Kurtosis W

Small problems
Subtraction 8 37 47 49 58 106(128) 0.832 0.870 0.987c

Addition 10 52 63 63.68 74 116(128) 0.353 0.456 0.987c

Multiplication 13 29 41 41.12 52 64(64) 0.053 −1.100 0.956b

Large problems
Subtraction 2 17 21 22.92 28 60(60) 0.849 1.258 0.960c

Addition 0 10 13 12.98 16 31(60) 0.592 1.055 0.975c

Multiplication 0 5 9 10.15 13 46(60) 1.497 3.216 0.960c

M-PA 6 17 22 21.16 26 31 −0.484 −0.491 0.963c

ap < 0.05.
bp < 0.01.
cp < 0.001.
Min, minimum value; 1st Qu, first quartile; 3rd Qu, third quartile; Max, maximum value (maximum possible value in parenthesis); Skew, skewness;W, critical values of the Shapiro-Wilk test.
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For the estimates of the canonical distance effect, the
unconstrained model and null model received almost no
support from the data (see Table 3A). Different prior
specifications did not change the overall picture. The positive-
effects model remained the preferred model across all prior
settings (by a factor of approximately 5.6 over the
unconstrained model each time), with little support for either
the common-effect or null model. Thus, our observed data are
evidential for the positive-effects model, indicating quantitative
differences in the canonical distance effect.

The picture for the estimates of the reverse distance effect is
quite different, as the unconstrained model was the preferred
model. The Bayes factor model comparison (see Table 3B)
showed that across the three different sets of prior
specifications, the unconstrained model was the preferred
model by a large factor. The data lend virtually no support for
the positive-effects model, common-effect model, nor the
null model.

These analyses confirmed that whereas individual differences
in the estimates of the canonical distance effect appear to be
quantitative (i.e., everyone exhibits a positive canonical distance
effect of some varying magnitude), individual differences in the

estimates of the reverse distance effect are qualitative (i.e., some
exhibit a positive effect, but others show a negative effect). As
such we further classified the type of the qualitative distribution of
this distance effect. This analysis revealed that 172 (43%)
participants exhibited a “positive” expected reverse distance
effect, 18 (5%) individuals showed evidence for a “negative”
reverse distance effect (i.e., a canonical distance effect), and the
remaining 207 (52%) were classified as “undecided”.

Associations of the Distance Effects With Arithmetic
and Mathematical Performance
Our next step was to elucidate the impact of qualitative individual
differences of the estimates of the reverse distance effect on the
association with arithmetic and math performance. We first
calculated zero-order and partial correlations for the entire sample
(see Supplementary Material for the full correlations matrix). While
the results revealed significant associations between the estimates of
the canonical distance effect and all measures of mathematical
competence (correlation coefficients range from −0.14 to −0.33;
see Table 4A), only two significant correlations were found for the
estimates of the reverse distance effect with small subtractions, r �
−0.11, pFDR-adj < 0.05, and small additions, r � −12, pFDR-adj < 0.05.

FIGURE 2 |Observed and estimated individual differences in (A) the canonical and (B) the reverse distance effect (in ms), ordered by observed effect size. Model-
estimated effects (in blue) are derived from the positive-effect model (positive values) for the canonical distance effect and from the unconstrained model (positive and
negative values) for the reverse distance effect. The red dashed line represents the point estimate for the canonical and reverse distance effect respectively. The gray line
represents observed canonical and reverse distance effects. The gray shaded area denotes the 95% credible interval for the model-estimated effects.

TABLE 3 | Bayes Factor Model Comparisons for (A) the canonical distance effect and (B) the reverse distance effect.

a) Canonical Distance effect

Prior specification Unconstrained Positive-effects Common-effect Null

r] � 1/6, rθ � 1/10 0.19 * 10–51 ≈ 0
r] � 1/12, rθ � 1/20 0.18 * 10–51 ≈ 0
r] � 1/3, rθ � 1/5 0.18 * 10–52 ≈ 0

b) Reverse Distance effect

Prior specification Unconstrained Positive-effects Common-effect Null

r] � 1/6, rθ � 1/10 * ≈ 0 10–13 10–24

r] � 1/12, rθ � 1/20 * ≈ 0 10–8 10–19

r] � 1/3, rθ � 1/5 * ≈ 0 10–9 10–19

Note: The preferred model for each analysis is denoted by an asterisk (*). The remaining cells show the Bayes factor for the indicated model over the preferred model.
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Correlation coefficients ranged from −0.2 to −0.12. These two
associations were non-significant when the estimates of the
canonical distance effect and age were included as control variables.
In contrast, all correlations of the estimates of the canonical distance
effects remained significant when considering the estimates of the
reversed distance effect and age (see also Table 4A).

We now investigated these associations in the group of
individuals (n � 172) who showed evidence for a “positive”
reverse distance effect (i.e., individuals who showed a reverse
distance effect) and those who showed no positive effect (“no-
positive effect” group; i.e., undecided and “negative” distance
effect; n � 225). Results of the correlation analysis (see Table 4B)
revealed significant associations between the reverse distance
effect and small subtractions, small additions, large subtraction,
small multiplication, and the M-PA in the “positive” group.
Correlation coefficients ranged from −0.09 to −0.28. The
above reported correlations remained significant when
considering the estimates of the canonical distance effect and
age in the partial correlation (r values ranged from −0.07 to
−0.26). In contrast, the zero order and partial correlation analyses
(see Table 4C) in the “no-positive effect” group revealed no
significant associations with arithmetic operations and theM-PA.
Correlation coefficients ranged from 0.01 to 0.12 in the zero-
order and from 0.01 to 0.13 in the partial correlation analysis. The
performed z-test showed that correlation coefficients in the
“positive effect” group compared to the “no-positive effect”
group were significantly larger for small subtractions, z �
3.788, p FDR-adj < 0.05, small additions, z � 3.210, p FDR-adj <
0.05, small multiplications, z � 2.186, p FDR-adj < 0.01, large
subtraction, z � 3.075, p FDR-adj < 0.01, and the M-PA, z � 2.779, p
FDR-adj < 0.01. No differences were found for large additions,

z � 1.472, p FDR-adj < n.s., and large multiplications, z � 1.379,
p FDR-adj < n.s.

DISCUSSION

Numerical order processing has been proposed as a significant
predictor of arithmetic abilities (for a review see Lyons et al.,
2016). However, research on the relationship between the reverse
distance effect (i.e., as an index of numerical order processing) and
arithmetic abilities has demonstrated mixed findings: some
studies have found negative (Goffin and Ansari, 2016),
positive (Vogel et al., 2019) or no relationship (Vogel et al.,
2015; Vogel et al., 2017; Vos et al., 2017; Orrantia et al., 2019). In
the present work, we provided evidence that the estimates of the
reverse distance effect are subject to qualitative individual
differences (i.e., not all participants show a reverse distance
effect) and that these individual differences can obscure the
relationship with arithmetic abilities.

We first demonstrated the presence of the reverse and the
canonical distance effect in an ordinal verification and a numerical
comparison task. While overall reaction times of the ordinal
verification task were faster for small distances (e.g., 2 3 4)
compared to large distances (e.g., 2 4 6), reaction times of the
numerical comparison task were slower for small distances (e.g.,
2 3) compared to large distances (e.g., 8 2). This finding replicates
the well-documented behavioral signatures of the reverse and
canonical distance effects in a group of 397 adults. The observed
reaction time differences—i.e., fast reaction times for small
distances in the ordinal verification task, and slower reaction
times for small distances in the numerical comparison task—have

TABLE 4 | Bivariate and partial correlations among the distance effects and measures of mathematical competence across (A) the entire sample, (B) the “positive effect”
sample and (C) the “no-effect” sample.

1 2 3 4 5 6 7 8

a) Total sample (n = 397)

reverse distance effect −0.11a −0.12a −0.09 −0.08 −0.02 −0.08 −0.06 −0.03
(partial correlations) (−0.07) (−0.09) (−0.06) (−0.05) (0.01) (−0.06) (−0.05) -

canonical distance effect −0.33c −0.25c −0.21c −0.24c −0.14b −0.17c −0.18c 0.05
(partial correlations) (−0.32c) (−0.25c) (−0.21c) (−0.24c) (−0.15b) (−0.17b) (−0.17b) -

b) “positive effect” sample (n = 172)

reverse distance effect −0.26c −0.28c −0.21b −0.22b −0.09 −0.13 −0.22b −0.09
(partial correlations) (−0.23b) (−0.26c) (−0.19a) (−0.20b) (−0.07) (−0.12) (−0.22b) -

canonical distance effect −0.29c −0.23c −0.16 −0.16 −0.12 −0.15 −0.21b 0.16
(partial correlations) (−0.27b) (−0.22a) (−0.16) (−0.14) (−0.11) (−0.13) (−0.16) -

c) “no-positive effect” sample (n = 225)

reverse distance effect 0.12 0.04 0.02 0.09 0.06 0.01 0.04 −0.01
(partial correlations) (0.13) (0.04) (0.02) (0.09) (0.06) (0.01) (0.04) -

canonical distance effect −0.34c −0.26c −0.24c −0.29c −0.15a −0.17a −0.14a −0.05
(partial correlations) (−0.34c) (−0.25c) (−0.24b) (−0.28c) (−0.14) (−0.16a) (−0.16a) -

apFDR-adj < 0.05.
bpFDR-adj < 0.01.
cpFDR-adj < 0.001.
Note: 1, small subtractions; 2, small additions; 3, small multiplications; 4, large subtractions; 5, large additions; 6, large multiplications; 7, M-PA; 8, age; Partial correlations are shown in
parenthesis.
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been interpreted as evidence for the involvement of different
cognitive processing mechanisms (Turconi et al., 2006; Vogel
et al., 2015; Lyons et al., 2016). While the reverse distance effect
has been related to multiple strategies such as long-term memory
retrieval and sequential-procedural comparisons (Lyons et al.,
2016; Sasanguie and Vos, 2018; Vogel et al., 2019; Sella et al., 2020;
Sommerauer et al., 2020), the canonical distance effect has been
associated to the mental representation of numerical quantities
(Moyer and Landauer, 1967). Independent of the cognitive
mechanisms that generate the reverse and the canonical
distance effects, the present data support the view that both
distance effects are unrelated with one another as we only
found a small positive effect size correlation (see full
correlation table in Supplementary Material) between the two
indices (rpositive-effect sample � 0.11).

The comparison of four hierarchical Bayesian models further
showed that individual differences of the estimates of the reverse
distance effect were best explained by an unconstrained model.
Since the unconstrained model allows variation among all
possible values (positive or negative), the above results indicate
a qualitative structure of the estimates of the reverse distance
effect: not all individuals show the expected reverse distance effect
(Haaf and Rouder, 2017; Haaf and Rouder, 2019). Our
estimations revealed that 42% of the individuals demonstrated
a reverse distance effect, 5% of the individuals showed evidence for
an opposite effect (i.e., a canonical distance effect), and 52% of the
individuals showed no evidence for either direction (i.e., no
distance effect). This finding is consistent with the notion that
individuals may employ different qualitative processing strategies
during the ordinal verification task. Some individuals might use
strategies that lead to the reverse distance effect (e.g., memory
retrieval for small distances in combination with sequential-
procedural comparisons for larger distances), while others
might use strategies that lead to an opposite effect (e.g., a
canonical distance effect that arises because sequential-
procedural comparisons are used across all distances). An
interesting finding is that a large proportion of individuals
(52%) showed no evidence for a positive or negative distance
effect in the ordinal verification task. In other words, the model
was not able to capture whether a distance effect existed in these
individuals (i.e., reverse or a canonical distance effect). We think
that there are several possible explanations for this finding. First,
it could be the case that our experimental design was not able to
detect existing, albeit subtle effects due to a lack of power.
However, this is unlikely, as we explicitly tested this possibility
with the common-effect and null models. If either of these models
had admitted better predictive adequacy, it would call into
question our ability to detect individual variations (or any
effect at all). Neither model received any support from the
data, so we are confident that the issue does not lie within the
experimental design. Second, it could be that those individuals
showed no distance effect because there is no distance effect to be
detected: that is, they have a true effect of zero. Such a scenario
could be tested by implementing a mixture modeling approach
(e.g., a spike-and-slab model, see also Haaf and Rouder, 2019).
Uncovering the reasons of such an absence would be of great
interest, since it indicates that these individuals might use a

combination of strategies that level each other out (e.g.,
memory retrieval and sequential comparison that produce
opposite effects and zero each other out) or strategies that do
not fit with the current models of numerical order processing. For
instance, individuals might recognize that the ordinal verification
of those triplets, which contain one odd/even and two even/odd
numbers (e.g., 2 3 4; 3 6 9), is determined by the position of these
numbers in the triplet (e.g., if the odd number is in the middle, it
is correct: 2 3 4, 3 6 9; if it is at the beginning or at end, it is
incorrect; 4 2 3, 3 4 2, 3 9 6, 6 3 9). Such strategies would be based
on non-semantic evaluations and, therefore, shortcut distance
related measures. However, the present data are agnostic as to
which processing strategies might have been employed. It also
leaves unanswered to which extent the observed patterns
generalize to other ordinal verification tasks (e.g., with two-
digit numbers). These open questions need to be addressed in
the future.

In contrast to the ordinal verification task, individual
differences of the estimates of canonical distance effect were
best explained by a positive-effects model. Since the positive-
effects model limits individual variations to positive values, the
above results indicate quantitative individual differences: all
individuals show the expected canonical distance effect, but to
a different degree. This finding is consistent with neurocognitive
models that suggest a continuous/approximate representation of
numerical quantities (Moyer and Landauer, 1967). Individual
differences may arise as a factor of how much the mental
representations of numerical quantities overlap (for a review
see Brannon, 2006)—individuals with small representational
overlap show less susceptibility and, therefore, a small
individual canonical distance effect.

We then demonstrated that the association of the reverse
distance effect with arithmetic abilities is moderated by the
observed qualitative individual differences. While neglectable
to small correlation coefficients were observed in the no-
positive effect sample (i.e., individuals who showed no
evidence for a reverse distance effect), significant and larger
correlations were observed in the positive-effect group
(i.e., individuals who showed the expected reversed distance
effect). This pattern is line with our hypothesis that qualitative
differences obscure the relationship between the reverse distance
effect and arithmetic abilities. Different sample compositions
across different studies could, therefore, explain the mixed
results that have been reported in previous studies (Goffin and
Ansari, 2016; Vogel et al., 2017; Vogel et al., 2019; Vos et al., 2017;
Orrantia et al., 2019). This finding highlights the need to pay close
attention to the sample composition and to ensure that the
dimension of interest (e.g., the reverse distance effect) is not
confounded by qualitative processing differences. When
controlling for this confound, we observed significant negative
associations between both the reverse distance effects and
arithmetic abilities as well as between the canonical distance
effect and arithmetic abilities. Thus, the results of this analysis
are in line with the findings reported by Goffin and Ansari (2016)
who reported negative correlations with arithmetic fluency
measures of the Woodcock-Johnson III Test of Achievement
(Woodcock et al., 2001) for both distance effects (r � −0.422 for
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the reverse distance effect and r � −0.310 for the canonical distance
effect). Together, these findings indicate that individuals with
smaller distance effects (individuals who are less susceptible to the
influence of numerical distances) show better arithmetic
performances. The question of which cognitive mechanisms
give rise to these associations needs to be further explored in
future studies.

Previous studies that have investigated the association
between the reverse distance effect and arithmetic have
predominantly used composite scores (i.e., a combination of
different arithmetic performance measures) to index arithmetic
abilities. This approach neglects that arithmetic consists of
different operations (e.g., subtractions, additions,
multiplications, divisions) and that different strategies are
used to solve them (see Ashcraft, 1992; Campbell and Xue,
2001). For instance, there is good neurocognitive evidence that
individuals use different strategies and procedures (such as fact-
retrieval or calculation) to find the correct answer to arithmetic
problems (e.g., Grabner et al., 2009). The results of our study
indicated significant associations of the reverse distance effect
with all small problems (i.e., subtraction, addition and
multiplication) and large subtraction problems. No
significant associations were found for large additions and
large multiplications. For the canonical distance effect,
significant associations with small subtraction and additions
were found. All other arithmetic operations did not significantly
correlate with the canonical distance effect.

From a theoretical standpoint, one might have expected
stronger relationships for the canonical distance effect with
arithmetic operations that require the manipulation of
numerical quantities, i.e., large problems instead of small
problems, which are often solved via fact retrieval (LeFevre
et al., 1996; Campbell and Xue, 2001). The present results
contradict this in as much only small subtraction and small
additions were found to correlate with the canonical distance
effect. However, some findings suggest that small additions and
small subtractions can be solved via fast and automatic
procedures of numerical processing (for a discussion on
small addition see Baroody, 2018). This is in contrast to
small multiplications, which have been argued to be the
prime example of fact-retrieval (Ashcraft, 1992; Campbell
and Epp, 2005). As such it is possible that the present results
capture that difference within the small problem range. It is also
possible that the larger problems in our paper-pencil task, which
were quite complex and in which individuals might have used
different strategies and other cognitive processing mechanisms
to find the solution (e.g., in the large problem task individuals
had to carry over the results), did not capture the manipulation
of numerical quantities. For the reverse distance effect, one
might have expected less specific and rather broad
association as the reverse distance effect is argued to arise
from a combination of different strategies. One could,
however, argue that the fast-retrieval of ordinal relationships
drives the reverse distance effect (Vogel et al., 2019; Sella et al.,
2020), and that associations with arithmetic problems that
afford the fast access to stored knowledge (i.e., small
problems) are to be expected. To some extent that could

explain the stronger relationship of the reverse distance effect
to all small problems. Taken together, although these
explanations are speculative, the data suggest distinctive
associations of the two distance effects with different facets
of arithmetic operations.

We also found a significant relationship between the reverse
distance effect and more complex forms of mathematics (i.e., the
M-PA). The association between numerical order processing and
complex forms of mathematics has, to the best of our knowledge,
only been investigated in two other studies. Morsanyi et al. (2018)
collected data from 87 undergraduate students who performed a
numerical order task, a number-line task, a test of arithmetic
abilities (i.e., the math fluency subset of the Woodcock-Johnson
III Test of Achievement, Woodcock et al., 2001) and a
questionnaire that assesses individual differences in cognitive
thinking styles (i.e., preference for object-spatial imagery or
verbal cognitive style). The authors found a significant
association of numerical order processing with the number
line task as well as the self-reported object-spatial thinking
style. However, the findings of this study were not based on
the reverse distance effect as a measure of numerical order
processing. The authors rather used less specific composite
scores of overall reaction time measures and accuracy rates.
Orrantia et al. (2019) investigated the relationship between
numerical order processing, arithmetic abilities, and general
mathematical achievement (i.e., the Spanish adaption of the
SRA Test of Educational Ability) in a group of 27 male
university students. The results of this study did not find a
significant association between these measures. Despite the
small sample size for a correlational investigation, the authors
did also not use the reverse distance effect to investigate a possible
association of these measures. Thus, the findings of the present
work extend these studies by suggesting a specific association
between the reverse distance effect and more complex forms of
mathematical reasoning.

We conclude that the present work provided evidence for
qualitative individual differences of the reverse distance effect
(i.e., not all participants show this expected effect) and that this
individual variation can obscure the relationship with arithmetic
abilities and other mathematical competencies (e.g., depending
on the sample composition and the individuals that show an
effect). When controlling for these individual differences, we
found a significant relationship between variations of the
reverse distance effect and different measures of arithmetic and
mathematical performance. The reasons for the observed
qualitative differences in the numerical order verification task
remain, however, unclear and need to be further investigated. To
achieve this, future work needs to ensure that dimensions of
interest (i.e., here the reverse distance effect) are not confounded
by qualitative differences.
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