
ORIGINAL RESEARCH
published: 22 December 2020

doi: 10.3389/feduc.2020.502698

Frontiers in Education | www.frontiersin.org 1 December 2020 | Volume 5 | Article 502698

Edited by:

Ida Ah Chee Mok,

The University of Hong Kong,

Hong Kong

Reviewed by:

Wang Ruilin,

Capital Normal University, China

Kerstin Schneider,

University of Wuppertal, Germany

*Correspondence:

Pascal Kilian

pascal.kilian@uni-tuebingen.de

Specialty section:

This article was submitted to

STEM Education,

a section of the journal

Frontiers in Education

Received: 04 October 2019

Accepted: 04 November 2020

Published: 22 December 2020

Citation:

Kilian P, Loose F and Kelava A (2020)

Predicting Math Student Success in

the Initial Phase of College With

Sparse Information Using Approaches

From Statistical Learning.

Front. Educ. 5:502698.

doi: 10.3389/feduc.2020.502698

Predicting Math Student Success in
the Initial Phase of College With
Sparse Information Using
Approaches From Statistical
Learning

Pascal Kilian 1,2*, Frank Loose 2,3 and Augustin Kelava 1,2

1Methods Center, University of Tübingen, Tübingen, Germany, 2 Tübingen School of Education, University of Tübingen,

Tübingen, Germany, 3Department of Mathematics, University of Tübingen, Tübingen, Germany

In math teacher education, dropout research relies mostly on frameworks which carry out

extensive variable collections leading to a lack of practical applicability. We investigate the

completion of a first semester course as a dropout indicator and thereby provide not only

good predictions, but also generate interpretable and practicable results together with

easy-to-understand recommendations. As proof-of-concept, a sparse feature space

together with machine learning methods is used for prediction of dropout, wherein

the most predictive features have to be identified. Interpretability can be reached by

introducing risk groups for the students. Implications for interventions are discussed.

Keywords: student retention, mathematics, math teacher training, higher education, machine learning, dropout

prediction

INTRODUCTION

High dropout rates in mathematics and general in the STEM fields (science, technology,
engineering and mathematics)—more precisely, in Germany, the so-called MINT disciplines
(mathematics, informatics, science and technology)—are not a new phenomenon. According to
Heublein (2014), in Germany 39% of the students in MINT disciplines drop out of the Bachelor
program. Compared to the German general average of 33% this is a rather high dropout rate. In
mathematics, the dropout rate is even higher with 47% (U.S. college dropouts show comparable
numbers; Chen, 2013). In contrast to the MINT dropout rates during the bachelor, the 5% dropout
rate during themaster is much lower (Heublein, 2014). Thus, this paper focuses on the investigation
of the initial phase of the study program, more precisely the Analysis 1 (Calculus 1) lecture which
is a typical (and mandatory) start in the mathematics study program. This means the subject of
research in this paper is not dropouts (from university or the study program) but dropouts and
success in this lecture in the sense of a non-completion rate. We see that as a strong indicator for
possible future dropouts. A detailed definition of the non-completion (of Analysis 1) variable can
be found in the methods section. For the sake of clarity, throughout the rest of the paper we will use
the term dropout when talking about the general problem and non-completion for the dependent
variable in our study.

The examination of these unusually high dropout rates in MINT disciplines becomes even
more interesting and relevant, knowing that those students show high cognitive prerequisites
(Nagy, 2007). Nagy showed high correlations of cognitive abilities with realistic and investigative
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vocational interests (based on the vocational interest model of
Holland, 1997) where those disciplines are classified. Excluding
low cognitive abilities of the participants, the question arises,
why we experience high dropout rates, especially in those
disciplines. Included in the high dropout rates in mathematics
are those students intending to become math teachers. The
lack of those teachers gives additional motivation for decreasing
the dropout rates. Since teacher candidates might differ from
B.Sc. students (in motivation, academic achievements,...), we will
investigate differences between those groups to preclude different
prerequisites, different dropout behavior, which would mean
different interventions. Teacher candidates will thus be a special
focus of this study in the sense that it is important to investigate
if they constitute a special case of students which need to be
treated accordingly. Furthermore, former studies in this field use
large feature spaces by including a very broad range of potential
determinants/variables in different areas. Those variables are
not available for practical usage on a regular basis, and thus,
the models are not useful for practical implementations. We
address this problem by using a sparse feature space including
only a few variables all of which are cheap to collect at the
beginning of a course. Those variables cover areas proved to be
related to dropouts. A broader variable collection would improve
prediction results but is not feasible on a regular basis, thus
in this paper we investigate what can already be achieved with
those variables.

Structure of This Paper and Notes
First, in the following section we briefly discuss different
theoretical frameworks of college student dropout and results
of former studies and summarize the general current state of
research. Secondly, we introduce empirical studies more specific
to the topic of this paper, followed by thirdly, the design of
the present study and the research questions. The methods
and results sections follow, and we close with a discussion of
our findings.

The goal of this paper is 2-fold. The methods are applied
in the German teacher education setting. Thus, one goal is to
generate specific results which help to identify risk groups and
the planning of intervention. The second goal is to introduce data
science methods to educational research.

For example, the U.S. teacher education differs from that in
Germany, so specific results might not be relevant and applicable
to other universities and systems (due to the system as well as to
our limited sample size), but the general ideas and procedures can
easily be adapted to those settings.

Current State of Dropout Research
The investigation of dropouts can draw on a high quantity
of studies and literature. In terms of dropout related factors,
a big variety of variables have been investigated. Variables
have been identified on individual, institutional, environmental-
related and system-related levels. Following Bean (2005) and
Burrus et al. (2013), variables can be classified in (a) institutional
environment factors, (b) student demographic characteristics, (c)
commitment, (d) academic preparation and success factors, (e)

psychosocial and study skill factors, (f) integration and fit, (g)
student finances and (h) external pull factors.

In the following we focus on factors within (b) student
demographic characteristics and (d) academic preparation and
success factors, as these reflect the design of this study best.
Examples for student demographic characteristics are, among
others, the student’s age, sex, race and ethnicity. Feldman
(1993) reveals a nonlinear connection between age and student
dropout—younger and older students showed higher dropout
probabilities. Hagedorn et al. (2001) show a slightly negative
effect of age on students’ retention. For students’ sex no simple
linear effects have been described, but interactions with other
variables have been shown (e.g., with the existence of children
in Leppel, 2002). Academic abilities like school performance
measures and general performance measures are examples of the
(d) academic preparation and success factors. Standardized tests
show the expected high correlation with student’s retention at
university (e.g., Bean, 2005).

With regard to the mentioned studies, it can be said that a
wide range of variables show some connection (correlation) with
student dropout, but few variables with singular effects can be
found. This indicates a relationship wherein the effect might rely
on complex combinations of variables. The motivation arises to
expand the approaches from linear models to models which take
this complexity into account, for example in prediction models.

The dropout literature relies mostly on two comprehensive
frameworks for understanding students’ dropout decisions. First
there is Tinto’s theory of student departure (Tinto, 1975, 1987).
A central point of his theory is the students’ integration and
interaction with the faculty, staff and peers in both academic and
social settings (Tinto, 1993; Burrus et al., 2013). The model has
been validated and generally adjudged to be a useful framework
(e.g., Terenzini and Pascarella, 1980). The second framework is
the model of student attrition by Bean (1980, 1983, 2005). This
framework implies more external factors, e.g., the expenditure of
time, financial resources or the students’ responsibility for their
families. In bothmodels, the intention to drop out is explained by
the variables: contentment with the study program, the pursuit of
the final degree and the power of endurance.

More recent approaches focus more on individual
characteristics of the students. Schiefele et al. (2007), for
example, show that differences between students who dropout
and persistent students are mostly found in motivation, social
competence, perceived teaching quality, the self-evaluated
knowledge state and the use of learning strategies. Keeping in
mind the unfeasibility of those large models, in our study we
aim to consider variables of diverse areas, but with the practical
availability, as well as the possibility for complex modeling.

Considering more technical approaches for various
predictions in higher education, our research can be seen
in the context of the growing field of educational data mining
(EDM). Here, an increasing number of studies for example on
the prediction of academic performance and student attrition,
using data mining and machine learning approaches, can be
found. Alyahyan and Düştegör (2020) review a broad range
of articles on academic success prediction, including amongst
others the course level, where our research would be located.
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Successful applications have been published, but nevertheless
most of those studies differ from our research in prediction goals
and especially in the available data. Pérez et al. (2018) as well as
Berens et al. (2019) for example achieve good prediction results
only by including information about academic performance
during the first semester. This indicates the importance of the
academic performance during the first semester and motivates
investigations about risk groups at the very beginning of higher
education. But for the identification of the risk groups within
the first semester, academic performance measures are not
yet available.

Math Specific Dropout Research
Several studies, especially for mathematics, have been conducted
with focus on the transition from school to university including
individual prerequisites (Grünwald et al., 2004; Gueudet, 2008;
Eilerts, 2009; Heublein et al., 2009). Parts of the risk factors of
those studies can be summarized as student’s prerequisites prior
to university. Below we discuss some of those prerequisites with
special regards to teacher candidates as our focus group.

Regarding the choice of the study program, it seems to
be a public opinion that there is a negative selection within
the mathematics students toward the teacher candidates. It
is assumed that weaker students choose the teacher program
Bachelor of Education (B.Ed.) instead of the pure math program
Bachelor of Science (B.Sc.). External reasons like occupational
safety and longer vacation periods are named motivations
for this choice. These reasons might be more important
than the motivation of becoming a teacher itself (Blömeke,
2005; Klusmann et al., 2009). Taking this into account, we
particularly pay attention to this group of students. Taking
this into account, we pay particular attention to this group
of students, by investigating possible differences, in the sense
of a negative selection (differences in prerequisites), as well as
dropout behavior (risk group). However, a negative selection
was not found by Klusmann et al. (2009), comparing school
grades, cognitive abilities and results of a standardized math test
[Third International Mathematics and Science Study (TIMSS,
e.g., Baumert et al., 1999)], between teacher candidates for the
academic track (B.Ed.) and non-teacher candidates at university
(B.Sc.). Those results refer only to measurements at the end
of school and give no information about the success at the
university. In their study Klusmann et al. (2009) used data of the
study Transformation des Sekundarschulsystems und akademische
Karrieren (TOSCA; Köller et al., 2004), which does not differ
between B.Ed. and B.Sc. students. Besides gender, the analysis
was controlled for the field of the study subject (inclusion of at
least one subject within the field of science or not). Therefore, the
data is not differential enough for statements within the subject of
mathematics. Even though the initial prerequisites might be the
same, both study programs start to differ vastly already in the first
semester. Teacher candidates have to face the double pressure
of two majors. Differences in success and dropout or non-
completion rates during the semester might occur. Differences
in success and dropout or non-completion rates during the
semestermight occur, which would lead to separate problems and
solutions compared to the B.Sc. students. Due to the importance

of content knowledge for teaching and its relation to pedagogical
content knowledge (e.g., Kunter et al., 2011), it is a critical
question if the teacher candidates fall behind their colleagues in
terms of success and dropout or non-completion rates already in
the first semester.

The Present Research
In this study, we analyze the success in the first semester lecture
Analysis 1 (Calculus 1). Within this lecture, we compare the
prerequisites of students in different study programs and connect
it to the above-mentioned studies (e.g., Klusmann et al., 2009).
These prerequisites are then used to predict non-completions in
this time period. For a more detailed definition of the term non-
completion in this study we refer to the methods section below.

As seen in former studies and frameworks (e.g., Tinto, 1975,
1987, 1993; Bean, 1980, 1983, 2005; Schiefele et al., 2007; Burrus
et al., 2013), a broad variety of possible dropout predictors or
risk factors can be tested. Even though the different models show
overlaps in the sets of risk factors, a common set for practical
usage is hard to identify. This shows the complex structure of
student dropout and interactive relation of different risk factors.
The complexity of the topic gives rise to problems for policy
makers. Feasible applications of the research results are limited to
the availability of variables. The identification of risk groups (e.g.,
for interventions or restriction of admission) including the wide
range of variables is too expensive and not practical, for example
for universities, on a regular basis.

In this study, we use a very small set of possible predictors
by only including, (a) data collected at the beginning of the
semester (excluding for example performance measures during
the semester or different state variables), and (b) variables which
can be collected with little cost at the beginning of the lecture.
The reasons for this choice are (a) to find risk factors in
students’ prerequisites excluding the students’ behavior during
the lecture (e.g., the expenditure of time) and (b) to enable
universities to use the results of this study with little cost.
We not only use a sparse feature set with a small number of
variables, but the data is also limited in sample size. Here, we
also refer to the practicality of these methods for universities
and propose a course of action to reduce non-completions in
practice. In practical application scenarios, limited information
about the students of the specific university is common, but
even then valuable insights can be attained. Even though the
data only contains data from one specific course, which implies
limitations for the generalization of specific results, the Analysis
1 course is representative of first semester courses both beyond
this university and beyond Germany. We further address this
topic in the discussion of this paper. Possible actions could be
entrance qualifications and the identification of risk groups early
in the program to provide support courses and interventions.
The standard method to identify significant risk variables for
a binary variable like student dropout or non-completion is
the logistic regression. As the logistic regression only works
on linear relations, we will use prediction models that are able
to take complex interactions into account. This approach aims
to be more practical compared to the theoretical approaches
discussed above. As shown, risk factors for student dropout can
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be found in students’ personalities, school backgrounds, social
and academic integration and many more. Although those broad
theoretical approaches are important for the understanding of
dropout risk factors, they are not of practical use for universities
(in most cases simply because of the inaccessibility of the wide
range of variables). In order to enable universities to quickly
identify risk groups the focus of this study is the prediction of
student non-completion using only a few, leviable variables, in
sophisticated models.

Research Question
The research questions of this study can be summarized in
three questions.

(R1) Can differences between groups of students be identified
at the beginning of university (especially between B.Ed. and B.Sc.)
in their prerequisites and in their non-completion behavior, with
implications for planned interventions?

(R2) Starting with variables that are easy to obtain at the
beginning of the semester, what prediction accuracy can be
achieved (upper bound?) with this sparse feature space and can
this be further reduced?

(R3) Can the prediction results be used to identify risk groups
already at the beginning of the semester?

(R1) and (R3) include the investigations about the group
of teacher candidates. In (R1) we focus on prerequisites. (R3)
includes the question of whether being a teacher candidate itself
leads to a risk classification indicating different dropout or non-
completions behavior.

METHODS

Study Design and Sample
We examine two consecutive Analysis 1 lectures (cohort 1
and cohort 2) of the University of Tübingen (winter semester
2014/15 and 2015/16). Due to the curriculum, it is mandatory
to participate in the Analysis 1 course, for both, B.Sc. and B.Ed.
students. In Tübingen, the physics (B.Sc.) students participate
in this course in the first semester as well. The schedule of the
Analysis 1 lecture is comparable for both cohorts. In addition
to attending the lectures, students are divided into small tutorial
groups. Within the tutorial groups, students have to submit
homework every week. In order to obtain the admission to the
final exam, achievements in the context of those tutorials and of
the problem sets are relevant. As the cohorts can be seen as a
homogeneous sample with respect to the used variables, in the
analysis we combine both (dataC) to reduce the dependence on
lecturers and lecture schedules and to gain more general results.

Included in the dataset are students which major in
mathematics (B.Sc.) or physics (B.Sc.) and mathematics teacher
training students (B.Ed.). All of the students did not actively
participate in a former Analysis 1 lecture, even though it might
not be their first mathematical semester.

Instruments
The dataset contains the results of every student on every
problem set, which allows to follow the students’ development
during the first semester and we can see the exact week of the

withdrawal, if students quit. Additionally, the results of the final
exams are analyzed. Those results indicate success or failure
of the Analysis 1 lecture. For further information about the
preconditions of students, like personal data (e.g., age, gender,
school grades, study path), a questionnaire was used in the second
week of the semester.

In addition to the covariates, the students finished five items of
the Third International Mathematics and Science Study (TIMSS,
Baumert et al., 1999; Mullis et al., 2007) in the questionnaire.
The international scale of TIMSS is set to a mean of 500 with
the standard deviation of 100 (Adams et al., 1997). Because we
only use a set of five items,1 which are suitable for the contents
of the Analysis 1 lecture, we built sum scores of the correct
answered items.

About 95% of the students filled in the initial questionnaire.
In order to be able to access students’ lecture data an additional
permission was needed. Ninety-five percentage of the students
granted this permission.

As mentioned in the current state of the dropout research, a
broad range of variables are related to dropouts. Universities and
lecturers typically have no access to exhaustive data sets but have
to deal with the available information. The variables introduced
here can be seen as a compromise between realistic availability
and the full range of relevant information. In our research
the focus is on the application of sophisticated algorithms to
investigate what results can be achieved with a non-exhaustive
data set. Therefore, our variable set can also be seen as an
example of available data and should not be interpreted as the
best variable selection.

Possible Predictors
With the study design, including the questionnaire, we take
into account the following variables as students’ attributes for
the predictions. Different performance measures from school
[“GPA,”2 math grade in the final exam (“math grade”)] and
results of the TIMSS items (“timss”), the participants “age” and
“sex,” the federal state (“state”) and “school type” in which the
university-entrance diploma was received. The variable “school
type” indicates if the university-entrance diploma was received
at a general-education Gymnasium (academic track), if the
participants are teacher candidates (B.Ed.) or not (“tea”), if a prep
course for math, prior to the Analysis 1 lecture was attended
(“prep”) and if the respective semester was the first semester
of a mathematical study program (“first”). The variable “first”
includes students which already attended other lectures than the
Analysis 1 or already attended the Analysis 1 lecture but did not
achieve exam admission and thus cannot be recognized as former
Analysis 1 participants.

The dependent variable “pass” indicates the success in the
Analysis 1 lecture. For a successful participation in Analysis 1, the
participants have to pass the final exam. InTable 1 the descriptive
analysis of the variables is outlined for the different data sets.

1K4, K5, K6, L5, L6 of TIMSS/III, Rasch scaled.
2Comparable with the U.S. cumulative/overall High School GPA.
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TABLE 1 | Descriptive data for cohort 1, cohort 2 and the combined data set

dataC.

Cohort 1M (SD) Cohort 2M (SD) Datac M (SD)

GPA 2.09 (0.63) 1.95 (0.60) 2.02 (0.62)

Math grade 11.56 (2.91) 11.94 (2.51) 11.76 (2.72)

Timss 2.37 (1.23) 2.30 (1.19) 2.33 (1.21)

Age 20.26 (2.47) 20.59 (5.53) 20.43 (4.27)

% (n) % (n) % (n)

Sex (male) 58.72 (101) 56.14 (96) 57.43 (197)

School type 76.72 (132) 78.95 (135) 77.84 (267)

State 86.05 (148) 87.72 (150) 86.88 (298)

Prep 37.21 (64) 33.33 (57) 35.28 (121)

Tea 43.60 (75) 51.46 (88) 47.52 (163)

First 67.44 (116) 77.19 (132) 72.30 (248)

Pass 43.60 (75) 43.27 (74) 43.44 (149)

N 172 171 343

GPA, Grade point average; math grade, math grade of the final exam in school; timss,

sum scores of the TIMSS items; school type, general-education Gymnasium or not; state,

school in Baden- Württemberg or not; prep, mathematical prep course or not; tea, B.Ed

or not; first, first semester or not.

Definition of Non-completion and Bounds
for Prediction Accuracies
In this study, we use a very simple definition/indicator of
dropouts in the Analysis 1 lecture, namely non-completion.
Students fail to complete if they fail the Analysis 1 lecture. The
participants complete the Analysis 1 lecture if they qualify to
take part in the final exam and pass the test. If they don’t pass
the final exam, they have one more chance in a makeup exam,
which is similar to the original test. Thus, there are several ways
for non-completion. First, the students can choose to voluntary
quit during the semester. Secondly, they might not obtain the
admission for the final exam, or thirdly, they don’t pass both
the final exam and the repeat exam. In this study, we do not
differentiate between the different ways of non-completion. We
only consider the dichotomous variable pass or not pass.

To gain a better sense of prediction accuracies we discuss some
bounds. As a lower bound of the expected prediction accuracy we
use a baseline model which predicts a dropout for every example.
Due to the “pass” percentage of 43.44% in dataC this will result
in an accuracy of 0.57 or 56.56%. Therefore, we can achieve an
accuracy of 56.56% with a model that uses no information of the
training data and thus builds the lower bound for the accuracies
of our models.

The upper bound cannot be specified exactly but we discuss
some ideas. As features we only use attributes of the students
before they came to university. Therefore, this approach uses no
information on the behavior of the students during the semester.
But the active participation in lectures and tutorials as well as
the general effort of the students is seen to be crucial for the
success inmath. Therefore, the expected accuracies of ourmodels
are far <100%. Even with a sufficient amount of data, including
data referring to the behavior during the semester, we would not
expect to come close to 100%, because the final exam itself implies

uncertainty of success. In conclusion, we expect the accuracies to
be better than 57% in order to have a valid predictor, but we do
not expect the accuracies to exceed 80% (as an educated guess),
due to the uncertainty of the behavior during the semester and in
the test situation.

General Analysis
In this part, we discuss general methods and procedures which
occur in all the following models and algorithms. More details
for the specific algorithms are discussed in the following section.
In order to report realistic measures for the prediction quality we
divide the data set in a test set and a training set by randomly
assigning 20% of the data to the test set. This procedure is
performed with cohort 1 and cohort 2. Then the training sets
and test sets are combined, respectively, to receive the training set
and test set for dataC. The test set remains untouched and unseen
until the evaluation of the specific algorithm. This process results
in Ntrain = 275 (Ntrain,cohort1 = 138 and Ntrain, cohort 2 = 137)
and Ntest= 68 (Ntest, cohort 1= 34 and Ntest, cohort 2= 34).

Differences in the Prerequisites for Teacher

Candidates
We compare the variable means and frequencies of the B.Ed.
students with those of the B.Sc. students. Differences are tested
by means of t- and χ2-tests.

Procedure for the Prediction Models
In the prediction models, we train classifiers to predict the target3

“pass.” These are binary classifiers with the positive class referring
to passing the Analysis 1 lecture. The general procedure for
the predictor models is as follows: We train the model using
the training set. If hyperparameters need to be tuned we use
cross-validation within the training set. For the model selection,
we use different prediction measures using the training set.
We report the accuracy on the training set, the leave-one-out
cross-classification/validation (loo.cv), and the precision, recall
and F1-score values. For model evaluation, we report the same
measures, except for the loo.cv, on the separated test set. Note
that due to the relatively small size of the test set, we also
consider the loo.cv as measure for the generalization error or
accuracy. This error is known to be an unbiased estimator for
the generalization performance of a classifier trained on m-1
examples (e.g., Rakotomamonjy, 2003; Evgeniou et al., 2004). In
addition to the accuracy measures we report Cohen’s Kappa as
measure for the inter-rater agreement of the predictions and the
true outcomes (Cohen, 1960). For the interpretation of Cohen’s
Kappa, we use the suggestion of Landis and Koch (1977). They
define the strength of agreement for kappa values of 0.00–0.20
as slight, 0.21–0.40 as fair, 0.41–0.60 as moderate 0.61–0.80 as
substantial and 0.81–1.00 as almost perfect.

For feature selection, we train the biggest model using all
available attributes as features, evaluate the prediction measures

3In machine learning literature the dependent variable is often referred to as target
(variable).

Frontiers in Education | www.frontiersin.org 5 December 2020 | Volume 5 | Article 502698

https://www.frontiersin.org/journals/education
https://www.frontiersin.org
https://www.frontiersin.org/journals/education#articles


Kilian et al. Success Prediction

and check if the evaluation—the quality of the prediction—
decreases for smaller models. The detailed feature selection
procedures are discussed in the Supplementary Material.

Analysis for the Different Methods
In this part, we give an overview of the methods for the different
algorithms and models. We use (i) the basic logistic regression,
(ii) logistic regression with elastic-net regularization, (iii) the
Support Vector Machine and (iv) tree-based methods for feature
selection and prediction. Note that group differences and effects
of features are also considered in the prediction models by the
independent variables.

Within the methods, specific procedures have to be applied
for model and feature selection. We provide further details of
the methods (hyperparameter tuning and feature selection) in
the Appendix.

Logistic Regression (and Elastic Net Regularization)
Following standard procedures in prediction algorithms, we not
only use logistic regression, but also the logistic regression with
elastic net regularization (Hastie et al., 2009; Friedman et al.,
2010). Introducing regularization advances the algorithm in
two ways. First, the (partly) inclusion of L1/lasso-regularization
(determined by the tradeoff parameter α) performs a kind of
continuous subset or feature selection. Second, by regularization
we can reduce the complexity of the algorithm yielding better
generalization results on unseen data by reducing overfitting.

Support Vector Machine (SVM)
We use a SVMwith linear kernel and the more flexible SVMwith
radial basis function kernel (RBF kernel). For the analysis we use
the R package e1071 (R Core Team, 2015; Meyer et al., 2017).
Different feature selection algorithms have to be performed for
those algorithms. In the linear case we implement the recursive
feature elimination algorithm SVM-RFE. To use SVM-RFE in
the non-linear case, the approach can be generalized following
(Guyon et al., 2002).

In the linear and non-linear case only the cost parameter
C or the cost parameter C and shape parameter γ have to
be tuned respectively (following Meyer et al., 2017). Thus,
those parameters are reported in the results. Further details are
provided in Appendix B. General details on SVMs can be found
in Hastie et al. (2009), for example.

Tree-Based Models
We apply tree based models and refer to Hastie et al. (2009) for
a detailed general introduction and to Hothorn et al. (2006a,b)
for an introduction of the here used conditional inference trees
and random forest based on them (Strobl et al., 2007, 2008),
implemented in the R package party (Hothorn et al., 2006b; R
Core Team, 2015).

In the forest setting we tuned the hyperparameter responsible
for the number of features randomly selected in each split (mtry)
and report it in the results. Standard values are used for other
hyperparameters (Hothorn et al., 2006a; Strobl et al., 2007, 2008).

Feature or variable selection is either included in the
general concept (single decision tree) or we use the conditional
importance (Strobl et al., 2009).

Further details about the algorithms and the feature selection
procedures are given in Appendix C.

Comparison of the Predictors and Risk
Groups
In the last step of the analysis we select the best predictors of
each method, summarize their results and use them combined
as ensemble predictor. For that purpose, we use the predictions
of the single predictors and combine them via a majority vote for
the class assignment.

We use this ensemble predictor for the identification of risk
groups. With the predictions, the data is separated naturally
into three groups. The first group consists of the true positive
predictions. At last, the third group refers to students with
feature vectors that were predicted falsely. Depending on the
application, either group two or both group two and three can
be defined as the risk group. In this study, we define group two—
the true negative prediction—as the risk group. Reasons for this
choice are given by the general design of the prediction task.
We avoid important information about students’ behavior and
situation during the semester, but only use information prior
to university, thus wrong predictions can be partly associated
with the information not included in this study. Therefore, group
three—the wrong predictions—refer to the uncertainty during
the semester. In that context and at this point we can define the
risk group as those students that are, by the prediction model,
predicted to fail the lectures with high certainty.

We summarize descriptive measures for the three groups
in the results. In order to correctly interpret the results, it
is important to define characteristics of the risk group. This
can be done by partitioning the feature space and identifying
the partitions, which can then be assigned to the risk group.
Since this is exactly what the decision tree method does, we
apply the already introduced conditional inference tree. For that
purpose, we only include features that have been selected as most
predictive by the different methods.

RESULTS

In this part, we first report results of the group comparison,
especially between B.Ed. and B.Sc. students (R1); secondly, we
report the specific and general feature selection results, together
with prediction accuracies and compare the different methods we
apply (R2); and thirdly, we discuss and describe the identified risk
groups (R3).

Differences of Groups of Students at the
Beginning of University (R1)
Differences in prerequisites of teachers are shown in Table 2.
The non-significant differences in the GPA confirm the results
of Klusmann et al. (2009), but we see differences in the selected
TIMSS items and the math grade. Those results don’t necessarily
contradict the results of Klusmann et al. (2009), since our results
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TABLE 2 | Group differences between B.Ed. students (teachers) and B.Sc.

students.

B.Ed

(teacher) M

(SD)

B.Sc. M (SD) t df Pr(>|t|)

GPAa 2.02 (0.60) 2.02 (0.63) 0.04 341 0.97

Math gradea 11.43 (2.63) 12.06 (2.77) 2.14 341 0.03

Timssa 2.07 (1.19) 2.57 (1.18) 3.85 341 0.00

Age 20.49 (2.91) 20.37 (2.21) −0.27 341 0.79

% (n) % (n) χ
2 df Pr(>|χ2 |)

Sex:male 41.72 (68) 71.67 (129) 30.17 1 0.00

School type:1 81.60 (133) 74.44 (134) 2.14 1 0.14

Prep:1 20.25 (33) 48.89 (88) 29.50 1 0.00

First:1 57.67 (94) 85.56 (154) 31.84 1 0.00

Pass 46.01 (75) 41.11 (74) 0.65 1 0.42

N 163 180

Bold: p < 0.5.

GPA, grade point average in the final exam in school; math grade, math rad in the

final exam in school; timss, sum score of the TIMSS items; age, participant’s age; sex,

participant’s sex; school type, general-education Gymnasium or not; prep, math prep

course prior to university or not; first, first mathematical semester or not; pass, successful

participation in the respective Analysis 1 lecture.
aDue to the sex distribution, we repeated the analysis controlling for sex with no changes

for the significant statements.

solely concern the students of mathematics. There are also
significant differences in prep and first. Forty-nine percentage
of the B.Sc. students attended a mathematical prep course
compared to only 20% of the teacher candidates, while at the
same time significantly more B.Sc. students are in their first
mathematical semester.

Feature Selection Results and Prediction
Accuracy (R2)
Features Selection
For the logistic regression with selected features, we first analyzed
the complete model and use the significant features—GPA,
math grade, timss and first—and the features school type and
tea, as their respective p-values (0.07 and 0.05) are close to
being significant. The analysis of deviance shows no significant
difference between the complete model and the model with
the feature selection, meaning we can use the sparse model.
In Table 3 the results of the logistic regression for the selected
features is presented. Note that the GPA is coded from 1 to 6 with
1 being the best grade. This means that a better GPA by one grade
results in 63% better odds for the success in the lecture.

For the logistic regression with elastic net regularization we
analyze one model with pure lasso/L1 (α = 1) regularization, two
mixed models with α = 0.6 and α = 0.3 and one model with pure
ridge/L2 (α = 0) regularization. The best results are found for the
model with α = 0.3 thus we proceed with this model.

Table 4 shows the resulting feature ranking and the selected
subset for both SVM methods, obtained by and their respective
algorithms. Note that the ranking only marks the feature that is
removed for the next subset. This evaluation is done within each
subset. Rankings within the selected subsets are meaningless,

TABLE 3 | Logistic regression with dataC and selected features (dataC select).

Estimate Std. Error Exp(Estimate) z value Pr(>|z|)

(Intercept) −2.0194 1.5004 0.1327 −1.35 0.1783

GPA 0.9832 0.3379 0.3741 –2.91 0.0036

School type1 0.7018 0.3894 2.0174 1.80 0.0715

Math grade 0.1798 0.0789 1.1970 2.28 0.0227

Timss 0.1395 0.1395 1.6496 3.59 0.0003

First1 0.3402 0.3402 0.4716 –2.21 0.0272

Tea1 0.3248 0.3248 1.7938 1.80 0.0720

Bold: p < 0.5.

GPA, grade point average in the final exam in school; school type, general-education

Gymnasium or not; math grade, math grade in the final exam in school; times, sum score

of the times items; first, first mathematical semester or not; tea, teacher candidate or not.

except for the last ranked feature, which is chosen to be removed
in the next step. Thismeans in the best selected subsets the feature
“school type” is marked as the least important feature. There is no
ranking within this subset for the remaining features. In addition
to the “school type,” the best subset consists of the “math grade,”
“GPA,” “timss,” “tea,” and “first.” As a comparison, the loo.cv for
the complete model (which has not been selected) is reported as
well. The selected subsets for both methods are identical.

The conditional inference tree uses the often selected features
“math grade,” “GPA,” “timss,” and “tea” to do the splits. The
specific splits are shown in Figure 1. Note that even though node
7 executes a further split, when used as a predictor the decision
tree predicts a failure for all participants in the two terminal
nodes 8 and 9, because of pass frequencies lower than 0.5.

For the conditional forest, the value of the number of features
randomly selected in each split (mtry) is set via cross-validation
to mtry= 2 (default value is mtry= 5). Feature selection depends
on variable importance. Here we can see a slight dependence
on the random seed. Those dependencies only occur within
the second and third to last ranked features “state” and “prep.”
Conditional variable importance is calculated three times with
different random seeds. In Table 5 the sorted, absolute values
of the means are reported. Even though there is no clear cut in
feature importance, consistent to the other methods, we select
the ranked features “school type” to “math grade” and compare
the model with these features to the complete model. We choose
this cut to compare the results with the SVM, where the same
subset has been selected.

The best feature subsets for the methods are summarized in
Table 6. Except for the single conditional inference tree, all of
the most successful algorithms selected the same feature subset.
This is remarkable, because the feature selection is done for each
algorithm separately and with algorithm specific, appropriate
methods. In addition to the performance measures (“GPA,”
“math grade,” and “timss”), the school type (“school type”), first
mathematical semester or not (“first”) and the major (“tea”) is
selected. For the predictions, the major (“tea”) is selected as
feature, even though this is the only selected variable that shows
no significant result in the coefficients of the logistic regressions.
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TABLE 4 | Linear and generalized SVM-RFE for linear and RBF kernel: ranking and selected subsets for dataC.

Ranking and best set C γ loo.cv loo.cv

complete

Linear

kernel

Math

grade

GPA Timss Tea First School

type

Prep Sex State Age 0.1 – 0.7782 0.76

RBF

kernel

Math

grade

GPA Timss Tea First School

type

Age Sex Prep State 28 0.001 0.7709 0.7564

Bold = best feature subset selected by the generalized SVM-RFE algorithm; C, cost/regularization hyperparameter; γ, RBF kernel hyperparamter; loo.cv, leave-one-out classification on

the best selected set; loo.cv complete, leave-one-out classification on all features GPA, grade point average in the final exam in school; school type, general-education Gymnasium or

not; math grade, math grade in the final exam in school; timss, sum score of the TIMSS items; age, participant’s age; first, first mathematical semester or not; sex, participant’s sex;

state, federal state of Baden-Württemberg or not; prep, math prep course prior to university or not; tea, teacher candidate or not.

FIGURE 1 | Conditional inference tree with the selected features and splits. The figure shows the split-points within the features used for splits. In the terminal nodes

4–6, 8, 9 the frequencies of the target variable “pass” is shown. GPA, grade point average in the final exam in school; tea, teacher candidate or not; timss, sum score

of the TIMSS items; math_grade, math grade in the final exam in school.
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TABLE 5 | Sorted list of the conditional variable importance for the conditional forest and the feature selection used in further analysis.

Sex Prep State Age School

type

Tea First Timss GPA Math

grade

0.00032 0.00083 0.00091 0.00127 0.00265 0.00418 0.00434 0.00733 0.01254 0.01802

Absolute values of the means of three tested random seeds; bold = selected subset for further investigations (dataC select) GPA, grade point average in the final exam in school; school

type, general-education Gymnasium or not; math grade, math grade in the final exam in school; timss, sum score of the TIMSS items; age, participant’s age; first, first mathematical

semester or not; sex, participant’s sex; state, federal state of Baden-Württemberg or not; prep, math prep course prior to university or not; tea, teacher candidate or not.

TABLE 6 | Selected features for the different methods.

GPA School

type

Math

grade

timss Age First Sex State Prep Tea

Logistic

regression

X X X X – X – – – X

Elastic net X X X X – X – – – X

SVM (linear) X X X X – X – – – X

SVM (RBF) X X X X – X – – – X

Random

forest

X X X X – X – – – X

Decision tree X – X X – – – – – X

Predictors, basic logistic regression, logistic regression with elastic net regularization (α = 0–3), SVM with linear kernel (C = 0–2), SVM with RBF kernel (C = 28, γ = 0–001), random

forest based on conditional inference trees, tree = conditional inference tree; GPA, grade point average in the final exam in school; school type, general-education Gymnasium or not;

math grade, math grade in the final exam in school; timss, sum score of the TIMSS items; age, participant’s age; first, first mathematical semester or not; sex, participant’s sex; state,

federal state of Baden-Württemberg or not; prep, math prep course prior to university or not; tea, teacher candidate or not.

TABLE 7 | Table of inter-rater agreement (κ) for the different best predictors on the training set and on the test set.

log.train elnet.3.train svm.lin.train svm.train tree.train forest.train

log.train 1

elnet.3.train 0.88 1

svm.lin.train 0.92 0.90 1

svm.train 0.91 0.90 0.98 1

tree.train 0.64 0.70 0.64 0.66 1

forest.train 0.78 0.84 0.85 0.86 0.70 1

log.test elnet.3.test svm.lin.test svm.test tree.test forest.test

log.test 1

elnet.3.test 0.82 1

svm.lin.test 0.85 0.97 1

svm.test 0.79 0.97 0.94 1

tree.test 0.70 0.76 0.74 0.79 1

forest.test 0.68 0.85 0.82 0.88 0.91 1

log, basic logistic regression (selected subsets); elnet.3, logistic regression with elastic net regularization (α = 0.3, λ = 0.107); svm.lin, SVM with linear kernel (selected features; C = 0.2);

svm, SVM with RBF kernel (selected features; C = 28, γ = 0.001); tree, conditional inference tree; forest, random forest based on conditional inference trees (selected features).

Prediction Comparison and Ensemble of the

Predictors
In this section, we summarize the above-mentionedmodels.With
all the selected models, we predict the target “pass.” To compare
the predicted outcomes of the different models we calculate the
inter-rater agreement between the models. Tables for those κ-
values are presented in Table 7 for Cohen’s Kappa on the training
set and on the test set.

On both the training set and the test set, the different
algorithms show at least substantial and often almost perfect
inter-rater agreement.

We use all the predictors to build an ensemble
predictor. In the ensemble, a majority vote is used to
gain the overall prediction. In Table 8 the prediction
measures for this ensemble and the single predictors
are reported.
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TABLE 8 | Summary of the prediction measures of the best predictors.

Ensemble Logistic

regression

Elastic

net

Linear

SVM

SVM

(RBF)

Tree Forest

acc.train 0.79 0.77 0.75 0.77 0.78 0.74 0.76

kappa.train 0.56 0.52 0.48 0.53 0.56 0.47 0.51

loo.cv – 0.76 0.73 0.78 0.77 0.69 0.71

P.train 0.75 0.74 0.72 0.73 0.74 0.73 0.73

R.train 0.76 0.71 0.66 0.74 0.76 0.66 0.70

F1.train 0.76 0.72 0.69 0.74 0.75 0.69 0.72

acc.test 0.75 0.68 0.74 0.72 0.75 0.68 0.71

kappa.test 0.50 0.34 0.47 0.44 0.50 0.31 0.40

P.test 0.70 0.63 0.69 0.67 0.70 0.64 0.67

R.test 0.77 0.63 0.73 0.73 0.77 0.50 0.67

F1.test 0.73 0.63 0.71 0.70 0.73 0.56 0.67

Logistic regression, basic logistic regression (selected subsets); log. with el. net, logistic regression with elastic net regularization (α = 0.3, λ = 0.107); linear SVM, SVM with linear kernel

(selected features; C = 0.2); SVM with RBF kernel (selected features; C = 28, γ =0.001); tree, conditional inference tree; forest, random forest based on conditional inference trees

(selected features); acc, accuracy; kappa, inter-rater agreement (Cohen’s kappa); loo.cv, leave-one-out accuracy; P, precision; R, recall; F1, F1 score.

For the two logistic regression approaches we can see
better generalization results for the method with elastic net
regularization. The high variance (overfitting) problem of the
basic logistic regression can also be seen in the κ-values, which
drop from moderate agreement on the training set (0.52) to
fair agreement (0.34) on the test set. The SVM models show
moderate inter-rater agreement on the test set. The models
show slightly more overfitting than the logistic regression with
elastic net regularization but result in the comparable test
accuracy of 0.75 for the RBF kernel. As expected, the SVM
with the RBF kernel outperforms the linear SVM. The single
conditional inference tree shows overfitting, resulting in a total
test accuracy of 0.68 and only fair inter-rater agreement (κ =

0.31). Both SVM algorithms, the logistic regression with elastic
net regularization and the random forest achieve test accuracies
higher than 0.70 and moderate inter-rater agreement. The two
outstanding algorithms are the logistic regression with elastic net
regularization (α = 0.3) and the SVM with RBF kernel. Both
achieve the highest test accuracy (0.74 and 0.75, respectively) as
well as the highest inter-rater agreement kappa test (0.47 and
0.50, respectively). The ensemble predictor does not outperform
the best single predictors. This is no surprise, due to the high
inter-rater agreements shown in Table 7. It more or less adopts
the prediction measures of the SVM with RBF kernel and the
logistic regression with elastic net regularization (α = 0.3).

Identification and Description of the Risk
Group (R3)
For the identification of the different prediction groups (true
positive predictions, true negative predictions and wrong
predictions), we use the ensemble predictor to gain predictions
for the complete dataset. This dataset contains the training set
and the test set, which results in accuracy measures (Table 9)
different to those reported in Table 8 (closer to the training
measures due to the distribution in the train-test split).

TABLE 9 | Prediction measures of the ensemble predictor.

Complete dataC

Acc 0.78

Kappa 0.55

P 0.74

R 0.77

F1 0.75

The predictor was learned on the training set of dataC (for results see Table 8). The here

reported measures are on the complete dataset.

Acc, accuracy; kappa, inter-rater agreement (Cohen’s kappa); loo.cv, leave-one-out

accuracy; P, precision; R, recall; F1, F1 score.

In Table 10 descriptive measures of the three groups are
given. The performance measures from school—GPA and math
grade—, as well as the test performance on the TIMSS items
show the relation of performance and success. With regard to the
ranges of the performance measures, we can see that for students
with a GPA worse than 2.4 and a math grade worse than 9 points
the success is not once correctly predicted. For students with a
GPA better than 1.3 no correct failure prediction occurs. The
ranges of the wrong predictions are rather wide. This could stress
the importance of the behavior during the semester, as fortunate
prerequisites don’t necessarily lead to success and unfortunate
prerequisites don’t necessarily lead to failure. The descriptive
measures inTable 10 only give general information on the groups
but no indication on the structure or interaction of the features,
which lead to different group assignments.

For different applications, we partition the feature space using
a conditional inference tree and assign terminal nodes to the risk
group. Results of the decision tree are shown in Figure 2.

Figure 2 shows eight terminal nodes. We assign nodes 4,
5, 8, and 14 to the risk groups, because in those nodes the
frequency of true negative predictions is outstandingly high
compared to the rest. The first split is done at a math grade under
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TABLE 10 | Descriptive measures of the groups with correct positive prediction, correct negative prediction and wrong predictions on the complete dataset dataC.

Pred. pass=1 Wrong pred. Pred. pass=0

M (SD) Range M (SD) Range M (SD) Range

GPA 1.54 (0.35) 1.0–2.4 1.97 (0.58) 1.0–3.5 2.41 (0.52) 1.3–3.6

Math grade 13.75 (1.30) 9–15 12.42 (2.47) 4–15 9.95 (2.43) 4–15

Timss 2.98 (1.00) 0–5 2.57 (1.18) 0–5 1.73 (1.07) 0–4

% % %

School type1 92.98 84.21 63.40

First1 64.04 63.16 83.01

Tea 53.51 35.53 49.02

The predictions are executed with the ensemble predictor.

GPA, grade point average in the final exam in school; school type, general-education Gymnasium or not; math grade, math grade in the final exam in school; timss, sum score of the

TIMSS items; age, participant’s age; first, first mathematical semester or tot; tea, teacher candidate or not.

FIGURE 2 | Conditional inference tree for the group membership of correct positive predictions, correct negative predictions and wrong predictions. The figure shows

the split-points within the features used for splits. In the terminal nodes 4, 5, 7, 8, 11, 12, 14, and 15 the frequencies of the group membership are shown, with group

0 being the true negative predictions, group 1 the true positive predictions and group 2 the wrong predictions. The risk group is defined as the true negative

predictions. The terminal nodes 4, 5, 8, and 14 are assigned to this group. Predicted outcomes of the ensemble predictor for the complete dataset dataC are used.

GPA, grade point average in the final exam in school; school type, general-education Gymnasium or not; timss, sum score of the TIMSS items; math_grade, math

grade in the final exam in school; first, first mathematical semester or not.

and above of 12 points. In the following we describe some of
the paths.

The ensemble predictor is especially confident about the

failure of the students in node 4 and node 5. Those nodes contain

students in their firstmathematical semester, with amath grade in

the final exam in school below or equal to 12 points. For students

that are not in their first mathematical semester, a further split is

executed at a GPA of 2.1, with GPAs worse than 2.1 leading to
terminal node 8, which also is assigned to the risk group.

Students with math grades better than 12 points, are also
allocated by their GPA. For students with a GPA worse than
1.6 the math performance is re-assessed with the TIMSS items.
Students with 2 correct answers or less are assigned to terminal
node 14 and thus to the risk group. Another interesting result
shown in Figure 2 is the relevance of the school type. According
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TABLE 11 | Description of three risk levels with especially unfortunate

prerequisites.

Risk level one Risk level two Risk level three

Math

grade

≤12 points ≤12 points >12 points

GPAa
>2.1 ≤2.1 >1.6

Timss ≤2

Description Highest risk level

with the most

confident failure

prediction

High risk level if the

Analysis 1 lecture

is attended in the

first mathematical

semester

Moderate risk level

aThe range for the GPA is 1–6 with 1 indicating the best performance. GPA, grade point

average in the final exam in school; math grade, math grade in the final exam in school;

timss, sum score of the TIMSS items.

to the results, the success in the Analysis 1 lecture for students
with good school grades (more than 12 points in the final
math exam and a GPA better than 1.6) highly depends on the
school type. If the grades are achieved at a general-education
Gymnasium, the prediction of success is very confident. For
other school types the frequency of positive predictions is still
the highest, but by far not as confident. This shows that in
this analysis the value of school grades highly depends on the
school type.

In summary, there are three paths leading to the risk
group, which suggest three especially unfortunate prerequisite
constellations. We will summarize these constellations in three
risk levels, with the highest risk in risk level one. Students
assigned to risk level one have 12 points or below in the final math
exam and aGPA higher than 2.1. Risk level two is defined bymath
grades of 12 points or below and a GPA better than 2.1. Those
students might have problems completing the Analysis 1 lectures
in the first semester. The risk level three contains students with
goodmath grades (above 12 points) but GPAs not better than 1.6.
As already mentioned, the math performance is re-assessed with
TIMSS items for this group−2 or less correctly answered items
lead to as risk. The risk levels are summarized in Table 11.

DISCUSSION

With regard to the three research questions, the discussion is
structured as follows. First, we review the results of students’
different prerequisites prior to university (R1). We primarily
focus on the teacher candidates and their possible differences
with other mathematics students. Secondly, we discuss the most
predictive features found by the different methods together with
the achieved accuracies (R2) and thirdly, we discuss the described
risk groups (R3).

Differences in Prerequisites of Teacher
Candidates (R1)
We compared the prerequisites of B.Ed. students with those
of B.Sc. students4. For the GPA, we can reproduce the result

4The analysis for the performance measures “GPA,” “math grade,” and “timss” was
repeated and con- trolled for sex. The results did not change and thus are not
reported.

of Klusmann et al. (2009), showing no differences for the
two groups. Thus, a negative selection concerning the general
performance in school is not existent in the data. Other than their
results, there are differences in the math specific performance
measures “math grade” and “timss,” where the B.Sc. students
performed better. This might be due to the different sample
used in this study and in Klusmann et al. (2009). We compare
teacher candidates in math with B.Sc. students in math and
physics, whereas Klusmann et al. (2009) uses the TOSCA data set
(Köller et al., 2004), where B.Sc. students with scientific subjects,
also outside of the math and physics field are included as well.
This means that the different results might occur because of
a substantial positive selection in our B.Sc. group. The group
differences regarding participation in amathematical prep course
prior to university, with only 20% of the B.Ed. students compared
to 50% of the B.Sc. students, need further investigation. The
University of Tübingen offers mathematical prep courses for
physics and computer science, but no course specifically designed
for math students. Even though those courses are open to math
students as well, they might be more present in the physics
study recommendations, thus the physics students within the
B.Sc. group might cause the above-mentioned difference. In the
framework of this study, the difference of the variable “first”
needs to be discussed. Only 58% of the B.Ed. students were
in their first mathematical semester, compared to 86% of the
B.Sc. students. The data doesn’t contain the information if
the students, who are not in their first mathematical semester,
already participated in an Analysis 1 lecture before, or if, for
example, they attended lectures in linear algebra first. Due to the
study design, we can eliminate partly successful participations
in former Analysis 1 lectures. It is a possible scenario for B.Ed.
students not to start with the analysis and linear algebra lectures
simultaneously, which would be the common way especially for
the B.Sc. students. This has an influence on the non-completions
in this data as seen in the importance of the feature “first” in the
predictions and feature selections. This might be due to general
experience gained at university, even though the lecture itself is
attended for the first time. For that reason, it was important to
include the feature “first” to capture this effect when evaluating
the group of teacher candidates.

Identification of the Most Predictive
Features and Prediction Accuracies (R2)
For the identification of the most predictive features, method
specific algorithms are used. All of the best predictors (excluding
the single decision tree) use the same feature subset, including
grade point average of the final exam in school (“GPA”), the
information if the school type where the final exam is done
was a general-education Gymnasium (“school type”), the math
grade in the final exam in school (“math grade”), the sum score
of the TIMSS items (“timss”), the information if the students
were in their first mathematical semester (“first”) and if the
students are in the B.Ed. (teacher candidates) or in the B.Sc. study
program (“tea”).

As expected, the math specific performance measures and
the general school performance measure show positive effects
on the success in the Analysis 1 lecture (see e.g., Bean, 2005).
As mentioned earlier, there is a positive effect concerning
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students’ number of mathematical semester. Students which are
not in their first mathematical semester show higher success
probabilities than students in their first semester. This effect
was expected, because even though the students might not have
participated in a former Analysis 1 lecture, they don’t have
to deal with general problems at the beginning of university
and might be more experienced in handling the requirements
of a math lecture. Even though in the basic logistic regression
being a teacher candidate shows no significant coefficient for
the dependent variable indicating the success in Analysis 1, in
prediction, all methods selected “tea” as a predictive feature. Over
all, we see slight indication of a positive effect of “tea” on the
success. For example, the single decision tree selects “tea” as one
of the splitting features with a positive effect. This might be due
to the high frequency of students not in their first semester within
the teacher candidates. Since the feature “first” is not selected by
the tree, its positive effect might occur within the feature “tea.”

Students who graduated at a general-education Gymnasium
are more likely to pass the Analysis 1 lecture. This influence of
the school type can only be discussed speculatively, because the
data doesn’t reveal further information. In some of the alternative
school types, the students attend a lower level school first and
then transfer to a school were the admission to a university can be
achieved. Those differences, for example in the math knowledge,
might not be seen in the restricted framework of the final exams
in school, but seems to have an influence on success probabilities
at the university.

Except for the basic logistic regression and the single
conditional inference tree, the best predictors of the respective
methods all achieve accuracies on the test set above 70%. The F1-
scores are in a good range between 0.6 and 0.73 for all predictors
(except for the single tree) and show no substantial tradeoff
between recall and precision, indicating, as expected, no serious
effect of the slightly skewed data.

As a result, we summarize that with appropriate methods the
success in the Analysis 1 lecture can be correctly predicted for
75% of the students (with inter-rater agreement in the moderate
range), only with the knowledge of their GPA, their math grade
in the final exam in school, the test result of the TIMSS items, the
school type and their number of semesters and study program.
Note that this is the accuracy on the test setmeaning after possible
generalization errors.

Risk Groups
The results of this study can help universities to identify risk
groups in math study programs. Here we see that unfortunate
performance measures from school lead to the expected risk
of a failure in Analysis 1. The results underline the results of
previous studies (see e.g., Bean, 2005), but furthermore give
thresholds for the math grade of 12 points and a school GPA of
2.1. We also see that a good mathematical performance in school
(>12 points) needs to be confirmed by additional mathematical
performance tests, like the TIMSS items (at least as long as the
GPA is not in the excellent range, here >1.6). Note, that even
though we need six variables for accurate predictions, the risk
level identification can be done by using at most three variables.
Investigations that lead to resilient risk group classifications lead

to different easy-to-use recommendations. First, if necessary, an
admission restriction can be applied for students with risk level
one (math grade worse or equal to 12 points and GPA worse than
2.1). Secondly, interventions like mathematics pre-courses can
be offered before the semester begins, in particular for students
in the risk levels. And thirdly, interventions during the semester,
such as mentoring programs or support lectures, can be planned
and offered for the target group of students with high risk levels.

CONCLUSION

We conclude that teacher candidates start with adverse
prerequisites concerning math specific performance measures.
However, there are no significant differences to B.Sc. students in
terms of success in the Analysis 1 lecture. Success in the Analysis
1 depends on the number of the mathematical semesters with a
positive effect of not being in the first semester. The distribution
of this variable within the teacher candidates might contribute
to a slight overall positive effect of being a teacher candidate.
The analysis of the risk groups also indicates the disagreement
with the public opinion of teacher candidates being the worse
students, described in Blömeke (2005). The study program itself
does not occur as indicator for a risk group. But one should
mention that a threshold for the math grade in school can
be set at 12 points (see previous section). The B.Ed. students
however show significantly worse math grades compared to
their B.Sc. colleagues (11.43 and 12.06, respectively) with the
mean lying slightly below the threshold. An assumable negative
effect on the success however did not occur in our analysis
and although the teacher candidates show worse prerequisites in
math performance the school grades are still in the good range.
In conclusion, we say that, at least in our dataset, the teacher
candidates show no substantially disadvantageous prerequisites
for the success in the Analysis 1 lecture and thus do not represent
a risk group per se [(R1) and (R3)].

With regard to the variable clusters of Bean (2005) and Burrus
et al. (2013), the analysis did not show effects in the field of
students’ demographic characteristics, age and sex, but in the
high relevance of the academic preparation and success factors.
The indication of risk groups highly depends on performance
measures from school or at least on their underlying concepts
of knowledge. We saw that the school grades in some cases
have to be confirmed by additional tests or the knowledge about
the school types where the grades were achieved. Due to the
limitations of the study, clear recommendations for interventions
have to be made carefully. In general, this procedure can
lead to the resilient identification of risk group indicators and
the classification of the risk levels, which can be extremely
helpful for universities when discussing admission restrictions.
Table 11 shows the highest risk for students with school grades
below average (math grades of ≤12 points and GPAs higher
than 2.1). Especially the math grade seems to be a good
indicator for students in risk groups. With meaningful risk
group classifications, other applications apart from admission
restrictions can be the development of interventions and general
support courses for specific target groups. Even though the results
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might not give suggestions for specific variables which could be
improved by interventions, it helps to identify risk groups for
which interventions or support courses should be developed. For
this task Figure 2 can be used.

This analysis relies on results of the ensemble predictor, which
shows a test accuracy of 75%. This accuracy is only achieved
using a small set of features, consisting of information prior to
the lecture (R2). Considering that no information about students’
behavior during the semester is included, this is a rather high
value. Note that the accuracy refers to predictions on the test
set, consisting of students the algorithm has never seen bevor.
The remaining 25% of the students show wide ranges of variable
values. Again, this stresses the importance of the behavior
during the semester. On the one hand, even students with very
unfortunate prerequisites can succeed in the lecture and, on
the other hand, very fortunate prerequisites don’t guarantee the
success. With the high accuracy of 75%, a general structure
seems to be found, resulting, for example, in the identification
of risk groups.

The methods were applied in the German setting of teacher
education. Due to differences for example to the U.S. system,
results and conclusions might not directly be applicable. But the
general procedure can be adopted and suggests the use of data
science methods to improve teacher education. For example, in
the U.S. the SAT-/ACT-scores might be included.

LIMITATION AND OUTLOOK

In this study, data of two consecutive Analysis 1 lectures at
the University of Tübingen was used. Even though, instead of
sampling, all students of the lecture were included (with a return
rate around 92%), the data might only be representative for
this university. Especially concerning the federal state, where
87% of the participants graduated at a school in the state of
Baden-Württemberg, the data might not be representative
for Germany. With the combination of two lectures we
tried to address the possible dependence on lecturers and
specific schedules. For further improvement the inclusion of
more lectures, in particular lectures at different universities,
would be appropriate. Concerning the used variables, one
should consider aspects concerning students’ personality
and motivation.

Due to sample size and the limitation implied by only
considering one university, specific results have to be
interpreted very carefully. Even though the course used
is thought to be representative for the initial phase of
mathematics study programs, different educational systems
might influence the success enormously. Thus, specific results,
like variable selection and thresholds in risk classification,
might not generalize well in other contexts. Nevertheless,
the applied methods and the general procedure can be
generalized and provide valuable information when applied by
educational institutions.

As mentioned before this study serves as an example of
the usefulness of data science methods in teacher education,

especially when the focus is on applicability where algorithms
have to deal with sparse feature spaces.

As next steps, the inclusion of behavioral information during
the semester is planned, including a wider range of students’
characteristics. For a better generalization, more universities in
Baden Württemberg will be included.

Although, this study is a very specific perspective on student
drop out, given the German education system, we feel that the
general procedure has its merits in terms of risk identification and
potential for interventions.
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