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E-learning is being considered as a widely recognized option to traditional learning

environments, allowing for highly tailor-made adaptive learning paths with the goal to

maximize learning outcomes. However, for being able to create personalized e-learning

systems, it is important to identify relevant student prerequisites that are related learning

success. One aspect crucial for all kind of learning that is relatively unstudied in relation

to e-learning is working memory (WM), conceptualized as the ability to maintain and

manipulate incoming information before it decays. The aim of the present study was to

examine how individual differences in online activities is related to visuospatial- and verbal

WM performance. Our sample consisted of 98 participants studying on an e-learning

platform. We extracted 18 relevant features of online activities tapping on Quiz accuracy,

Study activity,Within-session activity, and Repetitive behavior. Using best subset multiple

regression analyses, the results showed that individual differences in online activities

significantly predicted verbal WM performance (p < 0.001, R2
Adjusted = 0.166), but not

visuospatial WM performance (p = 0.058, R2
Adjusted = 0.065). The obtained results

contribute to the existing research of WM in e-learning environments, and further suggest

that individual differences in verbal WM performance can be predicted by how students

interact on e-learning platforms.

Keywords: working memory, e-learning, online activities, cognition, retrieval practice

INTRODUCTION

As a result of digitalization, more and more educational content has been transferred from
teacher-centered teaching to online-based learning platforms. Such learning platforms, often
called e-learning, can be defined as individualized instructions distributed over public or private
computer networks (Manochehr, 2006). Thus, compared to traditional desktop-teaching, e-
learning platforms have the potential to register all kind of online activities, allowing researchers,
and teachers to observe learners’ behaviors throughout the learning process and with the use of
data mining and computerized algorithms, to quickly identify and analyze trends in big datasets
(Truong, 2016). However, the digitalized nature of e-learning results in less face-to-face interaction
with teachers or instructors, reducing the possibility to detect needs for changes in instructional
and individual scaffolding. It is therefore vital that e-learning platforms can be tailored according to
learners’ individual needs and prerequisites. Accordingly, both explanatory studies using traditional
statistical techniques (Coldwell et al., 2008; Dawson et al., 2008; Macfadyen and Dawson, 2010; Yu
and Jo, 2014; Zacharis, 2015) as well as predictive analytics studies using machine learning- and
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neural networks (Lykourentzou et al., 2009; Hu et al., 2014; Sayed
and Baker, 2015; Costa et al., 2017; Shelton et al., 2017) have been
conducted to gain better insights in online learning activities with
the aim to optimize and tailor e-learning platforms according to
students’ individual needs (e.g., Thalmann, 2014; Truong, 2016).

While most of the previous studies have been focusing on
the direct relationship between online activities on e-learning
platforms and learning outcomes, very few studies have studied
the inter-individual differences in cognitive profiles, and how
these differences can be predicted by online activity. It is
therefore important to identify relevant user activity features
that predicts WM, having the potential to act as substitute
measures of cognitive capacity without the necessity to test every
single student using the platform with time-consuming and
tedious cognitive assessments. A cognitive component possessing
a pivotal role in all kind of learning is working memory (WM).
WM refers to the ability to maintain, access, and manipulate
incoming information (Baddeley, 2000; Oberauer et al., 2003),
thus serving as the mental workspace for ongoing cognitive
activities. Several theories concerning the function of WM
has been put forth (e.g., Baddeley and Hitch, 1974; Ericsson
and Kintsch, 1995; Cowan, 2001). In this study, the seminal
multicomponent proposed model by Baddeley and Hitch (1974)
will serve as the theoretical reference. The multicomponent
model suggest thatWM comprise two autonomous slave systems,
the phonological loop and the visospatial sketchpad, along with
a central executive that interacts with the two slave systems
(Baddeley and Hitch, 1974), and the more recently added
episodic buffer (Baddeley, 2000). The phonological loop with
its subvocal rehearsal and phonological storage components
is most directly relevant for remembering verbal information
and learning, whereas the visuospatial sketchpad is responsible
for remembering spatial and visual images and visuospatial
learning. The functioning of the two domain-specific slave
systems are typicallymeasured with simple span tasks, prompting
participants to memorize increasingly long strings of items
followed by an immediate recall without further processing
(Van de Weijer-Bergsma et al., 2015). Given that most of
the content on e-learning platforms are presented in textual
form, particularly verbal WM plays a pivotal role to facilitate
the to-be-learned materials in long-term memory (Gathercole
and Alloway, 2008). However, visuospatial WM is relevant
for linguistic processing as well. It has been suggested that
visuospatial WM, particularly among those with higher-level
reading skills, allows for ortographic processing, and thus a more
efficient long-term memory encoding of regular and irregular
patterns of words (Badian, 2005; Ehri, 2005; Pham and Hasson,
2014).

Another theoretical framework related to e-learning, and
partly building upon the multicomponent model of WM, is
the cognitive load theory (Sweller, 1988). The cognitive load
theory suggests that learning can be best explained by an
information-processing model of human cognition, in which
novel memoranda needs to be processed by WM before it can be
manifested in long-term memory (Van Merriënboer and Sweller,
2005; Sweller, 2010). As WM has a limited capacity, the cognitive
load theory pinpoints the importance of reducing unnecessary

WM loads, allowing students’ to direct their WM capacity to
merely learning-related processes (Anmarkrud et al., 2019). In
other words, if the WM capacity threshold is exceeded, it could
result to a cognitive overload, and thereby to inhibited learning
outcomes (Kalyuga, 2011).

Several studies have examined how low vs. high WM
individuals differ in traditional classroom learning activities. It
has, for instance, been shown that low WM individuals have
poorer performances in school subjects such as arithmetics
(Gathercole and Pickering, 2001; Swanson and Beebe-
Frankenberger, 2004; Raghubar et al., 2010), and reading
comprehension (Daneman and Carpenter, 1980; Turner and
Engle, 1989). It has also been found that those with poorer
WM performance tend to perform worse in quiz tasks assessed
immediately following the learning phase (Wiklund-Hörnqvist
et al., 2014; Agarwal et al., 2017; Bertilsson et al., 2017), including
poorer performances in final course exams (Turner and Engle,
1989; Aronen et al., 2005; Cowan et al., 2005). As for the more
specific differences in learning activities, WM has shown to
predict how frequently the learner goes back and repeat earlier
learned materials such that those with poorer WM tend to go
back and read earlier material more frequently as compared to
those with better WM performance (Rosen and Engle, 1997;
Kemper et al., 2004). It has also been shown that WM is highly
involved in howmuch time the learner is spending on a particular
quiz: learners with poor WM spend more time on reading the
to-be-learned materials compared to high WM individuals
(Engle et al., 1992; Calvo, 2001; Kemper and Liu, 2007).

Although it has been extensively investigated how learning
activities and WM performance are interrelated in lab- and
classroom-based settings, only a few studies have investigated
how individual differences in learning activities predicts WM
performance on online-based e-learning platforms (Huai, 2000;
Banas and Sanchez, 2012; Rouet et al., 2012; Skuballa et al.,
2012). In a Ph.D. thesis by Huai (2000), the author examined
whether serial vs. holistic learning style, and linear vs. non-
linear navigational patterns in an e-learning course was related
to WM performance. Here, the results showed that students with
higher WM performance were more prone to focus on a linear
navigation of the to-be-learned materials whereas those with
lower WM performance followed the course material in a more
non-linear fashion. In a study by Rouet et al. (2012), the authors
examined the impact WM had on students’ incidental learning
when faced with simple hierarchical hypertextual documents
on a website. The results showed that individuals with low
WM performance tended to lose track of the structure in the
to-be-learned materials as they navigated deeper in the text
structure. Skuballa et al. (2012) investigated whether low vs.
high WM individuals were more prone to utilize externally
provided (a) visual cues or (b) verbal instructionswhen practicing
with an online-based audiovisual animation sequence for 5
minutes. Employing a pre-posttest design, the results on the
learning outcomes showed that low WM individuals tended
to benefit more of visual cues whereas high WM individuals
tended to benefit more of verbal information. Banas and Sanchez
(2012) probed for the impact WM had on individual differences
in online activities among participants that read a web-based
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text about plant taxonomy, while simultaneously completing a
secondary search task tapping on simple factual quizzes. The
results showed that participants with better WM performance
improved in their implicit understanding of the relationships
underlying the to-be-learned materials, whereas those with
poorer WM performance did not.

In summary, WM is linked to a multitude of features related
to learning success (Daneman and Carpenter, 1980; Daneman
and Merikle, 1996; Rosen and Engle, 1997; Aronen et al., 2005;
Cowan et al., 2005), and the scarce evidence in the context
of e-learning indicates that WM affects aspects such as how
linearly the student follows the to-be-learned materials (Huai,
2000), and which kind of cues on the platform the student use
for memorization (Skuballa et al., 2012). This suggest that WM
constitute a significant factor for profiling and personalizing e-
learning platforms (Kalyuga and Sweller, 2005; Tsianos et al.,
2010; Banas and Sanchez, 2012). Hence, being able to identify
relevant user activity features that predicts WM without the
burden of testing every single student using the platform is an
important step toward more personalized e-learning platforms.
Considering the few studies on individual differences and e-
learning, more research is needed to gain deeper insights
regarding the relationship between online activities and how it
can be used to predict students’ WM performance.

The aim of the present study was to examine whether
individual differences in online e-learning activities would
be predictive of visuospatial and verbal WM performance.
More specifically, we sought to identify which online activity
features that are most strongly related to WM, and to
untangle whether online activity is differently related to WM
performance depending on the subcomponent which is analyzed
(i.e., visuospatial and verbal subcomponent). The data for
this study stems from an interactive e-learning platform in
Sweden titled Hypocampus (https://www.hypocampus.se). To
date, approximately 15,000 students use Hypocampus as a
platform for carrying out university courses, with most of the
users consisting of medical students. The e-learning platform
provides the students with compressed course materials that
are highly relevant for the to-be-completed courses at their
universities. In other words, instead of completing the course
by reading textual literature from the books, the content of
the course is transferred to the interactive e-learning platform.
Hypocampus also provides a high degree of learner control, with
a broad array of courses covering different topics in medicine
that students can complete non-linearly in their own pace (i.e.,
they can choose to jump back and forth from a course to
another), thus resembling typical massive open online platforms
(MOOCs; Kaplan and Haenlein, 2016). Hence, in line with
previous MOOC studies (Brinton and Chiang, 2015; Kloft et al.,
2015), we focused on extracting only features stemming from
clickstream data in the present study. Hypocampus has also
implemented an evidence-based strategy purported to facilitate
learning, namely retrieval practice (for a review, see Dunlosky
et al., 2013). Retrieval practice prompts students to deliberately
recall the to-be-learned materials, thereby serving as so-called
self-testing of what one has learned. This strategy is implemented
at the end of each learning section in either multiple-choice

format (i.e., a question followed by four alternatives out of which
one is correct) or in open-ended format (i.e., a question followed
by an empty box where the student type his/her answer).

Altogether 18 online activity features were extracted from
the e-learning platform which were based on existing work
(e.g., Jovanovic et al., 2012; Tortorella et al., 2015; Zacharis,
2015). Specifically, we divided these features into four broader
subdomains of online activity, namely Quiz accuracy, Study
activity, Within-session activity, and Repetitive behavior. Quiz
accuracy pertains to features capturing how accurately one
has been responding on quizzes related to the to-be-learned
materials. As quiz accuracy measures have been linked to WM
performance in previous work (Wiklund-Hörnqvist et al., 2014;
Bertilsson et al., 2017), we deemed it important to extract such
features for the present study as well. Study activity refers to
features capturing how active the student has been on the
platform (e.g., time spent in the system, the number of reading
sessions, number of quizzes taken) whereas Within-session
activity refers to features capturing student activities within
a session (e.g., average reading- and quiz times per session).
Both of these subdomains were motivated to be included in
the present study, as prior evidence stemming from behavioral
and eye-tracking studies shows that those with poorer WM
performance tend to spend more time on the to-be-learned
materials as compared to those with better WM performance
(Engle et al., 1992; Calvo, 2001; Kemper and Liu, 2007). This
raises the intriguing question whether a similar pattern could
be observed in the context of e-learning. Lastly, the subdomain
Repetitive behavior relates to features that taxes how often, and
how much individuals repeat previously learned materials. The
reason for including measures of repetitive behavior was also
theoratically motivated; results from previous studies shows that
highWM individuals tend to repeat less compared with lowWM
individuals (Rosen and Engle, 1997; Kemper et al., 2004).

For capturing WM, we administered a Block span tapping on
visuospatial WM (e.g., Vandierendonck et al., 2004) and a Digit
span tapping on verbal WM (D’Amico and Guarnera, 2005). In
the light of the theoretical framework of WM (Baddeley and
Hitch, 1974; Baddeley, 2000, 2003), we hypothesized that both
subcomponents ofWMwould be related to individual differences
in online activities. However, as themajority of the content on the
e-learning platform involves reading, we expected that the Digit
span would show stronger relationships with online activity since
they both rely heavily on verbal WM. This assumption was based
on the theoretical framework of WM (Baddeley and Hitch, 1974)
and evidence from cross-sectional- and longitudinal studies,
showing that verbal WM tasks typically are more sensitive
for predicting academic achievements with verbal content as
compared with visuospatial WM tasks (e.g., Pazzaglia et al., 2008;
Gropper and Tannock, 2009; Van deWeijer-Bergsma et al., 2015).

Lastly, one should point out that there has been relatively
mixed approaches in previous studies as whether WM
performance has been regressed on online activities (Pazzaglia
et al., 2008; Banas and Sanchez, 2012) or vice versa (Huai,
2000). In the present study, we used best subset multiple
regression analyses where the online activity features served as
features for predicting the subcomponents of WM (note that the
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subcomponents were analyzed in separate models). If we would
identify online activity features that shows strong associations
with WM performance, they could serve as proxy estimates
of WM performance, paving way for a fast screening of the
students’ cognitive profiles, while simultaneously circumventing
the burden of assessing each students’ WM capacity which
is both cognitively demanding and time-consuming from the
students’ perspective. Thus, this choice of direction in the present
study (i.e., online activity features as predictors of WM) was
justified (for a discussion, see Chang et al., 2015).

METHODS

Hypocampus
As mentioned earlier, Hypocampus is a web-based e-learning
platform primarily used by ca. 15000 medical students. Every day
that a student uses the platform a vast amount of interactional
data is generated. This data is collected using JavaScript methods
available in the user’s browser and stored in the backend system
in a database. Hypocampus offers a high degree of learner control
in a wide range of courses in medicine which the students’
can complete non-linearly, while also having the possibility
to study in their own pace and complete the courses and
learning sections in the order of their own choice. Moreover, for
reducing extraneous cognitive load, the to-be-learned materials
is presented in an easily and understandable way at the platform
with clear headings, sub-headings, and additional features such
as highlighting the most important information, including tables
that summarizes the learning section with bullet points. The
platform also provides images and video clips as supporting
tools for facilitating the to-be-learned materials (note, however,
that the images and video clips occurs on the platform only
occasionally, and thus to a much lesser extent than the
written materials).

Participants and Procedure
The participants in the present study consisted of students who
were studying on an e-learning platform (titled Hypocampus)
to prepare themselves for the actual exam at the university.
Most of the enrolled participants were medical students studying
either at the Umeå University, Karolinska Institute, Gothenburg
University, Lund University, Uppsala University, Örebro
University, or Linköping University. The study was approved
by the regional vetting committee (2017/517-31), Sweden,
and informed consent was obtained from all participants.
Moreover, as this was the first data collection conducted on
Hypocampus, we did not gather any demographical data from
the participants (i.e., we considered it important to maintain
maximum anonymity of the students)1. Furthermore, we did not
state any prior inclusion criteria for being an eligible participant
for the present study.

For capturing individual differences in WM, we invited a
sub-sample of 1,000 randomly selected students at Hypocampus

1However, in a subsequent study where we gathered demographical data,
descriptive analyses showed that the participants mean age was 30.70 (SD= 8.48),
out of which 52% were females.

to complete the test session consisting of four cognitive tasks
tapping on working memory and episodic memory (duration
ca. 1 h). The test session was administered online using an in-
house developed web-based test platform by sending a link to
the participants via their email who completed the experiment
on a computer of their choosing (e.g., Röhlcke et al., 2018).
Of the 1,000 invited participants, 272 of them completed the
test session to the end. However, prior to data collection, we
did not set any threshold for being an eligible participant with
respect to study activity. Thus, we noticed afterwards that the
test takers were highly varying in terms of how much they
had been spent studying at Hypocampus. For leveling out those
who only was visiting the platform from those that actually
used the platform for studying, we first excluded participants
that had been active only once during the first 100 days since
registering themselves on the system (i.e., only one login session).
Moreover, we identified two additional exclusion criteria deemed
adequate for eliminate non-active participants: those that had
been completing >10 separate study sessions, and those that had
completed >50 quizzes. Together, these cut-off criteria resulted
in a final sample size of 98 eligible participants.

Feature Extraction
As depicted inTable 1, 18 features were extracted from the online
e-learning platform in order to untangle individual differences
in online activity. The extracted features were based on existing
work, and could broadly be classified into four separate categories
as follows: Quiz accuracy, Study activity, Within-session activity,
and Repetitive behavior (see below for more detailed information
of the features belonged to each category).

Quiz Accuracy
This category encompassed three different measures of quiz
accuracy: quiz mc accuracy, quiz txt accuracy, and quiz
both accuracy. As previously mentioned, participants were
prompted with optional quizzes following each learning session
at Hypocampus following the principles of retrieval practice
(Dunlosky et al., 2013) which could be either in multiple-choice
format or open-ended format. In the multiple choice quizzes
(titled quiz mc accuracy), participants were asked about specific
information concerning the learning section followed by four
alternatives out of which one was correct. Correctly recalled quiz
responses were logged as “True” whereas incorrectly recalled quiz
responses were logged as “False.” In the open-ended quiz format,
participants were prompted with a quiz in a similar fashion as in
the multiple-choice quizzes (titled as quiz txt accuracy). However,
instead of being prompted with four alternatives, they were now
asked to respond to the quiz in a written format by typing down
their response in an empty box. Following the response, the
system showed the correct answer. The scoring of the responses
were self-corrected, meaning that the participants were to tick
either on a red box with a text stating Read more (corresponding
to an incorrectly recalled quiz and marked as False in the log
file) or a green box with a text stating I knew this (corresponding
to a correctly recalled quiz and marked as True in the log file).
Due to the differences in the scoring procedures, we extracted
one feature encompassing the proportion of correct responses
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TABLE 1 | Features extracted of online activity.

Features Description

Quiz accuracy

Quiz both accuracy Number of correctly recalled quizzes/Total number of

completed quizzes

Quiz mc accuracy Number of correctly recalled quizzes (multiple-choice

quizzes)/Total number of completed quizzes (multiple-choice

quizzes).

Quiz txt accuracy Number of correctly recalled quizzes (open-ended

quizzes)/Total number of completed quizzes (open-ended

quizzes).

Study activity

Reading sessions Total number of reading sessions participants have made.

Quiz sessions Total number of quiz sessions participants have made.

Quizzes Total number of quizzes participants have made.

Video clips Total number of video clips watched.

Quiz time Total time spent on reviewing and answering the quizzes.

Reading time Total time of reading the material.

Answer time Total time a student spent on reading the question before

responding to the quizzes.

Review time Total time a student spent on reviewing the correct answers

following the quizzes.

Within-session activity

Reading time avg Average reading time persession.

Quiz time avg Average time spent on reviewing and answering the quizzes

per session.

Answer time avg Average time a student spent on reading the question before

responding to the quizzes persession.

Review time avg Average time a student spent on reviewing the correct

answers following a quizzes per session.

Repetitive behavior

Repetitions avg Average number of repetitions quizzes made in a learning

session.

Repetitions prop Number of repetitions/Total amount of completed quizzes.

Repetitions count Number of times the student went back and repeated earlier

completed quizzes.

in the multiple-choice quizzes, and one feature encompassing
the proportion of correct responses in the open ended quizzes.
We also summed together the proportion of correct responses
from both quizzes, titled quiz both accuracy. We calculated the
proportion scores (i.e., quiz accuracies) for each participant using
the following formula:

Quiz accuracy =
Number of correctly recalled quizzes

Total number of completed quizzes

Study Activity
The study activity features captured different measures of how
often the participants have been using the platform during the
first 100 days of studying. The feature reading sessions consist of
the total amount of times the participant have logged in to his/her
account and read some materials on the platform, whereas quiz
sessions tallies the number of times the participants have logged in
to his/her account and responded to one ormore quizzes.Quizzes
refer to how many quizzes the participant has responded to in

total, whereas video clips depicts how many times participants
have been clicking on video-clips. The features, quiz time, reading
time, answer time, and review time are different measures of the
total amount of time the participants have been reading specific
sections of the platform (see Table 1 for more information).

Within-Session Activity
We extracted four time features tapping on individual differences
in reading activity within a session: reading time avg, answer
time avg, review time avg, and quiz time avg. All these features
were calculated by averaging the reading time stemming from all
reading sessions for each student. Specifically, reading time avg
captured the average reading time a student spent on reading
the to-be-learned materials per session, answer time avg captured
the average time a student spent on reading the question before
responding to the quizzes per session, and review time avg
captured the average time a student spent on reviewing the
correct answers following a quiz per session. The quiz time avg
sums up the answer time avg and review time avg.

Repetitive Behavior
Repetition of previously learned materials have shown to
be related to WM performance (Rosen and Engle, 1997;
Kemper et al., 2004). Thus, we extracted three features tapping
on repetitive behavior: repetitions avg, repetitions prop, and
repetitions count. Generally, these features measured individual
differences in how often the participants go back and repeat
previously answered quizzes. The repetitions avg measures the
average number of repetitions made in a learning session, the
repetitions prop is the proportion of repetitions in relation to the
total amount of completed quizzes, and the repetitions count is
the number of times a student went back and repeated earlier
completed quizzes.

Working Memory Tasks
The WM tasks included in the study comprised two different
Simple span tasks, the Block span task and the Digit span task,
both which are assumed to predominantly tap on WM storage
(Conway et al., 2005). In simple span tasks, lists of stimulus
items with varying length are to be reproduced while maintaining
the order of presentation. Simple span tasks have been used
extensively in the literature, and they are part of common
standardized neuropsychological and IQ tests (Wechsler, 1997).

Block Span
For capturing participants’ visuospatial WM, we administered a
Block span. Here, 16 blue visuospatial locations were displayed
on the computer screen, arranged in a 4 × 4, with one
random location flashing in red color (display time 1,000ms,
interstimulus display time 1,000ms) each time when a response
was required from the participants. In each trial, the participants
were prompted to memorize the sequence of locations displayed
in red, and finally recall the sequence in the correct serial order
with the computer mouse. All participants started with three
trials of a span length of 2 (i.e., two spatial locations that had to
be recalled in the correct serial order). The span length increased
with +1 until the participants failed to repeat two sequences at
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any particular span length. As the dependent variable, we used
the maximum reached span length.

Digit Span
We also administered a Digit span purported to tap on verbal
WM. In this task, numbers ranging from 1 to 9 occurred on
the computer screen in a random order, with each digit being
displayed for 1,000ms (interstimulus display time 500ms). The
participants were asked to respond by recalling the digits in the
correct serial order by pressing the corresponding digit on the
keyboard. Span lengths increased from two to a maximum of ten
digits in length, with three trials for each span length. The task
continued until the participants failed to repeat two sets at any
given span length. As in the Block span, the maximum reached
span length served as the dependent variable in the analyses for
the Digit span.

Data Preprocessing
In the final dataset extracted from the e-learning platform (n =

98), some of the variables had missing data. Two participants
had not responded to a single multiple-choice quiz (i.e., quiz
mc accuracy) and two of the participants had not repeated a
single quiz during their studies on the platform. Moreover, eight
participants had missing data in the Digit span. We also observed
7 multivariate outliers using the Mahalanobis distance value χ2
table (p < 0.001; Tabachnick and Fidell, 2007) and replaced
the values stemming from these participants as missing. When
screening for possible univariate outliers (scores on any online
activity feature that deviated more than 3.5 SD from the z-
standardized group mean were defined as univariate outliers),
one extreme value was noticed in the following variables and
were replaced with missing values: reading sessions, quiz sessions,
video clips, reading time, review time, quiz time, reading time avg,
quiz time avg, answer time avg, repetitionsprop, and repetitions
count. Moreover, two univariate outliers were observed in the
feature repetitions avg, and likewise, replaced as missing. All
missing values pertaining to the screening procedures explained
above were imputed using multivariate imputations by chained
equations (MICE) (van Buuren and Groothuis-Oudshoorn,
2011), allowing us to include all 98 participants in the analyses.

RESULTS

We used Python (version 3.7) for feature extraction, and R
(Version 3.5.2; R Core Team, 2016) for data preprocessing- and
analyses. Table 2 depicts descriptive statistics for the extracted
online activity features and the WM tasks, whereas correlations,
and adjusted r-squared values between the WM tasks and
the online activity features can be found in Appendix A in
Supplementary Materials.

Best Subset Regression Analysis
For predicting WM performance, we employed best subset
multiple regression analyses (e.g., James et al., 2013), allowing
one to identify a subset of the p predictors assumed to be most
related to the dependent variable. All possible combinations
of the independent variables were used to create several

TABLE 2 | Descriptive statistics for the extracted online activity features and the

working memory tasks.

Feature M SD Min Max

Quiz both accuracy 0.77 0.11 0.49 0.99

Quiz mc accuracy 0.78 0.11 0.50 1.00

Quiz txt accuracy 0.77 0.13 0.46 1.00

Reading sessions 35.96 23.30 11.00 118.00

Quiz sessions 31.63 26.48 1.00 103.00

Quizzes 484.04 367.18 51.00 1482.00

Video clips 8.19 13.16 0.00 54.00

Quiz time 300.03 326.31 0.69 1442.27

Reading time 238.83 186.01 10.64 901.80

Answer time 85.22 65.57 4.11 319.36

Review time 311.84 231.67 14.75 1132.17

Reading time avg 9.24 7.26 0.14 29.90

Quiz time avg 0.69 0.21 0.14 1.24

Answer time avg 0.19 0.08 0.04 0.44

Review time avg 0.50 0.16 0.10 0.90

Repetitions avg 1.39 3.21 0.00 20.33

Repetitions prop 0.06 0.06 0.00 0.24

Repetitions count 33.38 38.30 0.00 166.00

Block span 6.86 1.13 4.00 9.00

Digit span 6.37 1.72 0.00 10.00

Time features are depicted in minutes.

N = 98.

models that predicted WM performance, and these models
were examined and compared with each other by evaluating
the adjusted r-squared values (R2Adjusted). To reduce issues

with multicollinearity (i.e., high intercorrelations between the
predictor features), we excluded one of those variable pairs that
correlated highly with each other (cut-off r > 0.80). The features
excluded from the analyses were as follows: quiz both acc, answer
time, quiz time, review time, answer time avg, review time avg.
Thus, altogether 12 features were fed into the best subset multiple
regression analyses. As the number of participants per predictor
in regression analyses have been recommended to consist of
at least 15 participants (e.g., Stevens, 2002), we fitted the best
subset regression models with the largest subset size limited to
six features [i.e., six predictors yields 16 participants per feature
with respect to our sample size (n= 98)].

Block Span
From the best subset obtained on the Block span, it was found
that a combination of six independent features best predicted the
dependent variable. These four features were quiz txt accuracy,
reading sessions, quiz sessions, reading time avg, repetitions avg,
and repetitions prop. An analysis of standard residuals was carried
out, showing that the data contained no outliers (Std. Residual
Min = −2.48, Std. Residual Max = 2.08). The assumption of
collinearity indicated that multicollinearity was not a concern
(Tolerance range 0.641—0.942, VIF range 1.06−1.56). The data
met the assumption of independent errors (Durbin-Watson
value = 2.02). The histogram of standardized residuals revealed
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TABLE 3 | Regression coefficients with Block span as the dependent variable.

B SE B β t-value Sig.

Quiz txt accuracy 1.03 0.87 0.12 1.18 0.241

Reading sessions 0.01 0.01 0.19 1.62 0.108

Quiz sessions −0.01 0.01 −0.21 −1.71 0.090

Reading time avg −0.03 0.02 −0.19 −1.82 0.071

Repetitions avg 0.06 0.04 0.17 1.63 0.107

Repetitions prop −3.51 2.09 −0.17 −1.68 0.096

that the data comprised of approximately normally distributed
errors. Also the normal Q-Q plot of standardized residuals
showed that the points were relatively diagonally aligned (see
Appendix B1 in Supplementary Materials for visual illustrations
of the assumptions).

The combination of these features showed a statistically non-
significant relationship between visuospatial WM and online
activity [F(7, 91) = 2.126, p= 0.058], with an adjusted R2 of 0.065.
A closer examination on the single coefficients (for a summary
table, seeTable 3) showed that no feature was significantly related
to visuospatial WM performance (all p > 0.05).

Digit Span
The best subset obtained on the Digit span showed that
a combination of six independent variables possessed the
best predictive power on the dependent variable. The six
features were as follows: quiz mc accuracy, reading sessions,
quizzes, reading time reading time avg, and repetitions avg.
An analysis of standard residuals was carried out, showing
that the data contained one outlier participant (Std. Residual
< −3.29). Thus, we excluded this outlier from the analysis,
after which all standardized residuals was in an acceptable
range (−2.72−2.08). The assumption of collinearity indicated
that multicollinearity was not a concern (Tolerance range
0.171−0.949, VIF range 1.05−5.84) and the data met the
assumption of independent errors (Durbin-Watson value =

2.24). The histogram of standardized residuals revealed that the
data comprised of approximately normally distributed errors,
and the normal Q-Q plot of standardized residuals showed
that the points were relatively diagonally aligned (see also
Appendix B2 in Supplementary Materials for visual illustrations
of the assumptions).

The results from the best subset regression showed that the six
online activity features explained 16.7 % (R2

Adjusted
= 0.166) of the

variance in the dependent variable, and the regression equation
was statistically significant [F(7, 90) = 4.195, p < 0.001]. A closer
inspection of the coefficients (for a summary, seeTable 4) showed
that quiz mc accuracy [t(97) = 2.513, p = 0.014], and quizzes
[t(97) = 2.690, p = 0.009] were positively associated with verbal
WM, suggesting that those with higher proportion of correctly
recalled multiple-choice quizzes and those completing more
quizzes, performed better in the Digit span. Moreover, we found
statistically significant negative relationships between verbalWM
and reading sessions [t(97) =−2.446, p= 0.016], reading time avg
[t(97) = −2.159, p = 0.034], and repetitions avg [t(97) = −3.725,

TABLE 4 | Regression coefficients with Digit span as the dependent variable.

B SE B β t-value Sig.

Quiz mc accuracy 3.66 1.46 0.24 2.51 0.014

Reading sessions −0.03 0.01 −0.39 −2.45 0.016

Quizzes 0.00 0.00 0.29 2.69 0.009

Reading time 0.00 0.00 0.43 1.93 0.057

Reading time avg −0.08 0.04 −0.38 −2.16 0.034

Repetitions avg −0.18 0.05 −0.37 −3.73 < 0.001

p < 0.001]. This suggests that those completing more unique
reading sessions and those spending more time on reading the
materials tend to have lower verbalWMperformance. The results
also indicate that those who, on average, repeat more previously
learned material during a reading session tend to perform worse
in the Digit span.

DISCUSSION

The relationship between e-learning online activities and
learning outcomes has been extensively tested, but one relatively
overlooked component in the context of e-learning is working
memory (WM) and how individual differences in this crucial
cognitive ability can be predicted by differences in online
activities between students. This study aimed to examine whether
individual differences in online activities on an e-learning
platform would be predictive of visuospatial and verbal working
memory (WM) performance. Based on previous evidence
(Rogers and Monsell, 1995; Pazzaglia et al., 2008; Gropper
and Tannock, 2009; Van de Weijer-Bergsma et al., 2015), and
the theoretical framework of WM (Baddeley and Hitch, 1974;
Baddeley et al., 1998; Baddeley, 2000), we hypothesized that
particularly the verbal WM subcomponent would be related
to individual differences in online activities. Being able to
identify relevant user activity features that predicts WM and
its subcomponents without the necessity to test every single
student is an important first step towards personalized e-learning
platforms according to students’ cognitive profiles.

The results showed that online activities were predictive of
verbal WM but not visuospatial WM, explaining nearly 17%
of the performance in the former subcomponent, and only
about 5% of the performance in the latter subcomponent.
The relatively low correlation between the Block span and
the Digit span (r = 0.287, p = 0.004) might also explain
why the size of shared variance with the online activity
features differed between tasks. As such, our results are
in line with previous studies, showing that tasks tapping
on verbal WM typically are more sensitive for predicting
academic achievements with textual content compared to
tasks tapping on visuospatial WM (Rogers and Monsell,
1995; Pazzaglia et al., 2008; Gropper and Tannock, 2009;
Van de Weijer-Bergsma et al., 2015). As the majority of
the content on the e-learning platform involves reading, it
appears feasible to assume that the online activities extracted
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from the e-learning platform is more strongly linked to the
Digit span as both the task and the to-be-learned relies
heavily on processing components tapping on verbal WM
(cf. Gropper and Tannock, 2009).

In the present study, we found several single features that
significantly predicted verbal WM performance. One of those
features was multiple-choice quizzes, indicating that individuals
with higher quiz accuracies performed better in the Digit
span (Wiklund-Hörnqvist et al., 2014; Bertilsson et al., 2017).
Reflecting this finding to the multicomponent model of WM
(Baddeley and Hitch, 1974), one could speculate whether this
association mirrors differences in how effectively the subvocal
rehearsal and the phonological loop is utilized, both when
reading the to-be-learned materials, as well as when performing
the WM task. Indeed, it has been shown that strategies such as
rehearsal is adopted more often among individuals with high
WMperformance (McNamara and Scott, 2001; Turley-Ames and
Whitfield, 2003) and this strategy might be equally effective when
reading the course materials, thus reflected in improved accuracy
in the quizzes.

As regards the predictors tapping on Study activity, we found
that those completing less reading sessions across the first 100
days of studying tended to perform better in the Digit span
as compared to those with more reading sessions. However,
conversely to the aforementioned relationship, we observed a
positive relationship between the amount of quizzes taken and
verbal WM, indicating that those completing more quiz sessions
performed better in the Digit span. The quizzes administered on
the e-learning platform were of optional nature and primarily
applied from the framework of retrieval practice; a strategy
shown to have positive effects on the learning outcomes (for
reviews, see Kornell et al., 2011; Rowland, 2014). As it has been
suggested that individuals with better WM functioning are more
prone to spontaneously employ efficient strategies in their studies
(Brewer and Unsworth, 2012), it appears logical to assume that
the highWM individuals in the present study were more likely to
utilize the optional quizzes offered at the platform.

We also observed a statistically significant negative
relationship between the average time spent on reading the
to-be-learned materials and verbal WM. More specifically, those
with poorer verbal WM tended to spend more time on reading
the material within a learning session as compared to those with
better verbal WM which aligns well with previous evidence from
behavioral- and eye-tracking studies (Engle et al., 1992; Calvo,
2001; Kemper and Liu, 2007). Lastly, we found a significant
relationship between repetitive behavior and verbal WM, such
that those with poorer verbal WM performance tended to repeat
previously completed quizzes to a greater extent than those
with better verbal WM performance. This finding is also in
line with previous studies examining the relationship between
re-reading and WM performance (Rosen and Engle, 1997;
Kemper et al., 2004). Furthermore, reflecting these findings to
the cognitive load theory (Sweller, 1988), the repetitive behavior
observed among lowWM individuals might stem from inhibited
learning due to cognitive overload in the limited capacity of
WM (Kalyuga, 2011; Leppink et al., 2013), thus manifested in an
increased repetition.

When examining whether visuospatial WM (i.e., Block span)
was predicted by student online activity, the results showed a
statistically non-significant relationship. Furthermore, a closer
look on the single coefficients showed that none of the online
acitvity features were significantly related to visuospatial WM
performance. Thus, the results stands in stark contrast to the
other model where the Digit span served as the dependent
variable, showing several online activity features tha was related
to verbal WM. This raises the intriguing question regarding
the mechanisms underlying these differences. There could
be many reasons for the discrepancy, but perhaps the most
prominent one might be a result of the separate subcomponents
of WM these tasks are taxing (Baddeley and Hitch, 1974;
Baddeley, 2000). Moreover, our results are generally in line
with evidence from cross-sectional- and longitudinal studies,
showing that verbal WM tasks tend to discriminate better
than visuospatial WM tasks in several reading-related activities
such as educational attainment (Gropper and Tannock, 2009),
math performance (Van de Weijer-Bergsma et al., 2015), and
even how accurately students’ are memorizing to-be-learned
materials on e-learning platforms (Pazzaglia et al., 2008). Thus,
it is not overly surprising that visuospatial WM, as compared
with verbal WM, was less related to online activities in the
present study.

Some shortcomings in the present study should be pointed
out. Firstly, our sample size was small, encompassing only 98
students. Thus, the results should be interpret cautiously, and
rather serve as a preliminary framework for how to examine the
relationship between e-learning behavior and cognition. Second,
the purpose of the study was explanatory rather than predictive
(for a discussion, see Yarkoni and Westfall, 2017), and thus we
refrained from predicting WM performance by training a model
using a part of the dataset and testing the model on untrained
labels (or alternatively applying k-fold cross-validation). Such an
approach would indeed have reduced the risk of overfitting, and
increased the generalizability of our results (James et al., 2013).
Third, we are aware of the fact that the study lacks information of
relevant demographical data (e.g., age, gender, and education) of
the participants. This is an evident shortcoming, indicating that
we cannot generalize our results to the general population.

Conclusions and Future Work
The present study set out to test the relationship between
e-learning online activities and individual differences in
visuospatial and verbal WM performance. The results showed
that online activities predicted verbal WM performance but not
visuospatial WM performance. Predictors significantly related to
verbal WM performance in the present study were accuracy in
recalled quizzes (multiple-choice), the amount of reading sessions,
completed quizzes, average reading time per learning session, and
repetition of previously learned materials. The obtained results
contributes to the existing research of e-learning and WM, and
further suggest that individual differences in the verbal WM
subcomponent is related to how students interact on e-learning
platforms. Moreover, our results insinuates that online activity
alone can predict WM performance to a substantial degree
(R2Adjusted = 0.166). However, future prediction research with
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larger sample sizes, more heterogeneous samples and with a
greater number of relevant features is needed for untangling
the complex interplay between WM and online activities. If
successful, this would allow for a fast screening of the students’
cognitive profiles captured by individual differences in online
activities, and a circumvention of the demanding and time-
consuming WM assessments. Another recommendation for
future research is to take into account individual differences in
WM performance together with a broad array of other relevant
background factors (e.g, personality, learning style, motivation)
for creating a e-learning system that personalizes learning
according to students’ prerequisites.
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