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Introduction: Landslides are known to be one of the most frequent types of
geological disasters. However, there is not an established method for large-
scale, rapid, and high-precision landslide extraction. The quantitative impact of
environmental changes on landslide development is also not well understood,
which hinders accurate assessments and decision-making in environmental and
disaster response. The polar regions, including the Antarctic, the Arctic, and the
Tibetan plateau (TP), sensitive to global environmental changes, are significantly
affected by global warming. This leads to extensive landslide development,
particularly in the southern TP. This research focuses on new landslides in
the southern TP, exploring extraction methods and the relationship between
landslides and environmental factors.

Methods: Utilizing the Google Earth Engine (GEE) and an improved Otsu
threshold segmentation algorithm, we processed remote sensing images with
10 m resolution to identify landslide areas. The proposed Normalized Landslide
Bare-soil Separation Index (NDLBSI) achieved an 87% pre-extraction accuracy
in extracting landslides from Sentinel-2 images from 2019 to 2023. For the pre-
extraction results, manual interpretation and correction were carried out, and
a model correlating annual landslide changes with environmental factors was
established based on least squares multivariate statistical methods.

Results: Results show that a significant increase in landslide areas in the southern
TP over the past 5 years, correlating with the watershed-wide increase in annual
average temperature and vegetation cover, along with a decrease in snow
cover area.

Discussion: These changes could affect soil and rock moisture, influencing
soil stability and landslide occurrence. The study provides valuable insights for
large-scale landslide detection and understanding the environmental factors
influencing landslides, which is of some significance for landslide hazards
early warning.

KEYWORDS

landslide extraction, environmental factors, southern Tibetan plateau (TP), Google Earth
Engine (GEE), remote sensing
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1 Introduction

According to the 2023 report by the Intergovernmental Panel
on Climate Change (IPCC), human activities have caused the
global surface temperature to rise by 1.1°C between 2011 and 2020
compared to the period from 1850 to 1900. The report projects
a potential rise in global average temperature of at least 1.5°C
over the next 20 years (IPCC, 2023). Climate change has drawn
global attention to the destabilization of slopes in major mountain
ranges such as the Alps, Caucasus, Andes, and Himalayas. Climate
change, including intensified precipitation, altered temperatures,
and the adverse impacts of increased ENSO events, contributes to
the occurrence of landslides, particularly in high mountain regions
characterized by glaciers, permafrost, and snow cover (Huggel et al.,
2012; Moreiras and Dal Pont, 2017). The polar regions, including
the Tibetan Plateau (TP), as one of the most unique geological-
geographical-resource-ecological coupled systems in theworld, have
significant impacts on global and regional sustainable development,
which are sentinels of global climate change. Particularly under
the influence of global warming, the environmental conditions
in the TP and its surrounding areas have undergone significant
changes. Environmental factors such as temperature, precipitation,
land cover, and seismic activity have increased the risk of geological
disasters, including landslides and mudflows (Tong et al., 2023).
For example, provinces located in the southeastern edge of the
TP, such as Tibet and Yunnan, are particularly susceptible to
these geological disasters due to their geographical position,
distinctive geological structure, climatic conditions, and ecological
environment (Zhang, Zhang, and Zhang, 2004).

Aswe know, temperature and precipitation are crucial indicators
in assessing climate changes, which impact geological disasters
globally and locally. The rise in temperature intensifies changes
weather patterns, resulting in an increased frequency and intensity
of extreme weather events. With the increase in temperature,
there is a direct impact on glacier retreat and alterations in
precipitation patterns, which have made mountain disasters more
active (Cui et al., 2010; Gariano and Guzzetti, 2016). For example,
in Southern TP, increased soil moisture evaporation due to
higher temperature has led to decreased slope stability, which
has resulted in the increment of geological disasters, like glacial
mudflows and landslides (Zhang et al., 2020). Particularly under
the influence of global warming, the TP and its surrounding
areas are significantly affected by temperature rise. This increase
not only accelerates glacial melting, but also triggers landslides
in the TP (Tong et al., 2023).

Then, land cover changes can influence the geological hazards.
1) Vegetation is one of the primary indicators indirectly influencing
the occurrence of hazards. The interaction between vegetation roots
and soil-rock material can impact the stability of slopes. Factors
such as vegetation biomass are directly related to geological disasters
(Gao et al., 2017; Shen et al., 2022). 2) Snow cover is a crucial
component of the cryosphere and plays a significant role in surface
energy-water exchange and mountain hydrology (Wang et al.,
2017). In the southern TP,most areas are covered by snow. Snowmelt
is one of the triggers for geological disasters. The increased water
frommelting snow can destabilize slopes that are already in a critical
stability state. Additionally, the temperature variations during the

snowmelt period can affect the stability of rock cliffs, increasing the
risk of hazards.

Finally, the TP is characterized by frequent seismic activity.With
multiple seismic fault zones, frequent and intense earthquakes in
this region can directly cause landslides, because earthquakes can
induce liquefaction in soils with high water content, disrupting the
critical conditions of potential disaster sites and increasing the risk
of geological hazards.

Besides environmental factors, the landslides complexity
induces a lot of advanced monitoring and analysis techniques.
1) In the early stages, scholars used visual interpretation on
landslides for quantitative analysis of landslide environments,
distributions, and influencing factors (Gao, 1993; Mahdavifar, 2006;
Huang, 2008; Sun et al., 2020). 2) With the enrichment of optical
satellite band numbers, landslide extraction based on spectral and
texture characteristics of regional images has achieved good results
(Su et al., 2008; Ma et al., 2016; Liu et al., 2023). Researchers like
Cui have conducted risk assessments of mountain disasters in TP
(Cui et al., 2015). Yang et al. analyzed the relationship between the
geological disasters and influencing factors on the eastern TP edge
(Yang et al., 2018). Shen et al. interpreted geological disasters in the
HengduanMountains andTPusing the random forestmodel, whose
results suggest that the main driving forces for medium and small
geological disasters in the central and southern TP are vegetation
cover, road construction, and river erosion (Shen et al., 2022). 3)The
traditional production of landslidemaps has relied on a combination
of visual interpretation of stereoscopic aerial photographs and
field surveys, a methodology constrained by high consumption
of human and technical resources, which makes it difficult to
scale up (Guzzetti et al., 2012). With the robust development of
machine learning, researchers have been able to explore different
landslide classification or zoning methods using algorithms such
as logistic regression, support vector machines, decision trees, and
random forests (Mohan et al., 2021). In recent years, numerous
studies have utilized high-resolution imagery and deep learning
models based on Convolutional Neural Networks (CNNs) to extract
landslides, achieving promising results (Ghorbanzadeh et al., 2019;
Sameen andPradhan, 2019; Shinde et al., 2019;Morales et al., 2022).
Although the aforementioned optical remote sensing image analyses
for landslide extraction are typically limited to smaller spatial
scales, they have provided valuable insights into the distribution
and characteristics of landslides. Common challenges in this field,
such as small extraction regions, significant preprocessing workload
and the high cost of acquiring high-resolution imagery, are still
needed to be improved. 4) In recent years, the cloud platforms, like
GEE, have significantly developed research into large-area landslide
extraction. This development has enabled the wide application of
exponential methods for rapid and large-scale landslides extraction
using medium-resolution remote sensing images, which improves
the efficiency and accuracy.

In total, current TP geological disasters research mainly focuses
on its eastern edge (Su et al., 2008; Yang et al., 2018; Dai and Deng,
2020). However, research on landslides in southern TP is few
due to its inconvenient transportations. Therefore, the objective
of this study is to reveal the distribution of geological disasters
and their driving mechanisms in southern TP. Additionally, most
studies focus on the disasters causes, while few research indicates
the relationship between multi-year environmental changes and
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landslide occurrence (Gariano and Guzzetti, 2016). Therefore,
establishing a quantitative model indicating the relationship
between landslide changeswith environmental factors are important
in understanding landslide patterns in the southern TP, assessing
environmental impacts, and improving the precision of geological
disasters prevention.

2 Methodology

2.1 Methods

2.1.1 Normalized landslide bare-soil separation
index (NDLBSI)

In this study, a variety of feature indices were utilized for the
initial extraction of landslide information. This approach not only
enhances the efficiency of extraction but also helps in identifying
the primary features distinguishing landslides from non-landslide
areas. We use indices for the preliminary extraction of landslides,
which include the Normalized Difference Vegetation Index (NDVI),
Bare Soil Index (BSI), and Normalized Difference Snow Index
(NDSI). The calculation methods for these indices are as outlined
in Formulas 1–3,

NDVI =
ρNIR − ρred
ρNIR + ρred

, (1)

BSI =
(ρred + ρSWIR1) − (ρNIR + ρblue)
(ρred + ρSWIR1) + (ρNIR + ρblue)

, (2)

NDSI =
ρgreen − ρSWIR1

ρgreen + ρSWIR1
, (3)

Where ρred represents the reflectance in the red band; ρgreen is
that in the green band; ρNIR is that in the near-infrared band; ρSWIR1
is that in the short-wave infrared 1 band.

On Sentinel-2A imagerywith 10 m resolution, landslides exhibit
significant spectral differences from vegetation, water bodies,
and snow, but are spectrally similar to bare soil, buildings,
and river deposits. The spectral reflectance characteristics of the
main land cover types in the study area on Sentinel-2 imagery
are shown in Figure 1A.

The spectral curves of bare soil and landslides show similarities,
making it challenging to distinguish between them using soil-
related feature indices alone. In this study, based on annual remote
sensing images synthesized on the GEE platform and referencing to
Google Earth satellite data, approximately 30,000 sample pixels of
landslides and bare soil were selected through visual interpretation.
During sample selection, principles of uniformity and strong
representativeness were applied. Additionally, by comparing
imagery from adjacent years, pixels in the composite images were
visually assessed to determine whether they represented landslides
or bare soil, ensuring the non-migratory nature of the sample points.

Analysis on the spectral data of samples selected from 2019 to
2023 in the study area reveals that although bare soil and landslides
have similar spectral trends, there are significant different in the rate
of change between certain bands. This is because the surface rock
and soil structure of landslides are loose, with higher porosity and
moisture content, resulting in a slower increase in reflectance in the
near-infrared and short-wave infrared bands compared to bare soil

spectra (Wen et al., 2020). By calculating the differences between
bands, the red band and short-wave infrared 1 band, which showed
the greatest difference, were selected, as shown in Figure 1B. The
red band is typically used for observing exposed soil and vegetation,
while the short-wave infrared 1 band reduces atmospheric effects
and helps distinguish soil and water information (Zhou, 2023).

By stretching and amplifying the differences between the red
and short-wave infrared 1 bands, and tuning the stretching factor
hyperparameters through sample points, theNDLBSIwas calculated
for these two bands. The optimal stretching factor was selected
based on the principle of maximizing the difference in NDLBSI
values between landslides and bare soil, andminimizing the absolute
difference in NDLBSI values. The calculation method for NDBLSI is
as shown in Formula 4:

NDLBSI =
ElρSWIR1 −Rdρred
ElρSWIR1 +Rdρred

(4)

Where ElρSWIR1 represents the amplified surface reflectance of
the short-wave infrared 1 band, while Rdρred denotes the reduced
surface reflectance of the red band. An analysis of the average
feature indices for all samples, as shown in Figure 1C, indicates that
the NDLBSI significantly enhances the separation of landslide and
bare soil features. Figure 2 presents a comparative chart of landslide
extraction results using only the soil index versus using NDLBSI,
demonstrating that NDLBSI effectively mitigates the confusion
between surrounding bare soil and landslides in Sentinel-2 imagery-
based landslide extraction.

Additionally, to verify the capability of Sentinel-2 imagery in
landslide detection and the accuracy of the extraction method
proposed in this study, a field survey was conducted in Linzhi
City, Tibet Autonomous Region, at the end of July 2023. Out of
16 pre-identified landslide sites, 14 were confirmed as small-scale
landslides, while the remaining 2 were exposed bedrocks, as shown
in Supplementary Figure S1A. Furthermore, the landslide extraction
algorithm developed in this research was applied to the 2022
Sentinel-2 satellite composite imagery of Linzhi City, accurately
identifying all 14 surveyed landslide sites. This field investigation
confirmed the effectiveness of Sentinel-2 imagery in identifying
small and medium-sized landslides and also validated the accuracy
and reliability of the landslide extraction method proposed in
this paper (Supplementary Figure S1B).

2.1.2 Improved maximum inter-class variance
(Otsu) threshold segmentation algorithm

The Otsu algorithm is a non-parametric, unsupervised method
for image threshold segmentation. It calculates all possible
thresholds to find the one with the maximum inter-class variance
and minimum intra-class variance, suitable for bimodal histograms
(Otsu, 1979). Compared to the dependency of the Otsu algorithm
on bimodal distribution and its limitation in handling multimodal
histograms, where the derived threshold tends to be biased towards
the dominant side of the histogram, Yan et al. (2017) proposed
an improved Otsu algorithm to address this issue. This algorithm
iteratively reduces the number of peaks in the data histogram and
narrows the search range for the threshold, approaching the optimal
threshold. After each iteration, the current threshold value Ti is
compared with the current sample mean Mi, reducing the search
interval for the optimal threshold for the next iteration.Theprinciple
is as follows:
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FIGURE 1
NDBLSI construction schematic figures. (A) Spectral curves of typical land features in the study area. (B) Differential spectral curve chart between
bands. (C) NDLBSI separation chart for landslides and bare soil.

Assuming Ti is the threshold obtained from the first application
of theOtsu algorithm andMi is the current samplemean, to preserve
the target features as much as possible, the following constraints
are set for each iteration: 1) If Ti >Mi, samples less than Mi are
discarded; 2) If Ti <Mi, samples greater than Mi are discarded. The
algorithm schematic is shown in Figure 3.

In the figure, the horizontal axis represents pixel gray levels
(0∼n), and the vertical axis represents the frequency of gray level
ni (0–1). By gradually approaching the optimal threshold through
the above constraints and stopping criteria, the best segmentation
threshold is determined by setting the difference threshold between
the current threshold Tm and the mean Mm (Figure 3).

2.1.3 Multivariate regression analysis
Multivariate regression analysis is a statistical method used to

establish a relationship model between a dependent variable and
independent variables. Its basic formula is as shown in Formula 5:

Y = β0 + β1X1 + β2X2 +⋯+ βkXk + ε (5)

In this equation, Y is the dependent variable, Xk is the k th
independent variable, βk is the k th regression parameter, ε is
the residual.

Taking the mathematical expectation of both sides of the Eq. 6,
the equation is as follows:

E(Y |X1,X2,⋯,Xk) = β0 + β1X1 + β2X2 +⋯+ βkXk (6)

Where E(Y|X1,X2,⋯,Xk) represents the conditional mean
of the observed value Y given the independent variables Xi.
Since β0,β1,β2,⋯,βk are unknown, it is necessary to estimate
these population parameters β̂0, β̂1, β̂2,⋯, β̂k based on sample
observations, resulting in the sample regression Eq. 7:

Ŷ = β̂0 + β̂1X1 + β̂2X2 +⋯+ β̂kXk (7)

In this equation, Ŷ is the point estimate of E(Y|X1,X2,⋯,Xk).
Parameters can be obtained through least squares

estimation using Eq. 8:

Q =∑(Y i − Ŷ i)
2 =∑(Y i − β̂0 − β̂1X1 − β̂2X2 −⋯β̂kXk)

2 = min
(8)

Where by taking partial derivatives of Q with respect to
β̂0, β̂1, β̂2,⋯, β̂k and setting them to zero, the estimated values
β̂0, β̂1, β̂2,⋯, β̂k can be solved.

2.1.4 Confusion matrix
Feature classification assessment is an essential component of

remote sensingmonitoring, with themost commonly used evaluation
method of the confusion matrix approach (Yang et al., 2023). In this
study, the confusion matrix is calculated by comparing each visually
identified actual land feature elementwith its corresponding classified
element. As shown in Supplementary Table S1, each column data of
the confusion matrix represents the actual measured information,
and each row data represents the classified information from remote
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FIGURE 2
Comparison of landslide extraction results. (A) Original image of a local area in Cuona county. (B) Landslide extraction results using soil index BSI. (C)
Landslide extraction results using BSI+NDLBSI.

FIGURE 3
Schematic diagram of threshold determination using the improved Otsu method. (A) First Otsu threshold calculation. (B) Threshold calculation for
samples excluding those less than M1. (C) Threshold calculation for samples excluding those greater than M2.

sensing imagery. The performance of the classification extraction
method is quantitatively evaluated using sample points, employing
metrics such as Precision, Recall, and Overall Accuracy (OA) for a
quantitative assessment of the results.

User’s Accuracy (UA) represents the reliability of predictions
for each class on the classification map, indicating the proportion
of correctly classified instances of a particular category relative to
the total instances of that category classified in the classification
map refer to Formula 9:

UA =
Xnn

Cdn
(9)

Where Xnn represents the number of correctly classified
instances for a specific category in the classification map; Cdn
represents the total number of instances classified for that
specific category.

Producer’s Accuracy (PA) indicates how well the classification
predicted each class, reflecting the probability that the ground truth
reference data of a category is correctly classified refer to Formula 10:

PA =
Xnn

Tdn
(10)

Where Xnn represents the number of instances of a category
that are correctly classified according to the ground truth reference
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data; Tdn represents the total number of ground truth samples for
that category.

Overall Accuracy (OA) is the percentage of all correctly
classified points of land cover categories out of the total number of
validation points refer to Formula 11:

OA =

n

∑
i=1

Xii

All
(11)

WhereXii represents the number of correctly classified points for
each category; All represents the total number of validation points.

The Kappa coefficient is an indicator of how much better the
classification results are compared to random classification. The
Kappa coefficient generally ranges from 0 to 1, with higher values
indicating higher classification accuracy refer to Formula 12:

Kappa =
OA−

n
∑
i=1

Cdi∙Tdi

All

1−

n
∑
i=1

Cdi∙Tdi

All

(12)

Where OA represents overall accuracy; Cdi represents the total
number of instances classified for the ith category in the classification
map;Tdi represents the total number of ground truth samples for the
ith category, andAll represents the total number of validation points.

From 2019 to 2023, over 30,000 landslide and bare soil sample
points were selected for extraction result validation in the southern
region of the TP by each county.

2.1.5 Correlation coefficient

(1) The Pearson correlation coefficient is a measure of the linear
correlation between two variables (He, Long, and Zhu, 2012).

Its formula is defined as Formula 13:

r(X,Y) =

n

∑
i=1
(Xi −X)(Y i −Y)

√
n

∑
i=1
(Xi −X)

2√
n

∑
i=1
(Y i −Y)

2

(13)

Where r(X,Y) is the correlation coefficient; n is the sample size;
X and Y are the mean values of variables X and Y, respectively. The
closer the absolute value is to 1, the stronger the correlation is.

(2) The multiple correlation coefficient reflects the degree of
correlation between a dependent variable and a set of
independent variables (Jia, He, and Jin, 2015). A higher
multiple correlation coefficient indicates a closer linear
correlation between the variables. The range of the multiple
correlation coefficient is [0,1], with values closer to 1 indicating
stronger correlation.

The T-test in multivariate linear regression is used for the
significance testing of individual variable coefficients, typically
measured by the p-value. Generally, a p-value less than 0.05
is considered statistically significant, and that less than 0.01 is
considered highly significant. This implies that the probability of
the sample differences due to sampling error is less than the
significance level.

After calculating the p-value, compare the given significance
level α with the p-value under the assumption that the
null hypothesis is true: if α > p-value, then reject the null
hypothesis at the significance level α, otherwise, accept the null
hypothesis.

2.2 Technical flowchart

To establish a model correlating changes of landslide areas
with environmental factors, it is first necessary to extract
landslide areas for each county, as well as corresponding
environmental factors for those regions. Subsequently, single-
factor analysis is utilized to identify the environmental factors
with relatively strong inter-annual correlation with landslide
changed areas.

(1) Landslide extraction: Due to the extensive area of the southern
TP, landslides are extracted based on the administrative
divisions of Chinese counties. Due to significant cloud cover
in the region, making it challenging to obtain complete
county imagery in the short term, all images covering
the study area within a year are processed for cloud
removal and median compositing. The images are then
cropped using county vectors, and snow-free areas with
high vegetation cover are delineated out. A comprehensive
feature index is used to establish river and road network
buffer zones, and a slope threshold is set for landslide
extraction.

Additionally, post-processing of the landslide extraction
results involves removing fragmented pixels and masking
out disturbances such as uncertain snow cover at the study
area’s boundaries, thin cloud interference, and misclassified
river deposits due to DEM precision limitations. Masks
from 5 years are overlaid to process annual landslide
extraction results, ensuring spatial consistency in landslide area
statistics.

(2) Sensitive environmental factors selection: To identify the
main environmental factors influencing landslide area
changes, single-factor correlation analysis is conducted
using their standardized data. By retaining data within
three standard deviations and excluding outliers, the
correlation coefficients between interannual standardized
landslide area changes (s) and each environmental factor are
obtained.

(3) Model: Based on the above data, the least squares multivariate
statistical analysis method is used to establish a model for
standardized landslide area changes (s). Following model
establishment, its accuracy is calculated to determine whether
themodel requires refinement or not. If the precisionmeets the
requirements, the model is outputted. Otherwise, the reasons
are analyzed, and the model is reestablished. For example, if
the p-value of the factor does not pass the t-test, it needs to be
removed and re-established. Figure 4 illustrates the technical
flowchart for model construction.
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FIGURE 4
Technical flowchart for establishing a model of annual standardized landslide area changes and environmental factors.

3 Application

3.1 Study area

The TP, known as the Earth’s “Third Pole,” is predominantly
situated in Qinghai Province and the Tibet Autonomous Region
in the southwestern China (Zhang, Li, and Zheng, 2002). In the
central and western regions of the TP, the landscape predominantly

features deserts and mountains with limited vegetation cover. These
areas are characterized by few human activity, and the geological
disasters primarily consist of ancient landslides and debris flows,
which contribute to relatively minor changes in recent geological
disasters.

The southern region of the TP, with the world’s deepest canyon,
is recognized for having the richest vertical natural zones in
global mountainous areas. Influenced by the southwest monsoon
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FIGURE 5
Map of the study area (map on the left shows the location of study area in China).

from the Indian Ocean and warm, moist air currents, this region
experiences a warm, humid climate with abundant rainfalls. The
significant diurnal temperature variation, exacerbated by altitude,
intensifies rock weathering, leading to frequent landslide disasters
(Shen et al., 2022; Jiang et al., 2023). Additionally, Milin County and
Bayi District have higher population densities, particularly Bayi
District, which serves as the administrative center of Nyingchi
City. It is the main urban and commercial hub in the region, with
well-developed transportation and high levels of human activity.
Conversely, Longzi County, Cuona County, Motuo County, Zayü
County, and Bomi County have lower population densities, with a
larger proportion of agricultural and pastoral populations. In these
areas, geological disasters are more influenced by natural factors.

As shown in Figure 5, with geographical coordinates of 91°20′-
98°40′E and 26°50′- 30°40′N, the study area are characterized
by high vegetation cover and low human activity, including
Cuona County, Motuo County, Longzi County, Bomi County, and
Chayu County. The region is marked by considerable elevation
variations, ranging from 46 m to 7,182 m, with an average elevation
of 3,258 m (Figure 5).

3.2 Data

3.2.1 Data acquisition
In this study, remote sensing imagery of the research area

was collected and analyzed to extract landslide data. Additionally,
environmental factors such as temperature, precipitation, vegetation
cover, snow cover, and seismicmagnitude and distribution data were
also collected.

Landslides are among the most frequent and impactful types
of geological disasters. They represent a material wastage process
affecting natural and engineered slopes, characterized by the
movement of large volumes of rock, debris, or soil downslope

under the influence of gravity. (Hungr et al., 2014; Gariano and
Guzzetti, 2016). According to the national geological disaster report
released by China, landslides accounted for approximately 70%
of all geological disasters in 2022. In this paper, landslides are
broadly defined as recent landslides, which are characterized by
exposed debris and bedrock on slopes without vegetation cover,
including landslides and debris flows (Zhao et al., 2022). The area
of a landslide is determined by the extent of the slope with a certain
degree of steepness as observed on the remote sensing imagery. The
spatiotemporal variation of landslide areas is a critical indicator for
evaluating the characteristics of regional geological disasters. This
study utilizes Sentinel-2 remote sensing datawith a spatial resolution
of 10 m to analyze landslides. The selected image temporal series for
the study area are from January 2019 to November 2023.

Utilizing the GEE platform, we acquired a range of datasets
covering the study area, including medium-resolution Sentinel-2
imagery, cloud probability data, Digital Elevation Model (DEM),
Land Use/Land Cover (LULC), climate reanalysis and satellite
precipitation data. Additionally, precipitation satellite data accuracy
was verified using actual measurements from meteorological
stations. Post-processing of the landslide extraction results was
conducted using OpenStreetMap (OSM) road and water network
data, and the accuracy of the landslide extraction methods
was validated with field survey results. Due to the limitations
in image acquisition time, all data are from 2019 to 2023
(Table 1).

Sentinel-2, operating under ESA’s Copernicus program, is a
multispectral imaging satellite equipped with 13 spectral bands,
primarily used for land monitoring and disaster studies. It features
a 2–5 days revisit cycle and provides Level-2A surface reflectance
data, processed using the sen2cor algorithm,making it an invaluable
free resource for high-resolution imagery (Chen and Hao, 2018).
Additionally, the Sentinel-2 cloud probability product, which
utilizes Sentinel Hub’s algorithm alongside Google’s computing
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TABLE 1 Data acquisition for each data type.

Data type Temporal resolution Spatial resolution Data source

Sentinel-2 L2A 5-day 10 m/20 m European Union/ESA/Copernicus

Sentinel-2: Cloud Probability — 10 m/20 m European
Union/ESA/Copernicus/SentinelHub

ALOS DSM — Horizontal 30 m/Vertical 5 m JAXA Earth Observation Research
Center

Dynamic World V1 — 10 m World Resources Institute Google

ESA WorldCover 10 m v100 — 10 m ESA/VITO/Brockmann
Consult/CS/GAMMA Remote

Sensing/IIASA/WUR

ESA WorldCover 10 m v200 — 10 m ESA/VITO/Brockmann
Consult/CS/GAMMA Remote

Sensing/IIASA/WUR

ERA5-Land Daily Aggregated -
ECMWF Climate Reanalysis

Daily 11,132 m Monthly Aggregates: Google and
Copernicus Climate Data Store

GSMaP Operational: Global Satellite
Mapping of Precipitation - V6

Hourly 11132 m JAXA Earth Observation Research
Center

Meteorological stations Monthly Measured NOAA National Center for
Environ-mental Information (NCEI)

OSM road and water networks — — OpenStreetMap Contributors

Field survey data of landslides — Measured International Research Center of Big
Data for Sustainable Development

Goals (SDGs)

Earthquake — Measured China Earthquake Networks Center
(CENC)

resources, enables precise cloud masking. This satellite’s imagery is
instrumental in extracting detailed vegetation and snow cover data.

For digital surface modeling, the ALOS World 3D - 30 m
(AW3D30) is a widely-used global dataset that provides elevation
data crucial for various geospatial studies (Takaku, Tadono,
and Tsutsui, 2014). Meanwhile, Dynamic World offers near-
real-time land use and land cover (LULC) data derived from
Sentinel-2 L1C imagery, facilitating timely environmental
monitoring (Brown et al., 2022).

ESA WorldCover presents a 10 m resolution global land cover
map that integrates data from both Sentinel-1 and Sentinel-2. This
resource is particularly useful for comprehensive landscape analyses
and is available for the years 2020 and 2021 on the GEE platform
(Zanaga et al., 2021; Zanaga et al., 2022).

For meteorological data, the ERA5-Land reanalysis dataset
merges model outputs with observational data to offer high-
resolution global land variable data spanning nearly 70 years.
This dataset includes temperature data, which is crucial for
assessing climate impacts on land cover and geological phenomena
(Muñoz Sabater, 2019). Additionally, GSMaP provides global hourly
rainfall rates, optimized using NOAA/CPC gauge measurements,
offering valuable insights into precipitation patterns essential
for hydrological studies (Kubota et al., 2020). The measured

meteorological data from NOAA align with the standards set by
the World Meteorological Organization’s (WMO) World Weather
Watch Program Resolution 40.

Lastly, OpenStreetMap (OSM) supplies an open-source
mapping database that includes layers such as water systems and
transportation networks. These layers are compiled from both
community contributions and official surveys, serving as critical
tools for urban planning and infrastructure development.

The China Earthquake Networks Center (CENC) utilizes
the seismic monitoring network to monitor the propagation
and vibration of seismic waves in real-time. It achieves this
through a widespread network of seismographic stations and
seismic monitoring equipment, providing real-time dissemination
of relevant information about seismic events. This includes the
magnitude, occurrence time, location, and possible impact range of
earthquakes.

3.2.2 Data preprocessing

(1) GEE is a visualization platform for processing satellite imagery
and analyzing geographic data, offering access to Sentinel
satellite imagery datasets and rapid image preprocessing
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algorithms. It significantly reduces the workload of image
mosaicking, geometric correction, radiometric correction,
atmospheric correction, and cloud masking.

This study utilizes the GEE platform, employing an image
median composite strategy. Data from January 2019 to November
2023 were annually composited and then cropped to obtain snow-
free vegetated areas. For each year, six bands (blue, green, red,
near-infrared, short-wave infrared 1, and short-wave infrared 2)
of the Sentinel-2 raw dataset were processed on the GEE platform
following these steps.

1) The annual raw Sentinel-2 image dataset L for the study area
was extracted. L = {Lt1,Lt2,⋯Ltn}, where Ltn represents the
image covering the study area at time tn.

2) The cloud removal process utilized Cloud Probability data
on the GEE platform. This process reconstructed the image
with the least cloud cover by selecting pixels with the lowest
cloud score.

3) The annual composite images were then cropped using snow-
free vegetated areas in each county, resulting in the delineation
of the landslide study area.

A total of 24,212 Sentinel-2 L2A images were used in this study
(Supplementary Table S2).

(2) In this study, the processed remote sensing data consisted
of annual composite images. Coe and Godt found that all
carefully considered studies attempting to predict shallow
landslides and debris flows triggered by rainfall possess
high uncertainties; this is a result of the difficulty in
predicting short-term extreme storms. Conversely, studies
that attempt to predict landslide activity using temperature
and annual/seasonal rainfall show lower uncertainties; this
is because temperature and annual/seasonal rainfall can
be predicted with less uncertainty (Coe and Godt, 2012).
Therefore, the rainfall rate data provided by the GSMaP,
measured in mm/h, were converted into annual average
precipitation data (in mm/month). Temperature data were
based on ERA5-Land daily reanalysis data, representing air
temperature at 2 m above the land surface, interpolated
between the lowest model height and the Earth’s surface under
atmospheric conditions. These temperature data whose unit
was in K/day, were converted to °C/day to obtain annual
average temperature data, facilitating subsequent analysis.

Environmental factors data for vegetation cover and snow cover
area were extracted by unifying the scope of county areas and
applying threshold divisions. This involved extracting data from
10 m resolution annual composite images for each specific region.

Snow cover assessment was conducted using the Normalized
Difference Snow Index (NDSI) for threshold-based extraction from
the composite imagery. Given the predominant distribution of snow
in higher elevation areas, snow cover areas within each region were
quantified using threshold values.

Vegetation cover was extracted using the Normalized Difference
Vegetation Index (NDVI) applied to composite imagery. Validation
of NDVI values for landslide and bare land sample points indicated
that their NDVI values generally ranged between 0 and 0.4.
Therefore, a vegetation extraction threshold of 0.4 was set.

Regarding earthquake frequency, the number of felt earthquakes
with magnitude 3 or above was statistically counted for each county
from 2019 to 2023, on an annual basis.

(3) Due to the differing nature of each environmental factor,
they are very different in data magnitudes and dimensions.
When the baseline or variation of magnitudes among factors
is significant, parameters with higher numerical values
may become more prominent in integrated analysis, while
the influence of parameters with lower values may be
diminished (Wang et al., 2022). Therefore, it is necessary to
standardize each factor to ensure uniformity of dimensions
and comparability of data.

Therefore, data can be standardized using Formula 14:

Zi =
(xi − x)

si
× 100% i = 1,2,3⋯n (14)

Where xi represents the observed factor for the i th year; x is
the average value of that factor over n years in the region; si is the
standard deviation of the factor overmultiple years in the region, and
Zi is the standardized data of the factor for the i th year in the region.

4 Results

4.1 Interannual distribution and area
change characteristics of landslides from
2019 to 2023

The Producer’s Accuracy of landslide pre-extraction,
as well as the Overall Accuracy and Kappa coefficient
for the separation of landslides and bare soil were
calculated (Supplementary Tables S3–S5).

The pre-extraction results of landslides were corrected
through expert experience and visual comparison. The
interannual distribution maps of landslides from 2019 to 2023
are shown in Figure 6.

Over the past 5 years, there has been a significant increasing
trend in landslide areas across the counties of the southern TP. The
growth rate of standardized landslide areas in the study region is
almost consistent. The changes in landslide areas and standardized
area changes extracted for each county are shown in Figure 7.

4.2 Interannual changes in landslide area
and the relationship with topography

As can be seen from Figure 8A, from 2019 to 2023, in the
low mountainous areas at elevations of 0–500 m, the newly added
landslide area accounts for 15.96% of the study area. The mid-
mountain areas at elevations of 500–3500 m showed the most
significant increase in landslide area, accounting for 80.95%, while
the high mountain areas above 3500 m contributed to 3.09% of
the new landslide areas. This is mainly because mountainous areas
below 3500 m with numerous valleys and steep slopes, are more
prone to generate landslides. In contrast, areas above 3500 m,
predominantly glaciated, have lower soil moisture under cold and
frozen conditions, and the frozen soil and rock are more stable,
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FIGURE 6
Distribution map of landslides in the southern Tibetan plateau study area from 2019 to 2023. (A) 2019. (B) 2020. (C) 2021. (D) 2022. (E) 2023.

making landslides less generated. This indicates that the new
landslides in the study area are primarily distributed at elevations
between 500 and 3500 m.

Additionally, the spatial distribution of new landslide disasters
also shows a certain relationship with slope. As shown in Figure 8B,
in areas with slopes of 10°–20°, the newly added landslide area
accounts for 25.35% of the total, 58.99% in areas with slopes of
20°–40°, 12.33% in areas with slopes of 40°–50°, and 3.33% in
areas with slopes over 50°. Landslides are less likely to occur in
plains and hills with slopes less than 10°. In areas with slopes
of 10°–50°, due to steep terrain, landslides are more frequent. In
contrast, in extremely steep areas with slopes greater than 50°,
surface materials struggle to accumulate stably on slopes, making

collapses more likely and reducing the possibility of large-scale
landslides.

4.3 Interannual environmental factor
variation characteristics from 2019 to 2023

From 2019 to 2023, the southern TP exhibited significant
interannual variability in environmental factors such as
precipitation, temperature, vegetation cover, and snow cover, which
have direct implications for landslide occurrence.

To ensure the accuracy of precipitation data, we compared
the monthly precipitation amounts from meteorological stations
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FIGURE 7
Changes in landslide area and standardized area in the counties of the southern Tibetan plateau.

FIGURE 8
Relationship between newly added landslide areas and topographic elevation and slope in the southern Tibetan plateau region from 2019 to 2023. (A)
Elevation. (B) Slope.
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for the years 2019–2023 with the total monthly precipitation
calculated at the station locations using GsMap satellite
data. Supplementary Figure S2A shows the distribution of five
meteorological stations in the vicinity of the study area. The
fitting results in Supplementary Figure S2B demonstrate excellent
agreement, validating the feasibility of satellite-derived precipitation
measurements.The time series graph of annual average precipitation
for the five counties, shown in Supplementary Figure S3, indicates
that at the county level, due to differences in county area sizes, there
are variations in the magnitude of annual average precipitation.
Over the past 5 years, there has been no significant long-term
increasing or decreasing trend in annual precipitation in these
counties, but rather a fluctuating pattern. Peaks in annual average
precipitation were observed in both 2020 and 2022, with an overall
weak downward trend.

At the county level, although the annual average temperatures
in each county are relatively low, they have shown a significant
increasing trend over the past 5 years.The changes in annual average
temperature for each county in the southern TP from 2019 to 2023
are shown in Supplementary Figure S4.

At the county level, the vegetation cover area in each county
has shown an increasing trend over the past 5 years. In particular,
Motuo County has shown a weaker growth trend, with a peak
change in 2020. The changes in interannual vegetation cover area
for each county in the southern TP from 2019 to 2023 are shown in
Supplementary Figure S5.

Considering the limited snow cover areas in the landslide
extraction regions of each county and the higher elevations at
the boundaries of county-level watersheds with extensive glacier
and snow cover, the interannual snow cover area is based on the
complete county-level watersheds. Except for Cuona County, which
shows a weaker downward trend, the snow cover area in the other
counties has shown a significant fluctuating downward trend over
the past 5 years. The changes in interannual snow cover area for
each county in the southern TP from 2019 to 2023 are shown in
Supplementary Figure S6.

At the county level, the frequency of earthquakes over
the past 5 years has not shown significant interannual
regularity, but the epicenters are widely distributed across the
study area (Supplementary Figure S7A). Statistical data indicate
that there were 263 occurrences of perceptible earthquakes ranging
from magnitude 3 to 4.5, and 48 moderate to large earthquakes of
magnitude 4.5 and above.

4.4 2019–2023 interannual landslide and
environmental factor grid-by-grid
correlation analysis

Create a data grid for the study area, with grid cell dimensions
set at 11132 m × 11132 m based on the maximum resolution of
environmental factor data. Analyze and display the distribution
and variations of landslide areas in relation to environmental
factors across each grid (Sun et al., 2020). Importantly, due
to the highly dispersed nature of earthquake events annually
within the study area, seismic factors were excluded from the
analysis.

4.4.1 Correlation analysis between landslides and
precipitation

The correlation coefficient between landslide area and
annual average precipitation was calculated, retaining grids
with an absolute value greater than 0.3 for significance
testing, resulting in the significance map (Figure 9A). As
indicated in Supplementary Table S6, the area of landslide
positively correlated with precipitation comprises 46.7%, with
0.4% showing significant positive correlation and 0.9% showing
highly significant positive correlation. Areas with a negative
correlation account for 53.5%, with 2.7% showing significant
negative correlation and 1.3% showing highly significant negative
correlation. The results reveal that positive correlations are
present only in parts of Longzi and Chayu counties, while
most areas exhibit negative or no correlation. Therefore, the
impact of annual average precipitation over the past 5 years
on the changes of landslide area in the southern TP is
relatively weak.

4.4.2 Correlation analysis between landslides and
temperature

As shown in Figure 9B, in the southern TP, affected by
altitude, there is a significant climate variation. The correlation
coefficient between landslide area and annual average temperature
was calculated, retaining grids with an absolute value greater than
0.3 and using the p-value from the T-test for significance testing.
As indicated in Supplementary Table S6, the area where landslide
size positively correlates with temperature accounts for 69.2% of
the study area, with 8.9% showing significant positive correlation
and 14.8% showing highly significant positive correlation, mainly
distributed in Cuona, Motuo, and Bomi counties. Areas with
a negative correlation account for 30.8%, with 3.3% showing
significant negative correlation and 2.3% showing highly significant
negative correlation. These results suggest that temperature has
a strong impact on the variation of landslide areas in the
southern TP.

4.4.3 Correlation analysis between landslide area
and vegetation cover

The landslide area in this paper is located in a region
with high vegetation cover. The correlation coefficient between
landslide area and interannual vegetation cover area was calculated,
retaining grids with an absolute value greater than 0.3 for
significance testing, resulting in the significance map (Figure 9C).
As shown in Supplementary Table S6, the area of landslide positively
correlated with vegetation cover comprises 48%, with 2.7%
showing significant positive correlation and 0.9% showing highly
significant positive correlation. Areas with negative correlation
account for 52%, with 5.9% showing significant negative correlation
and 12.3% showing highly significant negative correlation.
The results indicate a substantial proportion of significant
negative correlation between the increase in landslide area and
vegetation cover.

4.4.4 Correlation analysis between landslide area
and snow cover

The correlation coefficient between landslide area and the
partial interannual snow cover area included in the grid is
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FIGURE 9
Grid map of correlation between landslide area and different environmental factors in southern Tibetan plateau from 2019 to 2023. (A) Annual average
precipitation. (B) Annual average temperature. (C) Interannual vegetation cover area. (D) Interannual snow cover area.

calculated. Grids with an absolute value greater than 0.3 are
retained for significance test, resulting in the significance map
shown in Figure 9D. As indicated in Supplementary Table S6,
the area where landslide area positively correlated with snow
cover comprises 57.8% of the study area, with 3.8% showing
significant positive correlation and 5.3% showing highly significant
positive correlation. Areas with negative correlation account
for 42.2%, with 1.6% showing significant negative correlation
and 2.4% showing highly significant negative correlation. These
results suggest that the limited snow cover within the study area
has a limited direct impact on most of the internal areas of
the counties.

4.5 The relationship model between
annual landslide area and environmental
factors from 2019 to 2023

Considering the varying impacts of different environmental
factors on landslide changes at the grid level, this study conducts
overall relationship modeling using county-level watershed
environmental data. Analysis was performed on 25 sets of annual
data from five counties in the study area from 2019 to 2023. After
outlier testing, the correlation coefficients between the annual
standardized landslide area and the selected environmental factors
are shown in Table 2.
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TABLE 2 Correlation coefficients between standardized annual
landslide area and environmental factors.

No. Environmental
factors

Correlation
coefficient

p-value

1 Standardized Annual
Average Temperature

0.735 <0.001

2 Standardized Annual
Vegetation Cover Area

0.417 0.038

3 Standardized Annual
Snow Cover Area

−0.396 0.05

4 Standardized Annual
Average Precipitation

Failed the
correlation test

5 Standardized Number of
Earthquakes (Magnitude

≥ MS3)

Failed the
correlation test

As shown in Table 2, environmental factors with absolute
correlation values greater than 0.3 and passing correlation test were
selected for subsequent multivariate regression analysis.

A model was established for the relationship between the
annual standardized change in landslide area (s) and the selected
environmental factors, excluding factorswhose p-values did not pass
the t-test. The model is expressed as:

s = −6.8E−15 + 0.908x1 + 0.349x2 + 0.299x3

In this model, s represents the standardized landslide area; x1 is
the standardized annual average temperature; x2 is the standardized
annual vegetation cover area; x3 is the standardized annual snow
cover area. The modeling factor of standardized annual average
precipitation did not pass the T-test and was excluded.

The fit between the actual values of standardized landslide area
and the model’s predicted values is shown in Figure 10. As can be
seen from Figure 10, the determination coefficient (R2) of the model
constructed from annual environmental factors is 0.833. The T-test
results for each environmental factor are presented in Table 3.

5 Discussion

Since 1960, the annual average precipitation in China has shown
an overall increasing trend with significant regional variations
and fluctuations in rainfall patterns (Tong et al., 2023). Despite
this, the observed decrease in precipitation over the short time
from 2019 to 2023 in the southern TP is a normal phenomenon.
Influenced by the maritime southwest monsoon from the Indian
Ocean, this study area experiences abundant moisture, resulting
in generally high precipitation levels (Bai, Cuo, and Wang, 2022).
Prolonged periods of high precipitation may have already weakened
slope stability. However, during this 5-year period, the decrease in
precipitation was not the direct driving factor for the increase in
landslide areas in the southern TP. The reduction in precipitation
could lead to drying and shrinking of soil and rock, thereby
reducing soil adhesion and stability. Furthermore, the decrease in
regional precipitation may indicate that local precipitation events

are becoming more sudden and intense, which can still trigger
geological disasters such as landslides. Additionally, global climate
change might be leading to an increase in the frequency and
intensity of extreme weather events, such as short-duration heavy
rainfall. Although these events do not significantly affect the
annual average precipitation, they could be key factors in landslide
occurrences.

The average annual temperature has a significant and positive
influence on the increase in landslides. Over the past 50 years, the
glaciers in the TP have experienced a 15% retreat due to warming,
and extreme temperature events have not only drastically affected
the properties of soil and rock by disrupting the freeze-thaw cycle
but have also significantly accelerated the melting of snow, glacier
retreat, permafrost degradation, and the occurrence of flood events
(Gao et al., 2017; Tong et al., 2023). The unique topography and
high-altitude environment of the study areamake itmore sensitive to
temperature fluctuations. Moreover, the rate of warming in the TP is
faster than the global average rate (Wei and Fang, 2013; Zhao et al.,
2021), leading to more frequent and intense freeze-thaw cycles in
the permafrost. Additionally, the rise in temperature exacerbates the
evaporation of rainwater, increasing the risk of surface water flow
and soil erosion (Gariano and Guzzetti, 2016).

Recent studies analyzing the spatiotemporal trends of NDVI
over the past 20 years in the TP have shown a general trend of
stable growth in vegetation cover, consistent with the findings of
this research (Han et al., 2019; Xue and Lu, 2020; Ding et al., 2021).
In areas with gentle slopes and stable terrain, where vegetation
cover is extensive, the anchoring effect of plant roots and the
reduction in the velocity of falling raindrops by foliage can enhance
protection and reduce landslide risk. Conversely, in areas with
steep, unstable slopes, the growth process of vegetation, particularly
through root extension, can disrupt the mechanical stability of
the slope, thereby exacerbating landslide formation (Shen et al.,
2022). Although the grid-by-grid analysis in the previous sections
revealed a higher proportion of grids showing a significant negative
correlation between landslide area and vegetation cover over the
past 5 years, the contribution of the remaining extensive vegetation
growth areas within the basin to regional climate change, surface
runoff, and soil moisture distribution cannot be overlooked.
Therefore, at a larger spatial scale and under different environmental
conditions, this positive correlation reflects the complex
interaction between vegetation cover and landslide risk in the
southern TP.

The observed negative correlation between inter-annual changes
in snow cover and landslide area can be attributed to the
fact that melting snow, induced by higher temperatures, not
only increases the water content of the slope but also removes
support from the base of the slope, thereby reducing its stability
(Chiarle et al., 2007; Legg et al., 2014). The absence of snow cover
allows precipitation to flowmore freely and infiltrate into the soil and
rock, weakening the properties of the geologic materials that have
been in a moist environment for an extended period. Additionally,
the melting of extensive snow cover in the areas surrounding
the counties significantly impacts regional climate and runoff,
indirectly affecting the occurrence of geological disasters within
the counties.

Furthermore, while there is no direct significant correlation
between the earthquake frequencies and landslide changes, the
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FIGURE 10
Fitting relationship between actual and predicted values of the model for interannual changes in landslide area and environmental factors in the
southern Tibetan plateau.

TABLE 3 T-test of regression coefficients.

Coefficients p-value Lower 95% Upper 95%

Intercept −6.8E−15 1 −0.225 0.225

Standardized Annual Average Temperature 0.908 3.27E−5 0.549 1.267

Standardized Annual Vegetation Cover Area 0.349 0.00928 0.0957 0.603

Standardized Annual Snow Cover Area 0.299 0.0981 −0.0603 0.659

potential impact of seismic activity on slope stability cannot be
overlooked for the study area is located in the active Himalayan
seismic belt with dense fault zones (Sun et al., 2020). The newly
formed landslides between 2019 and 2023 are densely distributed
near fault lines (Supplementary Figure S7A). Earthquakes can
accelerate the movement of geological strata, especially near fault
zones where geological structures are fragile and crustal stress is
concentrated. As shown in Supplementary Figure S7B, C, through
establishing a 20 km buffer zone around geological faults, a 30 km
buffer zone around earthquake epicenters with magnitudes above
4.5, and a 15 km buffer zone around earthquakes with magnitudes
between 3 and 4.5 (Chen et al., 2013; Yin et al., 2013), we found
that during 2019–2023, the newly added landslide area within
the seismic impact zone accounted for over 55% of the total
newly added landslide area in the study area, with the proportion
reaching 65% near fault zones. Therefore, even if statistical data
do not show a clear correlation, we still have reason to believe
that landslides in the study area exhibit a high sensitivity near
earthquake zones and tectonic belts. It is possible that there
may be a temporal lag between the occurrence of landslides
and seismic activities. Future research could consider a more
detailed comparative analysis of long-term seismic activities and
landslide events to better understand the dynamic relationship
between them.

6 Conclusion

Based on the GEE platform, an automated method for large-
scale landslide extraction in the southern TP has been established,
achieving high accuracy in annual landslide extraction. This
study analyzed the patterns of change in landslide area and
environmental factors from 2019 to 2023 and conducted grid-
by-grid analysis to explore their correlation patterns. Moreover,
to explore the relationship between changes in landslide area
and regional environmental factors (annual average precipitation,
annual average temperature, annual vegetation cover, annual
snow cover, and earthquake frequency) in the southern TP
over past 5 years, a quantitative model was developed correlating
inter-annual standardized changes in landslide area with these
environmental factors.The results indicate that data standardization
highlights the dynamic characteristics of each parameter and
ensures comparability among factors of different dimensions. The
main conclusions are as follows.

(1) The proposed NDLBSI, based on spectral information,
effectively separates landslides from bare soil, enhancing
landslide extraction capabilities with an average extraction
precision exceeding 85%.

(2) The landslide area changes in the counties of the southern
Tibetan Plateau (Cuona, Motuo, Longzi, Bomi, and Chayu)
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show a significant increasing trend, with almost consistent
growth trends after standardization. Over the past 5 years, new
landslides in the study area are mainly distributed at altitudes
of 500–3500 m and on slopes between 10° and 50°.

Environmental factors also exhibit certain patterns of change.
Except for Longzi County, which shows a weak increasing trend
in annual average precipitation, other counties exhibit a decreasing
trend. Annual average temperature and annual vegetation cover
in all counties show significant increasing trends. Annual snow
cover, except for a weak decreasing trend in Cuona County, shows a
significant decreasing trend in other counties.

Grid-by-grid analysis of landslide area and environmental
factors reveals that temperature has a more significant positive
influence on the increase of landslide area; a larger proportion of
areas show a significant negative correlation between vegetation
cover and landslide growth; limited snow cover in the landslide
extraction area results in limited direct impact on most landslides;
and annual average precipitation has a weaker influence on landslide
area changes in the southern TP.

(3) A model correlating inter-annual standardized landslide area
changes with environmental factor changes in the southern TP
has been established.

On an annual scale, the most correlated standardized factors are
annual average temperature (58.4%), vegetation cover (22.4%), and
snow cover (19.2%). The results indicate that from 2019 to 2023,
annual average temperature is closely related to changes in landslide
area, with snowmelt and vegetation growth also contributing to the
increase in landslide area.

The results show a correlation coefficient of 0.833 between
model predictions and actual values. All standardized data of
environmental factors involved in the modeling passed the T-
test. Therefore, the model has a good predictive ability, providing
a theoretical basis for the study of landslide area changes in
the southern Tibetan Plateau and guiding the establishment
of relationships between landslide area changes and regional
environmental factors in similar areas.
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