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The stable operation of a power supply system is inseparable from the work of
detecting defects in transmission lines. However, the insulator defect detection
model based on deep learning is widely used in wire inspection work. Therefore,
this paper proposes an improved YOLOv5s insulator defect detection model in
order to solve the problems of insufficient training data and low recognition
accuracy of the target detection model in the real-time detection of small target
insulator defects. To expand and enhance the training data, experiments were
conducted using the addition of noise and random black blocks. The spatial and
channel weight coefficients were obtained by adding an attention mechanism
(Convolutional Block Attention Module, CBAM), and the dimensions of the input
feature maps were transformed to enhance the model’s ability to extract and fuse
small target defect features. Experiments show that with Faster RCNN, YOLOv3,
SSD and YOLOv4 comparison experiments verified that the algorithm achieves
97.38% detection accuracy for insulators and 93.32% detection accuracy for small
target insulator defects with a fast detection speed, which is a better solution to
the problem of detecting insulator defects with too small a proportion in the
image.
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1 Introduction

The normal operation of modern society is dependent on a stable power supply system.
Insulators, as one of the most commonly used components in power line equipment, are
widely used in the conductor insulation and cable support of power transmission systems
(Zhao et al., 2021a). However, traditional power inspection method mainly relies on manual
inspection by manually climbing to high places to conduct visual inspections. This not only
wastes a lot of time and energy, but also makes it difficult to ensure the safety of inspection
personnel, and the quality of inspections is easily affected by weather factors. Insula-tors are
located in a natural outdoor environment and are prone to bursting and flashing faults under
the erosion of rain and Sun (HUANG et al., 2022), causing serious damage to the reliable
operation of the transmission system; hence the inspection of power lines should be carried
out regularly and comprehensively. However, insulators are often erected in the air and are
subject to the complexity of the line background and air angle sight distance restrictions.
Moreover, traditional manual inspection methods are difficult, time-consuming, and labor-
intensive, and there are certain operational safety risks (Chen et al., 2019). Therefore, there is
even a need to rely on ultrasonic, infrared (DENG et al., 2019; ZHAO et al., 2021b), and other
professional fault detection equipment for accurate discrimination, and it is difficult to
achieve a widespread efficient inspection.

Computer vision techniques represented by deep learning have emerged in recent years
and are now widely used in the detection of transmission line faults (Zhao et al., 2020a; Wen
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et al., 2021). Many scholars have used target detection algorithms in
deep learning to detect and identify defects in insulators in
transmission lines, among which the two-stage target detection
algorithm represented by Faster R-CNN (Faster
Region–Convolutional Neural Network) (Zhao et al., 2019a; Li
et al., 2020) and the single-stage target detection algorithm
represented by YOLO (You Only Look Once) (Liu et al., 2021b;
Gao et al., 2022) and SSD (Single Shot MultiBox Detector) (YANG
et al., 2020; LIU et al., 2021a) are the most popular in line fault
detection research. In the literature (Lei and Sui, 2019), a deep
convolutional neural network model based on Faster R-CNN is
proposed to transform the target classification problem into a target
detection and recognition problem, using ResNet-101 (Residual
Neural Network-101) pre-trained weights to locate insulators and
bird nests effectively, with the average accuracy value of the model
reaching 97.6%. The Literature (Zhao et al., 2019b) introduces skip
connections and reduces the number of network layers by adjusting
the order of ac to enhance Faster R-CNN’s detection of small targets.
The literature (Jiyu et al., 2021) introduces multiscale training and
employs adversarial networks to generate defective image occlusion
region features which enable the detection network to analyze
difficult occlusion situations in greater depth, thereby improving
the sample detection rate.

However, the training process of the two-stage target detection
model includes a region proposal network, which makes the model
structure more complex and has a larger number of parameters,
making it difficult to quickly produce target detection results. In
contrast, single-stage target detection models such as YOLO and
SSD can directly perform classification and regression after
completing backbone feature extraction, significantly improving
detection speed. This has resulted in one-stage target detection
models becoming the current research hotspot. The literature
(ZHAO et al., 2020b) addresses the problem of inaccurate target
detection due to overlapping and intersecting target frames of the
fixtures. It uses the similarity of intersecting regions as the
contextual information of the targets in order to design the
occlusion relationship module, which is embedded into the SSD
model for the target detection of mutually occluding features. The
literature (Liu et al., 2020) proposes an improved SSD algorithm
using the lightweight network MobileNet as the feature extraction
network and two multiscale feature fusion methods, Channel Plus
and Channel Concatenate, to improve the accuracy and speed of the
algorithm.

The YOLO family of algorithms has been widely used and
iterated in many versions in the field of target detection over the
years (Redmon et al., 2016). In the literature (WU et al., 2019), Crop-
MobileNet is used as a feature extraction network for the
YOLOv3 model to meet the requirements of fast UAV
inspection. The stability of the prior frame was improved using
the Euclidean distance based K-means++ algorithm, which also
improved the detection speed significantly. In (Zhang et al., 2020),
an improved Dense-YOLOv3 algorithm is proposed in order to
design a dense network (Dense-Net) instead of the single
convolutional layer in the original network, thereby achieving
multilayer feature multiplexing and the fusion of insulators, and
improving the detection accuracy. The literature (Gao et al., 2021)
introduced the Triplet Attention module and added the Dense Block
module into the YOLOV5-based backbone network to alleviate the

problem of gradient disappearance. The results show that the
accuracy of the improved network structure reaches 94.5%. The
literature (Chen et al., 2023) proposes an improved insulator defect
identification algorithm Insu-YOLO based on the latest
YOLOv8 network. It adopts a lightweight content-aware feature
recombination (CARAFE) structure and has an accuracy of 95.9%,
which is 3.95% higher than the YOLOv8n baseline model. The
literature (Tang, 2021) combines U-Net and YOLOv5 for the
segmentation and localization of insulators. It also introduces a
residual structure to reduce the effect of gradient disappearance,
introduces an attention mechanism to correct the feature weights,
and cuts high-resolution images before detection, improving the
effectiveness and efficiency of the model. However, since the
percentage of insulator defects in the image is too small, the
common target detection model does not obtain good results in
small feature extraction and detection, which makes it difficult to
play a significant role in practical engineering.

There are already many topics related to the detection of power
line components using deep learning technology, but there are still
many problems. On the one hand, the main detection objects are
single. The detection objects are basically various insulators, and
other power There are few studies on circuit components, and on the
other hand, there are almost no studies on experimental subjects
with small samples and small targets.

Therefore, to improve the detection accuracy of small target
insulator defects, this paper proposes an enhanced YOLOv5s
insulator defect detection model by adding an attention
mechanism and adjusting the feature map size. First, to
compensate for the lack of training data, the training dataset is
expanded by data augmentation through noise enhancement and
the random addition of black blocks, data pasting and copying.
Using this as a basis, the network structure is improved by adding
the attentionmechanism CBAM. Additionally, the size of the feature
map is adjusted to enhance the feature extraction and fusion
capability of the model for insulator defects, which improves the
network detection accuracy with little impact on the detection speed.
In comparison tests, the mAP (mean average precision) of the
YOLOv5s model after adding the attention mechanism was
93.65%, an improvement of 1.32%. After readjusting the feature
map size, the mAP was improved by another 1.70%–95.35%, and
there was only a small decrease in detection speed which did not
affect the detection efficiency. The comparison experiments verify
that the algorithm in this paper is a better solution to the problem of
detecting insulator defects with too small a proportion in the image.

2 Materials and methods

2.1 YOLOv5s model structure

YOLOv5 is the latest detection model developed by the YOLO
(You Only Look Once) target detection network algorithm series
after years of iterative updates. YOLOv5 model results are easy to
implement, can improve target recognition and detection accuracy,
and are widely used in Insulator defect detection (Luo et al., 2021;
Ding et al., 2022; Li et al., 2022; Zhang et al., 2023). Due to its fast
detection speed and high level of accuracy, it is widely used in
various target detection fields. The basic architecture of the
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YOLOv5 network for different requirements, including small (s),
medium (m), large (l), and extra large (x) models, is the same, except
that the depth and width of the network is adjusted in each sub-
module in different versions. YOLOv5s is a variant of YOLOv5 with
sub-modules of smaller depth and width dedicated to smaller images
and to obtaining faster detection speeds, which is important for
applications in real-time systems or systems with low latency
requirements. In addition, YOLOv5s can be used in combination
with other models in many different scenes, easily scaling to
larger images and more complex scenes. The structure of the
YOLOv5s network is shown in Figure 1. It consists of three main
parts: a backbone feature extraction network (Backbone), an
enhanced feature fusion network (FPN), and a head detection
network (Head).

As the feature extractor of the detection system, the structure of
the backbone feature extraction network, also called CSP-Darknet,
consists of multiple underlying convolutional and residual blocks.
The residual structure enables the fusion of shallow and deep image
features. By stacking multiple layers of residual and structural
blocks, the network is able to learn more complex feature
representations while reducing the gradient disappearance
problem and not losing image features due to the increase of
convolutional network depth. The Focus module and the Spatial
Pyramid (SPP) module are also used in CSP-Darknet to

downsample the feature maps. The Focus module divides each
2×2 pixel in the image into a small block, and extracts and
stitches the pixels at the same position in each block into a new
independent feature layer before stacking to increase the number of
feature layer channels, as shown in Figure 2.

Through the processing of the Focus module, the image matrix
size is reduced to one-half of the original size, and the number of
channels is changed from three channels to twelve channels. This
increases the number of data channels and reduces the spatial

FIGURE 1
YOLOv5s network structure.

FIGURE 2
Schematic diagram of the focus module.
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dimension of the image without losing the feature information. The SPP
module performs feature extraction on the convolved feature matrix
using maximum pooling with different pooling kernel sizes in the last
residual structure block, which can greatly improve the perceptual field
of the feature map and can extract the most significant target features.

FPN (Feature Pyramid Network) layers are often used to extract
multiple layers of features from an image, and these feature layers
are combined together to form a pyramid-like structure containing
both upsampling and down sampling. This pyramid-like structure is
used to extract features at different scales from the three effective
feature layers output by the backbone feature extraction network
and subsequently fuse them in a stacked fashion to retain the
effective feature information of targets at different scales, thus
helping the algorithm to better identify targets at different scales.
With the backbone feature extraction network CSP-Darknet and the
feature fusion network FPN, we have been able to obtain three
enhanced feature layers. The YoloHead detection network is
responsible for processing the extracted feature layers and
converting them into the output of target detection, including the
category, location, and bounding box of each target. The YoloHead
is divided into three sizes according to the size of the feature
map. Different detection modules with dimensions of
(80×80×number of categories), (40×40×number of categories)
and (20×20×number of categories) are used to detect large,
medium and small targets respectively, and to predict the
bounding box coordinates, class labels, and confidence scores of
the objects in the image. After the final prediction results are
obtained, score ranking and non-great suppression screening are
also performed to draw the detection frame with the best results.

2.2 SiLU activation function

Using activation functions on the convolution results can
enhance the nonlinear feature representation of the model.

SiLU (also known as Swish), represented in Figure 3, is a recently
introduced activation function adopted as an alternative to the

popular ReLU (Rectified Linear Unit) activation function. It is
defined as:

f x( )�x * sigmoid x( ) (1)
In the above, sigmoid is the standard sigmoid activation

function:

sigmoid x( )� 1 / 1 + exp −x( )( ) (2)
SiLU, similar to RELU, is a segmented linear activation function

that can be used to back-propagate training parameters for neural
networks. However, compared to ReLU and other activation
functions, SiLU has some key differences: non-monotonicity,
smooth derivability, and saturation. Firstly, unlike the
monotonically increasing function ReLU, SiLU is non-monotonic,
which means it can have both positive and negative slopes, allowing
for the capture of both positive and negative correlation information
in the data. Secondly, SiLU is smooth and continuously
differentiable compared to ReLU with discontinuous derivatives
at the origin, which makes it easier to optimize the neural network
parameters using gradient descent-based optimization methods.
Additionally, the bounded output range (−1, 1) for SiLU helps
prevent the output of the neuron from becoming too large or too
small. Thirdly, like ReLU, SiLU has saturation behavior, which
means it flattens out when the input is too large or too small.
However, the saturation behavior of SiLU is not as severe, and it is
less prone to gradient disappearance problems. SiLU is a more
effective alternative to other activation functions, and it has been
shown to perform well in various deep learning models such as
image processing and natural language processing. It is still relatively
new, however, and more research is needed to fully understand its
characteristics and potential benefits.

2.3 Improvements to the YOLOv5s model

The CBAM (Convolutional Block Attention Module) allows
convolutional neural network models to focus on a specific part of
the input rather than processing the entire input equally. This is
particularly effective for tasks such as target identification. The
CBAM consists of two parts: a channel attention module and a
spatial attention module (Figure 4). The channel attention module
learns which channel feature maps are most important for the task
and usually consists of a fully connected layer and a sigmoid
activation function that establishes correlations between channels,
obtains the weight coefficients for each channel, weights them onto
the original features, and completes the recalibration of the original
features in the channel dimension. The input in the spatial attention
module is a feature map (h×w×c) that has been passed through the
channel attention module, and all input channels are pooled into
two in the channel dimension to obtain two (h×w×1) feature maps,
followed by a convolution kernel of size 7×7, which is convolved to
form a (h×w×1) feature map. Finally, the spatial feature weights are
obtained by the activation function to generate a weighted feature
map reflecting the importance of each channel and each pixel in the
image, and then multiplied with the new feature map to obtain a
feature map adjusted by the dual attention mechanism.

FIGURE 3
SiLU activation function curve.
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To continue enhancing the detection of small target insulator
defects, a shallower feature map is selected as one of the inputs to the
feature fusion network, as shown in Figure 5.

Because insulator defects occupy so few pixels, shallow featuremaps
with small sensory fields are suitable for detecting small-scale objects.
The feature maps produced by the first few layers of the network will
have more prominent and easily distinguishable small features, and the
model can more easily capture the rough location and rough shape of
these small targets before using deeper featuremaps to further refine the
location and shape information. In addition, shallow feature maps
require fewer parameters and require less computation than deep
feature maps, which can make the model faster and more efficient.
This is especially important for real-time target detection applications,
where speed is a key factor. Therefore, feature maps with a feature map
size of (80, 80, 256) are discarded and a shallower featuremap (160, 160,
128) is used for feature extraction.

3 Experimental results and data analysis

3.1 Dataset processing

The training image dataset used by the model is from the Chinese
Power Line Insulator Dataset (CPLID). With 748 images, the original
dataset is small and lacks sufficient diversity. Since deep learning
networks require a large amount of rich training data to obtain
better learning results, data augmentation is performed using a
number of methods such as enhanced noise and randomly adding

black blocks in order to make the trained model more robust. Adding
noise to the data is one way to enhance the data. A common method is
to add Gaussian noise, which is a type of noise that obeys a normal
distribution. It is also possible to add ‘pretzel’ noise, which consists of
random black and white pixels scattered throughout the image. The
randomly selected pixel value can be set to zero (black) or 255 (white).
Randomly adding black blocks can simulate the situation where the
actual target is obscured and helps to improve the recognition accuracy
of the obscured target. Adding noise to the data can help improve the
generalization of the model, but it can also make the data harder to
process andmay negatively affect performance if the noise is too strong.
The effect of partial image enhancement is shown in Figure 6.

After data enhancement, the dataset has 2000 images, which are
divided into training, validation and test sets in the ratio of 7:2:1.

3.2 Experimental environment

The operating system used in the experimental platform is
Windows 10, the CPU is Intel Core i7-10700 KF @ 3.80GHz, the
RAM is 64GB, and the GPU is NVIDIA GeForce RTX 3080 with
8 GB of video memory.

3.3 Model training

The training image size is uniformly set to (640×640). The
model is trained for 100 epochs, the batch size is set to 8, and the

FIGURE 4
CBAM attention module.
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initial learning rate is set to 1e−3. The curve in Figure 7 shows the
changes in training loss.

3.4 Evaluation indicators

The evaluation metrics used to verify the accuracy in this paper are
defect detection accuracy, insulator detection accuracy, mean average
precision (mAP), which is the sum of the average accuracy of all

categories divided by the number of categories, and the number of
frames per second (FPS) that themodel can detect. The average precision
(AP) is calculated as follows, where theAP is for a certain class of samples:

AP � 1
m
∑
m

i

Pi � 1
m
*P1 + 1

m
*P2 +/ + 1

m
*Pm (3)

In Eq. 3, the sample has m positive cases, where each positive
case corresponds to a recall. The maximum accuracy p is calculated

FIGURE 5
Shallow feature map as input.

FIGURE 6
Data enhancement effect.
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for eachm, and the average value of each p is calculated to obtain the
AP of the class. The mAP is obtained by averaging the APs of all the
C categories contained in the dataset, as follows:

mAP � 1
C
∑
C

j

APj (4)

3.5 Experimental results and analysis

Table 1 compares the detection performance of different target
detection models with the YOLO series of models. The detection
accuracy of Faster RCNN for insulators and defects is higher than
YOLOv3, but it is a two-stage model with a more complex structure.
Consequently, detection takes longer, and the FPS is only 20.33,
which is less than half the detection speed of SSD and the YOLO
series of models. The SSD model has a somewhat higher detection
accuracy than YOLOv3, but after iterations of the YOLO series the
mature YOLOv4 and YOLOv5s have improved even more in terms
of detection accuracy and speed, surpassing the SSD model,
especially YOLOv5s. The SiLU activation function shows its
robustness on YOLOv5s with a 91.43% insulator defect detection

accuracy, a 92.33% mAP, and the fastest detection rate of
48.68 frames per second.

In order to verify the effect of the YOLOv5s improvements, we
tested the performance of the YOLOv5s model before improvement,
tested the performance after adding the attention mechanism, and
then tested the performance after changing the input feature map
size. The results of the comparison are shown in Table 2. The CBAM
module enables the model to learn a greater number of accurate
spatial and channel features without losing image features due to the
increase in network depth, and increases the insulator detection
accuracy to 95.07%. In addition, after transforming the input feature
map and switching to shallow features, the detection accuracy of
small target defects was further increased to 93.32%, while the
insulator detection accuracy also increased and the final mAP
was improved. However, due to the addition of the attention
mechanism, the more complex model structure has an impact on
the detection rate, which drops from 48.68 frames per second to
about 43 frames per second. Although there is a small decrease in
detection speed, it can still meet the demand for rapid detection in
real-time.

Figure 8 shows an example of the detection results of the
YOLOv5s model before and after the improvements. Figure 8B
shows that after adding the attention mechanism and transforming
the size of the input feature map, the model is able to detect
accurately insulator targets of all sizes. Moreover, the detection
frame is more refined, maintaining a high confidence level of
recognition and improving the confidence level for the detection
of small target defects.

4 Discussion

4.1 Model performance comparison analysis

The experimental results presented in Table 1 highlight the
trade-offs among var-ious target detection models, particularly
focusing on the comparison with the YOLO series. It is evident
that Faster RCNN achieves higher detection accuracy for
insulators and defects compared to YOLOv3. However, its
two-stage model structure contributes to increased complexity
and longer detection times, resulting in a lower frames-per-
second (FPS) rate of 20.33.

On the other hand, the single-stage models, SSD and the YOLO
series (v3, v4, and v5s), exhibit superior detection speed. The YOLO
series, especially the mature YOLOv4 and YOLOv5s, surpass both
Faster RCNN and SSD in terms of both detection accuracy and
speed. YOLOv5s, utilizing the SiLU activation function,
demonstrates remarkable robustness, achieving a 91.43% accuracy
for insulator defect detection, a mean average precision (mAP) of
92.33%, and the fastest detection rate at 48.68 frames per second. By
incorporating the CBAM module, the model gains the ability to
learnmore accurate spatial and channel features, leading to a notable
increase in insulator detection accu-racy to 95.07%. Although the
introduction of the attentionmechanism impacts the de-tection rate,
causing a decrease from 48.68 to approximately 43 frames per
second, the model still meets the requirements for real-time
detection.

FIGURE 7
Training loss change with iterations.

TABLE 1 Comparison of target detection model performance.

Model Defect Insulator mAP FPS

Faster RCNN 86.33 89.53 87.93 20.33

YOLOv3 83.65 86.91 85.28 43.98

SSD 88.68 89.28 88.98 42.77

YOLOv4 90.97 91.39 91.18 47.33

YOLOv5s 91.43 93.21 92.33 48.68
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4.2 Data validity

The utilization of data augmentation techniques, such as
introducing noise and random black blocks, proves
instrumental in bolstering the training data for object de-
tection models. This strategy enhances the model’s robustness
to variability, fosters improved generalization to diverse
scenarios, and promotes the extraction of relevant features
critical for accurate object detection. Moreover, data
augmentation addresses challenges associated with limited
datasets, mitigates overfitting, and enhances the model’s
adaptability to real-world variations. Overall, augmenting the
dataset with noise and random black blocks serves as a powerful
tool to elevate the detection accu-racy and performance of object
detection models.

4.3 Future prospects and limitations

Given the limitations imposed by the available sample dataset,
our research has thus far concentrated on the application of deep
learning object detection algorithms to address insulator defect

detection. Looking ahead, we envision an expansion of our
efforts to explore and develop additional defect detection
methods. Our goal is to build upon the existing foundation,
refining and innovating techniques that go beyond ob-ject
detection. This future research aims to elevate the automation
levels of power line inspections, contributing to more
comprehensive and effective methods for enhancing the
reliability and efficiency of defect detection in the field of
electrical power infra-structure.

5 Conclusion

This paper has proposed an improved YOLOv5s model to
resolve the problem of low accuracy of current target detection
models for small target insulator defects. Experiments were
conducted to compare its performance with those of Faster
RCNN, YOLOv3, and YOLOv4. The results show that by
adding the CBAM attention mechanism to the last layer of the
YOLOv5s enhanced feature fusion network, more effective
insulator features can be extracted by increasing the feature
weights of space and channels. The detection of small target

TABLE 2 Performance comparison of YOLOv5s model before and after improvements.

Model Defect Insulator mAP FPS

Yolov5s 91.43 93.21 92.33 48.68

Yolov5s with CBAM 92.23 95.07 93.65 43.30

Yolov5s with CBAM and transformation of the input characteristics map 93.32 97.38 95.35 42.60

FIGURE 8
(A) Faster RCNN; (B) YOLOv3; (C) YOLOv4; (D) YOLOv5.
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insulator defects can be enhanced by adjusting the size of the input
feature map, with the final mAP for insulator defect detection
reaching 93.32%, and the mAP for insulator detection reaching
97.38%. The results verify the effectiveness of the improved model
in increasing detection accuracy. While the detection speed showed
a small decrease compared to the original YOLOv5s model, the
decrease did not affect the detection efficiency in real-time. The
main focus in subsequent research is network model
miniaturization in order to improve the detection speed while
ensuring that the detection accuracy is maintained. Taken together,
these findings further confirm the importance of this research,
which will help advance the development of related research and
applications.
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