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Many people are killed by landslides due to earthquakes or severe rain, and
structures and facilities built on or near slopes sustain significant damage. Such
landslides on naturally occurring slopes can be large enough to utterly destroy
towns or communities. Based on remote sensing and microtremor data, the area
around Al Taif has been evaluated for its susceptibility to landslides. Digital
elevation model (DEM), slope angle, and slope aspect thematic layers were
used to depict remote sensing data. The landslide susceptibility was extracted
from remote sensing thematic data. The elevations of the Al Taif area, which range
from 832 to 2,594 m amsl, were identified based on the DEM. Al Taif’s slope angles
range from 0° to 67.3° degrees. Nearly flat (0° to 4.75°), moderate (4.75° to 11.1°),
steep (11.2° to 29.1°), and very steep slope (≤29.1°) are the different classifications
for the slope. Additionally, measurements of the microtremor have been taken at
42 locations throughout the region. The horizontal-to-vertical spectral ratio
(HVSR) approach was used to process and analyze microtremor data in order
to determine the resonance frequency and H/V amplification factor. The findings
show that, while the amplification factor varies from 1.17 to 9.28, the dominant
frequency values fall between 0.3 and 12.75 Hz. To determine the frequency,
amplitude, and azimuthal site response, 11 sites were eventually chosen.
Furthermore, the direction of the site response in the sliding areas was parallel
to the landslide directional response, indicating that the site response direction
tracked the landslide direction. Practical approval of the study’s findings has been
given at a number of locations by field measurements at some of the Taif urban
area’s most recent landslide occurrence areas. These findings show that the
integration between remote sensing and microtremor measurements is a
useful tool for pinpointing landslide-prone areas, which helps to lessen the
danger to people’s lives and property. This susceptibility zonation applied to
the Al Taif area has produced a good match between the distribution of the
reported landslides and the zones of high susceptibility. To define the general
trend and geographic distribution of potentially unstable slopes and landslide
potential zones, this study’s findings must be used as a guide.
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1 Introduction

The most dangerous natural instability processes, including
landslides, cause significant socioeconomic losses and property
destruction each year throughout the world (Heersink, 2005;
Petley, 2012; Froude and Petley, 2018; Haque et al., 2019). One
of the main sources of damage to buildings and infrastructure, as
well as injuries and fatalities in mountainous and hilly areas, are
shallow landslides and debris flows, which are typically brought on
by brief but intense rainstorms. Unlike debris flows, shallow
landslides often include tiny quantities. However, due to their
extensive spatial distribution over territories, quick development,
and high velocity of dissemination, both can cause a great deal of
harm (Hungr et al., 2014; Roccati et al., 2021). Accordingly, landslide
susceptibility assessment and mapping are crucial tools in landslide
risk management, assisting authorities, practitioners, and decision-
makers in developing risk mitigation strategies that are more
appropriate and sustainable, including the implementation of
monitoring and warning systems (Dai et al., 2002; Cascini et al.,
2005; Corominas et al., 2014).

Landslides have been studied using a variety of techniques to
define their geometry and gather data on their stability conditions
and state of activity (Petley, 2012; Al-Otaibi, 2019; Kahal et al.,
2021). These techniques can typically be divided into two groups:
intrusive techniques, such as boreholes, soil samples, and laboratory
testing, and non-intrusive techniques, such as geophysical
techniques. The latter’s use for subsurface characterization,
localizing sliding surfaces, assessing the formation and evolution
of cracks, comprehending water dynamics, and potential
reactivation by rains has expanded rapidly (Pazzi et al., 2019). In
order to define landslide ground models and afterward perform
slope stability evaluation, the data from geophysical surveys are used
as input (Whiteley et al., 2019).

Slope instabilities (landslides or rock falls) can be caused by a
wide range of occurrences, including heavy rain, quick snowmelt,
human-caused activities, and seismic events (Cruden and Varnes,
1996). Due to their enormous potential for destruction, these
phenomena-especially those brought on by earthquakes-affect
many parts of the world and are quite noteworthy. The losses
resulting from earthquake damage are currently difficult to
estimate. Traditional techniques rely on their estimates of the
cost of such damage on the repair and restoration of buildings,
without accounting for economic losses resulting from the loss of
economic activity and human lives (Cardone et al., 2019). Therefore,
seismic hazards in inhabited areas need to minimize the
consequences and phenomena linked to strong ground
vibrations. This is done so that the inherent seismic hazard may
be calculated by looking at historical events as well as the geological
and geotechnical conditions of regions that are likely to suffer a
seismic event (Abdel-Rahman et al., 2010; Fat-Helbary et al., 2012;
Harutoonian, 2015; Abdelrahman et al., 2017; Abdelrahman et al.,
2021a; Abdelrahman et al., 2021b; Alamri et al., 2020; Almadani et
al., 2020). Co-seismic landslides, which are aftershocks of
earthquakes, are essential for pinpointing prior seismic
occurrences and enhancing seismic hazard forecasts (Jibson,
1996). These landslides offer significant real-time geological
evidence that enables researchers to recreate a region’s seismic
catalog and better comprehend previous seismic activity

(Rodrguez-Peces et al., 2011). The accuracy of seismic hazard
predictions can be improved by increasing the dataset available
for seismic analysis, which in turn helps to increase community
resilience against seismic occurrences in the future.

Landslides are extremely damaging natural disasters that have a
negative impact on social and economic development, as well as the
safety of human life and property (Hungr et al., 2014; Wang et al.,
2020). According to Gokceoglu et al. (2005) and Fang et al. (2023),
landslides make up about 9% of all-natural disasters that occur
worldwide, and China is one of the nations that is most seriously and
extensively affected by landslide catastrophes. Landslides typically
occur in mountainous and hilly areas. According to Hong et al.
(2016) and Lacroix et al. (2020), landslide susceptibility mapping
(LSM) is a technique for quantitatively predicting the spatial
distribution of landslide susceptibility in a region by combining
regional topography, geological structures, hydro-meteorology, and
other characteristics. Statistical models, such as entropy, have been
mostly used in earlier studies on LSM (Lee et al., 2014; Guo et al.,
2019; Sun et al., 2021; Sun et al., 2023).

It is crucial to assess and identify landslide-prone locations using
various landslide susceptibility mapping techniques for proper and
strategic land use planning. As it demonstrates the level of
susceptibility of a region to the occurrence of landslides, creating
a map of a specific area’s landslide susceptibility is a useful tool in
managing landslide hazards. The assumption that future landslides
would occur under the same circumstances as in the past allows for
the generation of landslide susceptibility maps (Pham et al., 2015).
Understanding the circumstances and mechanisms that govern
landslides in the research area is necessary for interpreting their
likely future occurrence. By integrating these conditioning elements
and past landslides in a GIS context, the essential characteristics to
measure and evaluate landslide susceptibility include past landslides
and other conditioning factors, such as slope morphology,
hydrogeology, and geology of the area. Several researchers have
employed GIS-based landslip susceptibility mapping techniques,
which may be divided into qualitative and quantitative ones
(Yalcin et al., 2011; Felicisimo et al., 2012; Peng et al., 2014;
Wang and Li, 2017). Geomorphological analysis and inventory
techniques are examples of qualitative methodologies. These rely
more on expert opinion and are more individualized than
quantitative approaches. In order to build and execute
mathematical models, expertise is still required (Aleotti and
Chowdhury, 1999; Kanungo et al., 2009). Quantitative methods
such as deterministic analysis, probabilistic approaches, and
statistical procedures heavily rely on these models because they
have considerably less human bias.

Landslides and their dynamics can be mapped using HVSR, which
is both economical and logistically effective (D’Amico et al., 2019). It
offers details on the geomorphological, engineering, and geological
aspects’ resonance behaviors. It has been used widely in the assessment
of landslide hazards and vulnerability to various triggering variables,
such as earthquakes and rainfalls (Hussain et al., 2019). But as is the
situation with a clayey landslide, rainfall-induced saturation lowers
impedance contrast by causing changes in the rheology of the overlying
unconsolidated material. The investigation of the seasonal dynamics of
rainfall-triggered landslides using HVSR is based on this (Imposa et al.,
2017; Bertello et al., 2018). Other environmental studies that have used
HVSR include monitoring of fluvial systems (Anthony et al., 2018),
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estimation of changes in ice thickness (Martino, 2016; D’Amico et al.,
2019; Picotti et al., 2017) and its dynamics (Köhler et al., 2015). As
shown in numerous research (Burjánek et al., 2010; Del Gaudio and
Wasowski, 2011; Panzera et al., 2012; Galea et al., 2014; Iannucci et al.,
2017; Imposa et al., 2017; Iannucci et al., 2018), HVSR can indicate the
directional influence for landslide-affected areas. Additionally,
HVSR has been used for a number of purposes, such as site effect
response and microzonation, seismic vulnerability assessment,
and soil-structure response (Fnais et al., 2010; Fnais et al., 2015a;
Fnais et al., 2015b; Alyousef et al., 2015a; Alyousef et al., 2015b;

Almadani et al., 2015; Alharbi et al., 2015; Al-Malki et al., 2015;
Aldahri et al., 2018.

Al Taif area lies in the southwest of Saudi Arabia and is
surrounded by arid terrain and high mountains with steep slopes
(Figure 1). In Saudi Arabia, Makkah City is located around 80 km to
southeast of Al Taif City. The study area is bounded by longitudes
40° 00′ and 40° 30′E and latitudes 21° 00′ to 21° 30′ N. The city’s
recent growth has been determined by this mountainous area. Low-
land zones are where urban infrastructure and communities are
extended. The native rock is used to construct traditional dwellings.

FIGURE 1
Location map of Al Taif area including Microtremor measuring sites.
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Taif receives rain from the higher edges along the terrain’s slopes.
These slopes will be more exposed if they are close to the main
roadways. Permanent people who reside along the City’s natural
slopes live in areas with a high population density. The Al-Sharai’a
earthquake on 8 October 1992, the non-tectonic seismic shock on
12 September 2005, and most recently the earthquake on
28 November 2019, have had a huge impact on Makkah. These
earthquakes had a dangerous impact and were felt throughout the
majority of the region (Abdelrahman et al., 2019a; Abdelrahman
et al., 2019b). Additionally, the city’s proximity to possibly active
tectonic structures will make it more susceptible to the landslide
phenomenon because it will operate as a more vulnerable place. The
disastrous impacts of landslides are readily acknowledged and
intensively investigated by several authors worldwide (Mora and
Vahrson, 1994; Aleotti and Chowdhury, 1999; Mora-Castro et al.,
2012; Somos-Valenzuela et al., 2018; Al-Saud, 2015; Youssef et al.,
2015a; Youssef et al., 2015b; Shanmugam and Wang, 2015; Berov
et al., 2016; Saputra et al., 2016; Keskinsezer and Ersin, 2019).
Gaudio and Wasowski (2007), Rezaei et al. (2018), and Zul
Bahrum and Sugianto (2018) have all given their approval for
microtremor measurements at some locations around the world.

For the city of Al Taif, where soft soil, even with little thickness, will
expedite landslide occurrences and cause significant harm to the
populace, soil response effects, such as resonance frequency and

amplification characteristics, are crucial. Al Taif can effectively
transmit the earthquake’s ground shaking because of its proximity
to the Red Sea earthquake source zone. The susceptibility of landslides
will be increased by soft sediments and weathered, broken blocks.
Therefore, assessing Al Taif’s landslide susceptibility is essential
given the area’s growing population, buildings, and impressive
economic activity. The study area has never been investigated
before, especially in terms of the environmental risks associated
with landslides, which makes this study novel. Additionally,
integration between two of the most recent techniques for
mitigation of landslide hazards, namely, the two remote
sensing techniques with the ambient seismic noise
measurements, microtremors, in the area. With the help of
this innovative technique, we hope to pinpoint Al Taif
region’s landslide-prone areas so that they can be avoided in
future plans of developmental projects in the area and its
surrounding with the best land-use and urban planning.

2 Materials and methods

The data used in this study will be integrated through a GIS-
based approach and the methodology carried out through this study
as in Figure 2.

FIGURE 2
The flowchart methodology carried out through the current study.
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2.1 Geological setting of Al Taif area

The Proterozoic Arabian Shield is where the inquiry region is
located geologically. The earliest radiometrically dated rocks in the

study area are syn-tectonic granites and granodiorites with many
inclusions and xenoliths (Johnson, 1982). These mostly come from
the granitization of volcanic and schist rocks. These rocks’ age
determinations point to a plutonic phase that was

FIGURE 3
Geological setting of Al Taif area (modified after Al-Shanti, 1993; Bishta et al., 2015).
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contemporaneous with or somewhat earlier than the African
Kibaran Orogeny. Andesites, diabases, and amphibolite schists of
an even older provenance are separated from these rocks by an
unconformity and frequently encroach upon them. The latter
amphibolite schists are found in sections of Taft, the
northeastern zones around Wadi Hawrah, and the southeast side
of Wadi Fatimah (Johnson, 1982). The so-called Wadi Fatimah
Formation, which is comprised of smaller outcrops of newer Upper
Proterozoic layered rocks, is also present in the Wadi Fatimah.
Unmetamorphosed granites intrude into these series as stocks,
elliptical plugs, and ring dykes. The Hijaz and Najd orogeneses,
each with more than one phase of folding and igneous activity, have
had an impact on the basement series. The Hijaz orogeny, which is
the oldest of the two, is more extensive and intense in terms of age
and space. According to Alwash and Zakir. (1992), the orogeny was
characterized by east-west compression, with the severely folded,
faulted, and locally overthrust beds emerging in meridian or north-
northeast oriented bands and lineaments.

The younger period of mountain-building and canonization is
associated with the Najd orogeny. A sequence of left-lateral faults

that are northwest-trending best illustrates the effects of the younger
and shallower motions. The Arabian plate (Brown, 1972), a
relatively small lithospheric plate whose limits indicate several
types of plate boundaries according to the terminology of plate
tectonics, became significant for the geological evolution after a
period of rather stable geology (Barazangi, 1981). The Red Sea rift
system is relevant to the study area. The many basalt plateaus,
including Harrat Rahat, with the widest extension on the Saudi
Arabian subcontinent, came into being as a result of the spreading
along this line throughout Tertiary to Quaternary, even in historic
times. Numerous seismic events that were recorded in recent years
provide evidence of the recent displacement in the Red Sea Graben
(Moore and Al-Rehaili, 1989).

The escarpment west of the city of Al Taif is the most noticeable
geomorphologic feature of the investigation area. Within the Hijaz
mountains, it is a key geomorphological stage that is influenced by
tectonic forces. As a result, although those around Taif are 2000 m or
higher, the mountain peaks of the coastal ridges near Jeddah and
Makkah have an average elevation of 300–500 m. The Al Taif region
is mountainous and is divided by some rivers that go west.

FIGURE 4
Seismicity around Al Taif area (after Fnais et al., 2015b).
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Precambrian metasediments and intrusive igneous rocks from
the Arabian Shield were present in the study area, and these
rocks were buried by quaternary sediments (Figure 3). Asir, Al-
Hijaz, Madyan, Afif, and Ar-Rayan are the five terranes that
make up the Arabian Shield. Bir-Omq, Yanbu, Nabitah, and Al-
Amar are the four suture zones that divide them (Al-Shanti,
1993; Bishta et al., 2015). The study location is situated in Asir
Terrane’s northwest region. Diorite, Granodiorite, and
Monzogranite make up the majority of the plutonic rocks in
the examined region. Joints and small faults are the most

prevalent geological structural characteristics in the
study area (Sharaf, 2010).

A stunning characteristic in the nearby Wadi Fatimah is the horst-
graben and step-faulting nature of Red Sea Rift fracturing (Al Shanti,
1966; Nebert et al., 1974). Along these faults, strike-slip and oblique
movements also happened. In the Shumaysi region, a thorough
inventory of regional and local faults by Al Shanti. (1966) revealed
that horst-graben structures with an NW-NNW trend and a range of
steepness from mild to extreme predominate. These, according to Al-
Shanti (1966), are separated fromNNW trending Red Sea Rift fractures

FIGURE 5
Digital elevation model (DEM) for the mapped area.
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by N 15°E − N 40°E moving faults. However, a few distinctive gabbroic
dykes in the region that cut through all other mafic and felsic dykes are
tentatively thought to be connected to late volcanism. Some E-W cracks
seem to have occurred simultaneously. They might be cross Joints
associated with the longitudinal N-S set. Hot springs are found along
N-S cracks at A1 Lith, south of the catchment region (Loupoukhine and
Stieltjes, 1974).

Andesite dykes were reported by Al Subai. (1984) along N-S and
E-W trending fractures. Rift volcanism is typical of Andesites.

Therefore, these dykes might be a part of a Precambrian swarm.
The lack of analysis leaves opens the possibility that the dykes are
from Tertiary basalt volcanism. In the Al Hara region, Abo Saada.
(1982); reported in Al Saifi et al., (1983) assessed 2400 Joints and found
that they were ENE/dip SE; NW/SW and NE; EW/gentle to
subhorizontal; and NS/vertical. In the Taif area, granites exhibited a
prevalence of NS and EW orientations, according to Andreasson et al.
(1977) who conducted a comprehensive fracture survey over a
1 km2 area.

FIGURE 6
The slope angle distribution within the area of study.
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2.2 Seismicity and seismotectonic setting of
Al Taif area

According to Merghelani and Gallanthine. (1981), Al Taif
area lies close to the seismically active tectonic environment of
the Red Sea (Figure 4). There have been earthquakes near Al Taif
that were both historical and useful. According to Ambraseys
et al. (2005), there were numerous earthquakes in 873, 1121, 1269,
1408, and 1426 AD. An incident that occurred on 28 September
1993 (12/4/1413H), which occurred 30 km northeast of the Holy

Mosque in the Al-Sharai’a district, proved Makkah Al-
Mukarramah’s earthquake sensitivity. A series of minor
earthquakes are reported by the Saudi Geological Survey’s
seismic network after the 3.6 magnitude shock. On 3 October
1993, an earthquake swarm with a magnitude of 4.1 ML occurred
at Al-Sharai’a (Al Furaih et al., 1994; Wolfs, 1994). On 18 June
1994, an earthquake with a magnitude of 3.6 was recorded nearby
in the Al Utaibiyya District on 8/8/1426H. The shallowness and
predictability of this earthquake are indicated by its limited
geographic possibility.

FIGURE 7
Extracted slope aspect map from gridded DEM of the area.
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The seismicity and seismotectonic context of the Jeddah-
Makkah region are discussed by Fnais et al. (2015a). They
compiled historical and scientifically verified information about
earthquakes that occurred in the Jeddah-Makkah region from a
variety of sources and organized it into a single earthquake catalog.
In the Makkah region, five seismotectonic source zones were found
(Figure 3). Three zones-the northwest, western, and southwest of
Jeddah-are along the Red Sea axial trend, while the Thuwal-Rebigh
and Jeddah-Makkah zones are located inland. Wherever the zone
incorporates tectonic trends, it may be said that the Jeddah-Makkah
source zone is the most vulnerable source of the investigated region.
The first one is Wadi Fatima, which is 50 km long and 10 km wide
and represents the primary fault-bounded graben. The main
graben’s NE-SW faulting trend, which is divided by a number of
faults from the Red Sea’s primary tectonics in the NW-SE, is
preexisting (Al-Garni, 2009). The location is part of a conjugate
set of tertiary ruptures, according to the NNE fractures. To the south
of Jeddah, the Wadi Fatima route extends ENE-WSW. Due to active
faults, it abruptly turns northward (Azzedine et al., 1998). The Ad-
Damm active fault, a significant fault trend located in the Jeddah-
Makkah region, is the secondary trend.

2.3 Remote sensing data

2.3.1 Digital elevation model
The elevation data that are geographically referenced are the

most critical and crucial data used in morphometric investigations.

Topographic maps or their digital equivalents are the most
commonly used data sets as a result. In a basic sense (DEMs) are
topographic analogs and are useful for researching spatially
distributed events and processes on the earth’s surface. DEMs
provide a 3D picture of the earth’s surface topography at a local
and smaller scale. Similar to the present landslide inventory, the
geographical evaluation of the landslide danger necessitates
rigorous mapping of the regulating components. One of the
most well-known and frequently used methods for obtaining
the characteristics of landslides is the use of remote sensing
techniques with multi-spectral, spatial, and radiometric
solutions. The final, highest-resolution DEM of Earth was
created by the Shuttle Radar Topography Mission (SRTM). In
order to obtain advanced topographic information with a 1 arc-
sec precision, it used double radar aerials to acquire
interferometric radar data (Farr et al., 2007). The primary
dataset used to create topographic derivative maps is the high
resolution (DEMs). Higher-resolution data may make it easier to
discover future landslides and provide more information on
existing landslides.

A Digital Elevation Model (DEM) is crucial to the current
study’s ability to anticipate a model of landslide susceptibility
and to determine the elevation, slope aspect, and slope angle
thematic layers. The nonlinear regression graph created by the
DEM model created by Gao and Los (1995) depicts the
correlation between elevations and landslides. To assess the
likelihood of landslides, an elevation map was created based on
the Gao and Lo model using map algebra in ArcMap 10.2. The

FIGURE 8
Examples of H/V spectral ratio at ambient noise measurement stations.
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elevations of the Al Taif area, which range from 832 to 2,594 m
AMSL, were identified based on the DEM (Figure 5).

2.3.2 Slope angles map
A land region that forms the vertical landscape at a specific angle

is called a slope. Slope units make up the geomorphology landscape.
The slope is commonly represented in degrees, stands with the
horizontal line, and can be thought of as the vertical inclination
between the top of the hill and the bottom of the valley. Slope
gradient is one of the key parameters for slope stability, but slope
angle is also important when assessing landslide stability. Because
they have lower shear stresses than steep slopes (Dai et al., 2002),
gentle slopes are less likely to slide, whereas steep slopes have larger
shear stresses. Many writers (Çevikevik and Topal, 2003; Lee et al.,
2014; Yalcin et al., 2011; Pourghasemi et al., 2013a; Pourghasemi
et al., 2013b; Regmi et al., 2014) use the slope angle factor for
landslide susceptibility mapping. According to Varnes (1984), the
rising the slope gradient, the more gravity-induced shear pressure
there is in colluvial soils, which leads to the development of
landslides (2012) Mora-Castro et al. Therefore, the slope’s angle
is a key element that causes landslides and needs to be mapped
(Anbalagan, 1992). According to Varnes. (1984), the slope is the key
determining element in the development of landslides. According to
Mora-Castro et al. (2012), as the gravity-induced shear pressure in
colluvial soils increases, so does the slope gradient. The kind of rock
in the mapped area and its control over the makeup of superficial
deposits have a direct impact on the slope angle. Relief impacts were
noted by the alternating compacted layers of sedimentary rocks. The
initial extraction of elevation is the slope gradient, which was
therefore also retrieved from the (DEM) at a 30-m resolution.

In this study, the slope gradient ranges from 0o to 67.3o, and the
slope angle map for Al Taif area has been determined (Figure 6).
Nearly flat (0o to 4.75o), moderate (4.75o to 11.1o), steep (11.2o to
29.1o), and very steep slope (≤29.1o) are the different classifications
for the slope.

2.3.3 Slope aspect map
Another feature that was retrieved from the DEM with a 10-m

spatial resolution was the slope aspect, which describes the
horizontal direction of mountain slope faces. The slope aspect
was considered a contributing element in landslides in several
research (Saha et al., 2005; Lee et al., 2014; Yalcin et al., 2011).
According to Deng et al. (2007), aspect is the direction of the steepest
descending line and is expressed in degrees. It is commonly
calculated clockwise from the north. The slope-facing direction is
referred to as the aspect. It establishes the slope direction of the

TABLE 1 Direction of site response at microtremor measurement sites.

Site No. f0 A0 Azimuth (O)

1 0.42 4.26 130

2 0.3 3.37 10

3 0.38 5.93 140

4 0.37 1.49 10

5 0.53 1.49 40

6 0.35 2.24 120

7 10.05 3 10

8 10.05 3 10

9 0.3 4.72 120

10 0.32 1.17 40

11 0.43 4.69 60

12 1.17 3.71 50

13 0.4 5.27 40

14 0.47 3.24 50

15 0.89 3.14 10

16 0.47 6.07 10

17 0.43 5.33 80

18 7.04 2.54 60

19 0.36 3.26 40

20 0.3 1.84 70

21 3.75 2.49 20

22 2.06 2.49 10

23 12.75 4 10

24 0.3 1.83 10

25 4.7 2.97 170

26 10.6 11.1 120

27 0.48 9.28 110

28 7 2.13 100

29 7.46 2.45 120

30 0.37 3.6 70

31 0.29 6.1 10

32 1.1 5.47 30

33 0.3 2.94 10

34 1.2 4 110

35 0.38 3.38 110

36 0.4 5.07 40

37 0.4 2.22 115

38 12.36 4.51 90

(Continued in next column)

TABLE 1 (Continued) Direction of site response at microtremor measurement
sites.

Site No. f0 A0 Azimuth (O)

39 0.3 3.12 110

40 6.24 3.64 95

41 0.3 1.5 100

42 0.31 2.75 80
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area’s sharpest downslope on any surface. It could be seen as the
slope orientation or the compass’s facing-hill orientation. Every unit
in rasters has its aspect measured (Wilson and Gallant, 2000; Deng
et al., 2007). The predicted direction is clockwise, going from zero
(directly north) to 360 (further, directly north, making a full circle).
In an aspect of data collection, each cell’s value represents the
direction that confronts the slope of the cell (Wilson and Gallant,
2000; Deng et al., 2007). Figure 7 shows the aspect map that was
created using the zone’s gridded DEM. The morphologic and
meteorological characteristics of the site are influenced by this

layer. The most frequent landslides are found on slopes that face
north (N), northwest (NW), and northeast (NE), according to the
field survey and literature research. As a result, the aspect slope was
divided into five categories: very high (N and NE), high (NW and
SW), moderate (S and SE), low (W and E), and very low (flat surface)
in accordance with the directions prone to landslides.

2.3.4 HVSR approach
Nogoshi and Igarashi. (1970) claim that in order to accurately

estimate the soil resonance frequency, which is here predicated on

FIGURE 9
Fundamental frequency zonation map.
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the fundamentally Rayleigh-wave character of microtremors, a few
minutes of seismic background noise must be recorded. For a single
station, the researchers calculate the spectral ratio of the horizontal
and vertical components of the microtremor measurement. The
generated curves identify a frequency that is thought to fit
remarkably with the place under study’s S-wave resonance
frequency. Later, Nakamura. (1989) improved this method,
arguing that due to the main body wave character of the noise,
this HVSR is a trustworthy evaluation of the site transfer function

for S-waves with regard to bedrock. Numerous studies conducted in
recent years have demonstrated that the H/V ratio of a microtremor
is much more stable than the raw noise spectrum and that it displays
a distinct peak that is closely correlated with the fundamental
resonance frequency when there is a large impedance difference
between the surface and deep materials (Field and Jacob, 1993;
Duval et al., 1994; Duval et al., 1995).We examine recent studies that
have looked into this technique (Bard, 1994; Kudo, 1995; Bard, 1998;
Duval et al., 2001).

FIGURE 10
The H/V amplitude zonation map.
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3 Microtremor data collection

Forty-two locations were used to measure the microtremors
throughout the study area (Figure 1). The SESAME team’s
recommendations were followed when setting up the data
collection experimental parameters (SESAME, 2004). Using the
STA/LTA anti-trigger algorithm, microtremors were measured
for at least 1 hour at each site to ensure long records free from
transient conflicts (such as moving vehicles and wind gusts). Data
were monitored using a sample rate of 100 sps and filtered using a
0.2–20 Hz bandpass filter. The seismometers were calibrated before
recording, installed in good coupling with the surficial soil,
orientated horizontally (N–S and E–W), and leveled vertically.
The quality and precision of the findings attained with this
method depend on the processing sequence. Records in this
study were processed using Geopsy software (Wathelet et al.,
2006). The accuracy of the microtremor measurements has been
confirmed using SESAME team reliability standards. Additionally,
the azimuthal rotation of the horizontal-to-vertical spectral ratio
with intervals of 10° azimuth was used to determine the direction of
the site response.

4 Results and discussion

4.1 The slope map

One of the most important factors in landslide occurrences is
slopes. Shear resistance in unconsolidated materials (rocks and soils)
reduces as the slope angle rises. In this work, slope angles are used as
a measure of slope stability and are spatially represented in
(Figure 5) using numerical estimates from the mapped area’s
Digital Elevation Model (DEM). In the plotted area, rock types
have a direct impact on slope angle through their control over the

makeup of superficial deposits. Moreover, layered sedimentary rocks
of other resistivity indicated the relief effects.

Results of slope values analysis are introduced on the distribution
map of slope clusters. Therefore, the resulting categorized slope map
establishes slope categories based on the occurrence frequency of various
slope angles. Generally speaking, the likelihood of a landslide occurring
increases with slope steepness. On the other hand, landslides typically
occur seldom on slopes that are far less steep. The frequency distribution
pattern based on the slope categories of the intended area shows a
striking similarity. To clearly show the slope distribution pattern in the
area under study, slope values are divided intofive categories on the slope
distributionmap: flat or nearly flat areas with very low slope angles, areas
with low slope values, areas with moderate slope values, steep areas with
a high slope angle, and steeper areas of greater than 29.1° slope angle.
This classification is used to highlight the locations of sharp changes in
slope values, which correspond to the positions of active tectonic
structures. The slope spatial distribution in the surveyed area
(Figure 5) demonstrates that slope angles between 18.8° and 67.3°

have the highest landslide susceptibility.

4.2 Predominant frequency and H/V
amplitude estimation

Following the procedures outlined above, microtremor data were
analyzed, and their H/V spectral ratios were determined (Figure 8). The
spectral ratios of the H/V data were used to estimate the dominant
frequency and H/V amplitude. Table 1 displays the resonance
frequency and H/V amplitude values for various stations, where
f0 and A0 stand for the observed predominant frequency and H/V
amplitude, respectively, for each station. At 42 sites, the H/V spectral
ratios were evaluated using the SESAME criteria in the processing order.
The SESAME recommendations do not explain these factors in detail
(SESAME, 2004).

FIGURE 11
Examples of H/V spectral ratio rotation at microtremor measurement stations.
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Thesefindingswere confirmed by examining the state of the ground.
So, at these locations, the accuracy of the results was approved. The
maximum andminimumprevalent frequencies for the Al Taif area were
found to be 0.3 and 12.75°Hz, respectively. Measurements were repeated
at these locations to validate this conclusion. The amplitudes at the
greatest and minimum were 1.17 and 9.28, respectively. The high
fundamental frequency readings point to a shallow contact with a
seismic impedance contrast. A zonation map was used to illustrate
the results of the microtremor measurement for further analysis. The
maps were created with ArcGIS software. Measurements of the ambient
noise were used to interpolate the results. The zone map for
predominant frequency is shown in Figure 9. The zonation map for
H/V amplitude is shown in Figure 10.

4.3 Prediction of the site response’s
direction

As previously stated, the rotation of the H/V spectral ratio at
azimuth intervals of 10° has been used to determine the response

direction. Utilizing the three variables of frequency, amplitude, and
azimuth, the site response direction was assessed. The H/V spectral
rotation ratio at several stations is shown in Figure 11. This statistic
demonstrates that 34 stations exhibit directivity. It has been observed
that for certain stations, the H/V amplification develops in a particular
direction, reflecting the influence of the integration between the
localized site response, as well as geometrical and geologic
constraints. The directivity is also noticeable at stations near the
landslide areas. These theories are consistent with those offered by
Panzera et al. (2011), Del Gaudio and Wasowski. (2011), and Pilz et al.
(2014). Table 1 displays the direction of the site response for 42 stations.

At a few Taif landslide areas, numerous field tests and
measurements were made. In order to properly interpret the results,
great effort was required to identify all slide pathways and historic
landslides through the field survey. In order to demonstrate that the
stations demonstrating directivity were on landslide locations, Figure 12
provides examples from this field survey. The results of a more
thorough investigation show that stations with directivity tracked the
landslide direction. In the sliding areas, it is observed that the maximal
slope corresponds to the landslide direction. The findings of Burjanek

FIGURE 12
Landslide field verification sites. These labels (A–D) show field examples of landslide hazard sites that occurred in Al Taif area.
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et al. (2010), Panzera et al. (2011), Del Gaudio et al. (2014), and Pilz et al.
(2014) all agreed with these findings.

5 Conclusion

Land use planning, hazardmanagement, and decision-making about
regions vulnerable to landslides are all aided by the spatial prediction of
landslides. These maps were created using a variety of techniques in
different parts of the world. Areas that are likely to experience a landslide
can be predicted based on physical criteria such as bedrock, previous
landslide history, slope steepness, and hydrology. Clarifying the
significance of early consideration of landslides in planning studies
and introducing a method that could be used at all planning phases
were the two main goals. All of the aforementioned information aids
decision-makers and planners in gaining a practical understanding of
ideas and terminology in addition to the crucial factors relating to
landslides and landslide hazard mapping.

In this study, 42 sites hadmicrotremor tests done to determine Taif’s
susceptibility to landslides. TheNakamura techniquewas used to process
the data in order to determine the dominant frequency and H/V
amplitude. Following that, these factors were mapped through Al
Taif research area. The rotation of the H/V spectral ratios at azimuth
intervals of 10° was used to verify the phenomena of directional site
response. The accuracy of the microtremor data was then assessed using
a field survey to confirm the directivity results. These findings showed
that the greatest and least prominent frequencies in Al Taif were,
respectively, 0.3 and 12.75 Hz. The H/V amplitudes were 9.28 at the
maximum and 1.17 at the lowest. The high fundamental frequency
readings point to a shallow contact with a seismic impedance contrast. At
stations near the landslide, there was a clear sense of directionality. The
site reaction directions were parallel to the primary direction of the
landslide, according to a thorough examination of microtremor stations.
These findings show that the microtremor measurements offer a
thorough method for assessing landslides. It expedites landslide
analyses and lowers the initial expenses of numerical computations.
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