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Tephra injected into the atmosphere by volcanic ash plumes poses one of the key
hazards in explosive eruptions. Forecasting the atmospheric dispersal of volcanic
ash requires good knowledge of the current eruption source parameters, in
particular of the mass eruption rate (MER), which quantifies the mass flow rate
of gas and tephra at the vent. Since this parameter cannot be directly measured in
real-time, monitoring efforts aim to assess the MER indirectly, for example, by
applying plumemodels that link the (relatively easily detectable) plume height with
the mass flux at the vent. By comparing the model estimates with independently
acquired fallout measurements from the 130 eruptions listed in the Independent
Volcanic Eruption Source Parameter Archive (Aubry et al., J. Volcanol. Geotherm.
Res., 2021, 417), we tested the success rates of six 0D plume models along with
four different modelling approaches with the aim to optimize MER prediction.
According to our findings, instead of simply relying on the application of one
plume model for all situations, the accuracy of MER forecast can be increased by
mixing the plume models via model weight factors when these factors are
appropriately selected. The optimal choice of model weight factors depends
on the availability and type of volcanological and meteorological information for
the eruption monitored. A decision tree is presented that assists the reader in
finding the optimal modelling strategy to ascertain highestMER forecast accuracy.
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1 Introduction

Being a product of explosive eruptions, volcanic ash, when injected into the atmosphere,
can pose a serious threat to aviation and air-travel infrastructure (Kienle et al., 1980; Grindle
and Burcham, 2002). Therefore, when a volcano explosively erupts and a volcanic ash plume
is formed, it is a critical task for monitoring scientists, volcano observatories and volcanic ash
advisory centres (VAACs) to provide accurate forecasts on the movement of the emitted
volcanic ash clouds and tephra sedimentation over the ground. This allows them to create
maps and related quantitative forecast products with the expected atmospheric
concentration of ash at various flight levels and times. Such forecasts are the product of
atmospheric ash dispersion models (Dacre et al., 2011; Kristiansen et al., 2012; Beckett et al.,
2015; Beckett et al., 2020; Dioguardi et al., 2020). These models require meteorological data
(e.g., wind field, precipitation, etc.), usually coming from Numerical Weather Prediction
models, and parameters characterizing the ash emission, usually referred to as Eruption
Source Parameters (ESPs) (Beckett et al., 2020; Aubry et al., 2021). The latter describe the
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geometry of the source (e.g., the eruption column is modelled via a
vertical line extending from the volcano summit to the top plume
height h), the mass eruption rate (MER), which is defined as the
mass flux (in kg s−1) of tephra injected into the atmosphere (Wilson
andWalker, 1987; Sparks et al., 1997; Mastin et al., 2009; Bonadonna
et al., 2016; Dioguardi et al., 2016; Aubry et al., 2017) and the tephra
properties (size, density and shape).

Various methods have been developed to infer the MER, based
on using video analyses of ash plumes and ejecta (Wilson and Self,
1980; Valade et al., 2014; Dürig et al., 2015a; Dürig et al., 2015b; Pioli
and Harris, 2019; Tournigand et al., 2019), thermal infrared
signatures (Harris, 2013; Harris et al., 2013; Ripepe et al., 2013;
Cerminara et al., 2015), emitted infra-sound waves (Johnson and
Ripepe, 2011; Ripepe et al., 2013), electrostatic field (Büttner et al.,
2000; Calvari et al., 2012), interpretation of microwave radar signals
(Montopoli, 2016; Marzano et al., 2020) or estimates from satellites
(Pouget et al., 2013; Pavolonis et al., 2018; Gouhier et al., 2019; Bear-
Crozier et al., 2020). When it comes to real-time MER assessment,
however, many of these approaches are affected by large
uncertainties as they often depend on assumptions of the source
parameters that are difficult to be acquired in near real-time, such as
the vent geometry (Dürig et al., 2015a).

Amore common approach to assess theMER is therefore the use
of plume models, which link the height of the eruptive column h
with the mass flux at the vent. A large variety of such plume models
exist (for in-depth overview see Costa et al., 2016), which can be
grouped into “simple” 0D models, which are based on theoretical
(Wilson and Walker, 1987; Woods, 1988) or empirical relationships
(Sparks et al., 1997; Mastin et al., 2009; Gudmundsson et al., 2012;
Aubry et al., 2023; Mereu et al., 2023), steady 1D models that are
explicitly wind-affected (Bursik, 2001; Degruyter and Bonadonna,
2012; Devenish, 2013; Woodhouse et al., 2013; Mastin, 2014;
de’Michieli Vitturi et al., 2015; Folch et al., 2016), unsteady 1D
models (Scase and Hewitt, 2012; Dürig et al., 2015a; Dürig et al.,
2015b; Woodhouse et al., 2016; Hochfeld et al., 2022), and more
complex time-dependent multi-phase models in 2D (Neri et al.,
1998) or 3D (Esposti Ongaro et al., 2007; Suzuki and Koyaguchi,
2012; Cerminara et al., 2016).

0D models are often the method of choice to monitor the MER
in real-time, because they are fast and require only very few input
parameters, which are relatively easy to obtain (Wilson and Walker,
1987; Sparks et al., 1997; Mastin et al., 2009; Aubry et al., 2017; Dürig
et al., 2018; Dioguardi et al., 2020; Dürig et al., 2023). It has been
suggested that the accuracy of a 0D models might be dependent on
the eruptive conditions (e.g., wind speed, eruptive style, composition
of magma), and consequently certain models might provide more
accurate predictions under specific conditions than others (Dürig
et al., 2018; Dioguardi et al., 2020; Aubry et al., 2023). An example of
a near real-time eruption source parameter monitoring system that
is based on this concept is the software REFIR (Dürig et al., 2018;
Dioguardi et al., 2020). Instead of relying on the output of a single
plume model, this monitoring software provides best estimates of
MER by weighing the output of the six integrated plume models
using weight factors, which are at present manually assigned by the
operator. In this study we use a recently published database of
independent eruption source parameters from 130 past eruptions
(“IVESPA” database, Aubry et al., 2021) to statistically test the MER
prediction capabilities of each of the six plume models implemented

in REFIR. Furthermore, we examine how the success rates of model
predictions can be increased by studying the dependencies of model
prediction qualities on the eruptive conditions. The outcome of our
study will help researchers who are monitoring an explosive
eruption to improve the accuracy of real-time MER forecast by
selecting the optimal plume model and/or model weight factors.

2 Materials and methods

2.1 Data

We used the eruptive events listed in the IVESPA (Independent
Volcanic Eruption Source Parameters) database from Aubry et al.
(2021) to test the modelling approaches. These entries include not
only “complete” eruptions, but also individual phases to reflect the
transitions between eruptive styles or column regimes in more
complex eruptions. From the 134 eruptive events listed,
130 entries provide plume top heights, vent level altitude,
duration of eruption and independent estimates (i.e., not inferred
by reversed plume height modelling) of total erupted mass
(MIVESPA). 64 of these entries provide information on the mass
uncertainties, while no such information is given for the other
66 eruptive events. For this study, all top heights were converted
to plume heights above vent level.

We used three different subsets of IVESPA for our analyses:

• “All” data (sample size N = 130, see Supplementary Table S1):
this dataset includes all eruptive events listed in IVESPA with
given plume heights, event durations and total erupted mass.
For cases in which no information on the uncertainties of the
total erupted mass was provided, an error of ±50% was
assumed. This value represents the approximate average of
mass uncertainties listed in IVESPA.

• “Precise” data (sample size N = 64, Supplementary Table S2):
this dataset includes only the IVESPA entries with known
uncertainties for total erupted mass. From all datasets tested, it
can be seen as the most reliable dataset in terms of
uncertainties.

• “Control” data (sample size N = 105, Supplementary Table
S3): IVESPA contains also (albeit partly updated) data on
eruptive events that had been originally used to calibrate the
empirical models by Sparks et al. (1997) and Mastin et al.
(2009). To avoid any potential circularity when testing the
models, we also used the “control” data, which is a subset
identical with “all” data, minus 25 entries that had been used to
calibrate at least one of these plume models.

The values for wind speeds �V, wind shear W̃s, atmospheric
temperatures at the vent Tao, the height-averaged buoyancy
frequencies �N, the duration of the eruption t and the magmatic
temperature T0 used in this study were taken directly from the
IVESPA database (Aubry et al., 2021). All weather parameters taken
from IVESPA are based on ERA5 re-analysis data (Hersbach et al.,
2018; 2020).When no temperature data were available for T0, a value
between 950°C and 1,100°C was assumed, depending on the
composition of the magma (see Supplementary Tables S1–S3),
with an uncertainty of ±50°C. Following the considerations in
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Dürig et al. (2023), we used (1,250 ± 100) J kg−1 K−1 for the specific
heat capacity C0 of the ash and (998± 20) J kg−1 K−1 for the specific
heat capacity of the atmosphere Cao.

All statements on statistical significance are based on the
findings from two-tailed Student’s (Student, 1908) and Welch’s
(Welch, 1947) t-tests. Which type of t-test was applied depends
on the homogeneity of the datasets’ variances (Davis, 2002; Dürig
et al., 2021). To find out if the tested datasets were homogeneous or
heterogeneous, we used Levene tests (Levene, 1960).

2.2 Tested models

The six models tested in this study are named after their first
authors and are described below.

TheWilsonmodel is a simple numerical 0D model based on the
buoyant plume theory by Morton et al. (1956), which estimates the
mass eruption rate MER by:

MERWil � h/c( )4 (1)
with h, the height of the plume top (in m), as the only input
parameter. The constant c is 236 m (s/kg)1/4.

The Sparks (Sparks et al., 1997) andMastin (Mastin et al., 2009)
models are 0D models, which calibrated both c and the exponent
within Eq. 1 against data from historic eruptions to link plume top
height h with the MER. The relationship found by Sparks et al.
(1997) is:

MERSpa � ρ · h/c( )3.86 (2)
where ρ is the dense-rock equivalent (DRE) density of the tephra
within the plume and c is a constant of 1,670 m (s/kg)1/3.86.

The Mastin model is given by:

MERMas � ρ · h/c( )4.15 (3)
with c being 2000 m (s/kg)1/4.15 (Mastin et al., 2009).

Another empirical model studied is the Gudmundsson model,
which was calibrated for the different eruptive phases of the
2010 Eyjafjallajökull eruption, Iceland (Gudmundsson et al., 2012).

MERGud � ρ · a · kI · havg + h max( )/c( )4.15 (4)

This model uses the same constant c as the Mastin model. In
addition, it introduces a dimensionless constant a which is
calibrated to be 0.0564. In contrast to other models, the
Gudmundsson model introduces an additional scale factor kI,
which is dependent on the eruptive conditions, such as wind
speed and/or eruptive style (Gudmundsson et al., 2012). For
simplification, we used a value of 1.6 for all eruptions. This is the
suggested optimal value for modelling the complete
2010 Eyjafjallajökull eruption (Gudmundsson et al., 2012). The
Gudmundsson model is also the only model from those analysed
in this study, which uses two different measures of plume height as
input parameters: the average plume top height havg and the
maximum plume top height hmax.

Being an explicitly wind-affected model, the Degruyter model
(Degruyter and Bonadonna, 2012) was developed by combining the

buoyant plume theory of Morton et al. (1956) and its modification
by Hewett et al. (1971). It estimates the mass eruption rate by:

MERDeg � π
ρa0
g′

25/2α2 �N3

z14
HC

4 + β2 �N
2 �V

6
HC

3( ) (5)

The subscripts a and 0 refer respectively to the atmosphere and
volcanic source vent height. Therefore, the density of the
atmosphere at vent level is given by ρa0. The plume height-
averaged wind speed is defined as �V, and the height-averaged
buoyancy frequency as �N. The radial and wind entrainment
coefficients are denoted α and β. The maximum non-dimensional
height resulting from numerical integration of the governing
equations of Morton et al. (1956) is given by z1 = 2.8 (Degruyter
and Bonadonna, 2012). The reduced gravity at the source g’ is
defined as:

g′ � g
C0T0 − Ca0Ta0

Ca0Ta0
(6)

with T0 being the magma temperature at the source, C0 the specific
heat capacity of the magma, Tao the atmospheric temperature at the
vent and Cao the specific heat capacity of the atmosphere at the vent.

The assessment of the plume height Hc used as model input
parameter depends on the type of plume featured in the eruption
and can inmany cases not be simply assumed to be identical with the
top height h (Mastin, 2014; Devenish, 2016; Dürig et al., 2023). This
is due to the fact that the wind-affected plume models relateMER to
the plume maximum centreline height Hc. If the plume trajectory is
purely vertical, then Hc coincides with the top plume height h,
otherwise the two heights do not coincide and can potentially lead to
significantly different estimates of MER (Mastin, 2014; Devenish,
2016; Dürig et al., 2023).

The sixth and last model we tested was the Woodhouse model,
which is given by a relationship derived from the application of the
1D model developed by Woodhouse et al. (2013) with β = 0.9. The
Woodhouse model estimates the MER using:

MERWoo � 1
0.318

HC
1 + 4.266W̃s + 0.3527W̃s

2

1 + 1.373W̃s

⎛⎝ ⎞⎠3.953

(7)

where the wind shear from the ground to a reference height H1 is
described by the parameter W̃s, according to:

W̃s � 1.44Ws � 1.44
V1

�NH1
(8)

V1 is the wind speed at reference height H1 = Hc (Woodhouse
et al., 2013). Like the Degruyter model, Woodhouse uses Hc as main
model input parameter.

2.3 Plume height corrections and
entrainment coefficients

To distinguish the plume types, we use the scaled parameter Π,
which describes the relative influence of buoyancy and cross-wind of
windspeed �V on the plume dynamics and is characterized by
(Degruyter and Bonadonna, 2012; Bonadonna et al., 2015):
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Π � �Nh

1.8 · �V · α

β
( )2

(9)

For consistency with published results in literature (Degruyter
and Bonadonna, 2012; Bonadonna et al., 2015; Scollo et al., 2019;
Aubry et al., 2023; Dürig et al., 2023), we used the entrainment
coefficients α = 0.1 and β = 0.5 for the computation of Π. Following
the approach applied in previous studies on paroxysms at Etna
(Scollo et al., 2019) and on the ash plume of Eyjafjallajökull 2010
(Dürig et al., 2023), Eq. 9 can be used to discriminate three plume
types (see Figure 1 in Mastin (2014)):

(i) buoyancy-dominated plumes, which rise vertically and are
often referred to as “strong plumes” (Carey and Sparks,
1986; Mastin, 2014). They are characterized by Π > 0.5, and
since the maximum elevation of the plume’s centreline
coincides in such a case with the top height h, we can use
this value for Hc.

(ii) wind-dominated plumes, which are often referred to as “weak
plumes” (Carey and Sparks, 1986; Mastin, 2014). They feature a
bent-over shape, since the wind is strong enough to push the
column towards the side. Wind-dominated plumes are

indicated by Π < 0.1 (Scollo et al., 2019; Aubry et al., 2023;
Dürig et al., 2023), andHc is defined as the maximum elevation
of the column’s centreline. Assuming the plume’s cross-section
to be circular, to obtainHc, one has to subtract the plume radius
R from the plume top height h.

(iii) intermediate plumes, also referred to as “transitional plumes”
(Carey and Sparks, 1986; Mastin, 2014) are settled between the
two end-member plume types with values of 0.1 ≤ Π ≤ 0.5. In
such cases, the plume height h has to be corrected by a value
that cannot be readily obtained, but ranges somewhere between
0 and R (Mastin, 2014).

For simplification, we followed the approach introduced by
Scollo et al. (2019) and applied plume height corrections only for
wind-dominated plumes, using an approximation for the plume
radius R suggested by Devenish (2016). Thus Hc was obtained by:

HC � h · 1 − β

β + 1( )( ); if Π < 0.1 (10)

HC � h; if Π≥ 0.1 (11)
To test the effect of the correction on the outcome, we also

computed the “uncorrected” model outcome for Degruyter and
Woodhouse, by assuming Hc = h for all cases. The uncorrected
model results are marked by the suffix “uncor.”.

The Degruyter model (Eq. 5) and the plume height correction
(Eq. 10) require knowledge of the entrainment coefficients. Based on
theoretical considerations (e.g., Turner, 1986; Carazzo et al., 2006;
Papanicolaou et al., 2008) and experimental findings (Dellino et al.,
2014), the radial entrainment coefficient α is known to be ~0.1. In
contrast, the wind entrainment coefficient β is more challenging.
Themajority of suggested values for β gravitate around 0.5 (Huq and
Stewart, 1996; Contini et al., 2011; Michaud-Dubuy et al., 2020), and
this is also the value used in the studies of Degruyter and Bonadonna
(2012) and Scollo et al. (2019). There are, however, also other studies
that suggest different values for β, ranging between 0.1 and 1.0
(Bursik, 2001; Suzuki and Koyaguchi, 2012;Woodhouse et al., 2013).
For example, a recent study on the ash plume for Eyjafjallajökull
2010 found that the prediction accuracy of the Degruytermodel can
be significantly improved when using a value of β = 0.3 (Dürig et al.,
2023). Here, we therefore tested two values for β: 0.3 and 0.5 when
computing Equations 5, 10. We note that the choice of β in Eq. 10
also influences the results of the Woodhouse model and is therefore
always reported along with the results.

2.4 Matching criteria for finding optimal
model solutions

To find out which of the tested approaches is most accurate in
estimating the MER, we computed the predicted total erupted mass
Mmodel, according to:

Mmodel � MERmodel · t (12)
where t is the duration of the eruptive event. The uncertainties of
Mmodel were estimated by using the endmember values
(i.e., minimum and maximum values) for h and t, when
computing MERmodel and Eq. 12. This results in a range of

FIGURE 1
Conceptual illustration of the two matching criteria used in this
study. To describe the predictive quality of a model (or model
combination), the predicted range of the modelled mass Mmodel

(examples indicated as black error bars) is compared with the
measured range of erupted mass (magenta). Depending on the
applied matching criterion, it was tested if a model prediction is
successful (green check) or not (red cross). In this study, two criteria
were used: “best fit” tests if the best estimate of the model lies within
the range of MIVESPA. Two different definitions of best estimates are
tested: CMER and FMER. In this illustration, the FMER is indicated by a
red dot within the central horizontal black bar. For two examples, also
the CMER is marked by blue crosses. The second criterion tests if the
ranges of Mmodel and MIVESPA overlap, and is denoted “best range”.
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predicted mass eruption rate MERmodel and predicted erupted mass
Mmodel, constrained by the endmembers MERmin and MERmax, and
Mmin and Mmax, respectively. Since such an approach is not
applicable for the Gudmundsson model (Eq. 4), only the best
estimate for MER and Mmodel was computed for this model.

For each eruptive event, the predicted mass is compared to the
independently assessed total erupted mass (MIVESPA) from the
IVESPA database (Aubry et al., 2021), and the number of
matches between Mmodel and MIVESPA is counted. The number of
“successful” predictions is then referred to the total number of
eruptive events tested, and this ratio is termed “success rate” S. The
outcome of this approach is strongly dependent on themathematical
definition of the conditions, under which a prediction provides a
match and therefore qualifies as “successful”. In this study we tested
two different matching criteria (see Figure 1):

2.4.1 Fitting best estimate (“best fit”)
The simplest matching criterion is to check if the best estimate of

the modelled mass Mbest lies within the range of the total erupted
mass, thus:

Mbest ⊆ MIVESPA ±
△MIVESPA

2
(13)

where ΔMIVESPA is the total width of the error bars of erupted mass.
The most common approach to obtain the best estimate Mbest is to
apply Eq. 12 in combination with the mass eruption rate MERbest
that results from plugging in the time-averaged plume height havg as
either explicit or implicit model input, depending on whether a
plume height correction is applied or not. The commonly defined
best estimate of mass eruption rate, here termed as CMER
(conventional mass eruption rate), is therefore:

MERbest ≡ CMERmodel � MERmodel havg( ) (14)

While being simple and straightforward, this definition has a
number of drawbacks. It completely neglects the attributed
uncertainties in plume heights and duration. Furthermore, due to
the highly non-linear correlation between MER and plume height,
MERmodel(havg) ≠ MERmodel and therefore the best estimate
according to Eq. 14 will always lead to mass estimates that are
considerably lower than the mean value of the total predicted range,
which might result in a systematic underestimation of M.

An alternative definition of the best MER estimate, which also
reflects theMER uncertainties was introduced as FMER (Dürig et al.,
2018; 2022; Dioguardi et al., 2020) and is defined by:

MERbest � FMERmodel �
MER min +MERmodel havg( ) +MER max

3
(15)

In this study we tested the “best fit”matching criterion given in Eq.
13 with both variants of “bestmass estimates”,CMER and FMER. In the
schematic examples illustrated in Figure 1, Mbest that were computed
based on FMER are indicated by a central red dot and black horizontal
bar. For two cases, the location of Mbest (CMER) is indicated with blue
crosses. These are always situated below Mbest (FMER).

As the only exception, since no comparable definitions for
MERmin and MERmax exist for the Gudmundsson model, we used
Eq. 4 for the computation of both CMERGud and FMERGud.

2.4.2 Overlapping ranges (“best range”)
The “best range” criterion is fulfilled when the range of the

model-predicted mass Mmodel overlaps with the independently
measured range of total erupted mass MIVESPA. In contrast to the
“best fit” criterion, no definition of best estimate is required. We
tested the “best range” criterion for all models, except for the
Gudmundssonmodel, for which no range could be defined forMGud.

2.5 Types of optimized model solutions

In addition to testing the six models individually, we also
examined linear combinations of these models. The strategy to
combine the models via model weight factors Wmodel is, for
example, used by the software REFIR for real-time prediction of
the MER (Dürig et al., 2018; Dioguardi et al., 2020). According to
this “mixing” strategy, the mass eruption rate is assessed by:

MERmix � ∑
model

Wmodel ·MERmodel (16)

where the sum of the six model weight factors is 1. The range of
predicted mass Mmix was computed with Eq. 12, analogue to the
procedure for individual models.

A Matlab® script (see Supplementary File S1) was applied that
iteratively computes Mmix for all possible combinations of model
weight factors with step size 0.01. In a second step, for the selected
matching criterion, the weight factor combinations with the highest
success rate S were found. In cases where several weight factor
solutions exist, we report the combination that i) involves the lowest
number of models and ii) prioritizes the simple plume models
(Wilson, Sparks, Mastin and, where applicable, Gudmundsson).
This prioritization is chosen to minimize the uncertainties that
result from combined model uncertainties and from the errors
introduced by the additional input parameters required for the
explicitly wind-affected models (Degruyter and Woodhouse).

We also examined if S can be further increased by “tailoring” the
choice of the model and/or model weight factors to the eruptive
conditions. For this purpose, we split the dataset introduced above as
“all” into smaller subsets, grouped by:

• Magmatic composition: “basalt”, “andesitic basalt”, “andesite”
and “dacite/rhyolite”;

• duration t: the events in the IVESPA database were classified
according to their duration into the bins “t<1 h”; “1 h≤t<3 h”;
“3 h≤t<12 h”; “12 h≤t<24 h”; “24 h≤t<72 h” and “t ≥72 h”;

• plume type: “buoyancy-dominated”, “intermediate” and
“wind-dominated”;

• eruptive style: “magmatic”, “phreatomagmatic”, “unknown”
and “phreatic”

• eruptive strength: using the MIVESPA-derived mass eruption
rate as grouping variable, together with the bins: “MER<104”;
“104≤MER<106”; “106≤MER<107”; “MER≥107”.

All grouping variables were provided by, or computed on the
basis of the IVESPA database (Aubry et al., 2021). As illustrated in
Figure 2, this results in the following types of model solutions for
optimized S:
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i. Optimal global model: representing the model that provides the
highest success rate for a tested dataset (“all”, “precise” and
“control”);

ii. Optimal situation-specific model: model with largest value for S
for a specific eruptive condition (e.g., for magmatic eruptions
with wind-dominated plumes);

iii. Optimal global mix: combination of model weight factors that
provides the largest S for a tested dataset (“all”, “precise” and
“control”);

iv. Optimal situation-specific mix: combination of model weight
factors that provides the highest success rate for a specific
eruptive conditions (e.g., for magmatic eruptions with wind-
dominated plumes).

3 Results

3.1 Global model comparisons using
individual plume models

The estimates resulting from all testedmodels are shown in Figure 3
for all tested data subsets. In Figure 3A, the modelled erupted mass is
plotted over the measured erupted mass MIVESPA for all 130 events
(dataset “all”). This includes cases with unknown MIVESPA errors, for

which a 50% uncertainty was assumed. An example of the uncertainties
on the observed and simulated total eruptedmass for theWilsonmodel
is shown as error bars in Figure 3B. Figures 3C,D are analogue to
Figure 3A, but they show themodel results for the data subsets “precise”
and “control”, respectively. The latter excludes events that were used for
the calibration of the modelsMastin and Sparks, while the former only
includes data points with known mass errors.

Table 1 presents the success rates S resulting from applying the
“best fit”matching criterion to the tested datasets. The values for S range
from 7.8% (uncorrected Degruytermodel with β = 0.5 and the “precise”
subset) to 39.1% (Mastinmodel with the “precise” subset). When using
the FMER definition of Eq. 15 for the “best fit” criterion, the success rates
for Sparks, Mastin, uncorrected Woodhouse, plume-height corrected
Woodhousewith β = 0.5 and plume-height correctedDegruyterwith β =
0.3 are higher than when using theCMER definition of Eq. 14. Using the
FMER definition when applying Mastin always leads to a significant
increase of S. This finding is in agreement with the optimal MER
prediction strategy reported for the different eruptive phases of
Eyjafjallajökul 2010 (Dürig et al., 2022) and is further supported by
similar results for Mastin with the data subsets “precise” and “control”,
where the use of FMER instead of CMER leads to an increase in S from
26.6% to 39.1% and from 28.6% to 30.5%, respectively.

The success rates S for the “best range” criterion are listed in
Table 2. Since the “best range” criterion is less strict than the “best

FIGURE 2
Tested types of optimized model solutions: (A) optimal global model is the model with the highest success rate, independent from the eruptive
conditions; (B) optimal situation-specific model is the most successful model under a specific eruptive condition. (C) optimal global mix is given by the
combination of model weight factors that result in the highest success rate for predicting all tested eruptive events. (D) optimal situation-specific mix is
the combination of model weight factors for which the success rate is the highest under specific eruptive conditions. A model or mix marked with a
laurel wreath illustrates the most successful solution.
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fit” criterion, the success rates are larger, ranging from 54.3%
(uncorrected Degruyter with β = 0.5 for dataset “control”) to
84.4% (plume-height corrected Degruyter with β = 0.3 for dataset
“precise”). This large variation in success rates demonstrates the
importance of applying plume-height corrections, when using the
Degruyter model. For both tested matching criteria, the highest
success rates are achieved, when a plume height correction is
applied, and a wind entrainment coefficient β = 0.3 is assumed.
This is in agreement with the findings of Dürig et al. (2023).

Also, the success rates of the other wind-affected plume model,
Woodhouse, are improved when using corrected plume heights
(Table 2). An important difference to the optimal correction for
the Degruyter model, however, is that Woodhouse (which does not
explicitly depend on β but is implicitly based on the assumption β =
0.9, i.e., for this model the variation of β only affects the top plume
height correction) yields higher success rates when using β = 0.5 for
the plume height correction with Eq. 10. These outcomes were
confirmed for all tested datasets andmatching criteria. For the rest of
this study, we therefore exclusively focus on model versions with

highest success rates, which are the plume height corrected models
Degruyter with β = 0.3 and Woodhouse with β = 0.5.

The optimal global model (Figure 2A) depends on the choice of the
matching criterion and partly on the tested dataset. When using the
“best fit” criterion, Mastin yields the highest success rates for all tested
datasets (accompanied by the other empirical 0D model Sparks for
dataset “control”). When applying the “best range” criterion,Mastin is
the optimal globalmodel for dataset “all” (S= 80.0%), but for the dataset
“precise”, Mastin is equally successful to plume-height corrected
Woodhouse with β = 0.5 (S = 82.8%), and even excelled by (plume-
height corrected) Degruyter with β = 0.3 (S = 84.4%). For dataset
“control”, the optimal global models are Mastin and (plume-height
corrected) Degruyter with β = 0.3 (S = 77.1%).

3.2 Situation-specific model comparisons

Table 3 shows the success rates of models tested for subsets of
the dataset “all” grouped by specified eruptive conditions. For

FIGURE 3
Test datasets used in this study: Modelled erupted mass Mmodel is plotted versus the total observed erupted massMIVESPA as reported by Aubry et al.
(2021). Modelled masses are based on the best FMER estimates. The Woodhouse and Degruyter model results were plume-height corrected, using β =
0.5 and β = 0.3, respectively. The red line indicates coordinates of perfect match between modelled and observed mass. (A) Dataset “all” includes all
reported IVESPA entries and assumes theMIVESPA error to be 50% for all cases of unknown uncertainties. (B)Wilsonmodel predictions vs.MIVESPA for
dataset “all”. The error bars show the wide ranges of uncertainties associated with the observations and model predictions. (C) Model predictions for
“precise” data, a subset of dataset “all” that only includes the events with complete information on the MIVESPA uncertainties. (D) Dataset “control” is
another subset of dataset “all”, where all events used for the calibration of the Mastin and Sparks models were excluded.
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example, when the eruptive events from the IVESPA database are
grouped by composition, we find that for basaltic eruptions the
optimal situation-specific plume model (i.e., the model with highest
S) is Mastin, whereas for eruptions producing andesitic basalts it is
Woodhouse. Both models also show the largest success rates in

predicting mass eruption rates of dacitic/rhyolitic eruptions. For
andesitic eruptions, the most successful plume models are Wilson,
Sparks, Mastin and Degruyter with success rates of 75.0%.

The success rates listed in Table 3 under “optimal selection”
for each group variable were obtained by selecting the optimal
situation-specific models and dividing the sum of the accurate
predictions by 130, which is the total number of events tested. For
example, when selecting Degruyter for wind-dominated plumes,
Wilson for intermediate plumes and Woodhouse for buoyancy-
dominated plumes, the success rate for this composition-specific
optimal model selection strategy is 81.5%, hence slightly higher
than the 80% of the global optimal model. Higher gains in S can
be achieved, if one of the other tested grouping variables is used
as discriminatory eruptive condition for selecting the optimal
model. The grouping variable with the highest success rates for
the optimal situation-specific model approach turns out to be
eruptive style, with a gain in S of 4.6%, compared to the optimal
global model predictions. The optimal style-specific models are
Woodhouse and Degruyter for magmatic or phreatomagmatic
eruptions, respectively, while it is Wilson for eruptions of
unknown style. For modelling phreatic eruptions, the success
rates appear to be independent from the choice of the model, but
the sample size of 5 is too low for any further general inference
from this result.

3.3 Optimal global mix solutions

In Table 4, model weight factors W are presented that lead,
with Eq. 16, to the highest success rates S for the tested datasets
and matching criteria. These weight factors characterize
solutions for the optimal global mix (see Figure 2C). For
example, for the dataset “all” with “best range” matching
criterion, a success rate of 82.3% is obtained for mixing the
models with WWilson = 0.20, WSparks = 0.20, WDegruyter = 0.15 and
WWoodhouse = 0.45. We note that in contrast to this particular case,
the solutions presented are generally not unique, which means
that a large numbers of different weight factor solutions can lead
to the same given maximum S. The number of solutions is listed
as Y in Table 4. For “best fit”, the number of equivalent optimal
global mix solutions Y ranges from 3 to 10, while for “best range”,
Y ranges from 1 to 97.

3.4 Optimal situation-specific mix solutions

Similar to the approach for the optimal situation-specific models
(Table 3), it was examined for which grouping variable an optimal
selection of weight factors would lead to the highest success rates.
Testing dataset “all”, we found that if we distinguish by eruptive style
and always select the optimal style-specific combination of weight
factors, this results in a success rate of 38.5% with the “best fit”
criterion and in 84.6% with the “best range” criterion. The latter
value is the same as found for the optimal selection of style-specific
models. In other words, within the analyzed step size of 0.01 no
weight factor combination was found that would further improve S
compared to the solutions listed for optimal style-specific model
selection in Table 3. For other grouping variables, however, the

TABLE 1 Success rates S of models tested for three data subsets (“all”,
“precise”, and “control”), when applying the “best fit” matching criterion.
Numbers in brackets represent the counts of “successful” predictions, using
the presented definition of the best MER estimatesMERbest. Entries marked by
an asterisk represent the highest success rates compared to those from other
models.

Dataset All All Precise Control

Total sample size N 130 130 64 105

Definition of MERbest CMER FMER FMER FMER

Wilson 26.9% (35) 24.6% (32) 26.6% (17) 24.8% (26)

Sparks 28.5% (37) 31.5% (41) 37.5% (24) 30.5%
(32)*

Mastin 30.0%
(39)*

33.1%
(43)*

39.1% (25)* 30.5%
(32)*

Gudmundsson 21.5% (28) 21.5% (28) 23.4% (15) 20.0% (21)

Woodhouse uncorr 21.5% (28) 22.3% (29) 21.9% (14) 21.0% (22)

Woodhouse (β=0.5) 23.8% (31) 25.4% (33) 29.7% (19) 24.8% (26)

Woodhouse (β=0.3) 22.3% (29) 24.6% (32) 26.6% (17) 23.8% (25)

Degruyter
uncorr. (β=0.5)

18.5% (24) 11.5% (15) 7.8% (5) 12.4% (13)

Degruyter
uncorr. (β=0.3)

23.1% (30) 18.5% (24) 18.8% (12) 15.2% (16)

Degruyter (β=0.5) 18.5% (30) 16.9% (22) 15.6% (10) 19.0% (20)

Degruyter (β=0.3) 23.1% (30) 24.6% (32) 25.0% (16) 22.9% (24)

TABLE 2 Success rates S of models tested for three datasets (“all”, “precise”,
and “control”), when applying the “best range” matching criterion. Numbers
in brackets represent the counts of “successful” predictions. Entries marked by
an asterisk represent the highest success rates compared to those from other
models.

Dataset All Precise Control

Total sample size N 130 64 105

Wilson 79.2% (103) 79.7% (51) 76.2% (80)

Sparks 78.5% (102) 79.7% (51) 76.2% (80)

Mastin 80.0% (104)* 82.8% (53) 77.1% (81)*

Woodhouse uncorr 71.5% (93) 73.4% (47) 68.6% (72)

Woodhouse (β=0.5) 79.2% (103) 82.8% (53) 76.2% (80)

Woodhouse (β=0.3) 78.5% (102) 79.7% (51) 75.2% (79)

Degruyter uncorr. (β=0.5) 56.2% (73) 57.8% (37) 54.3% (57)

Degruyter uncorr. (β=0.3) 70.0% (91) 76.6% (49) 70.5% (72)

Degruyter (β=0.5) 73.1% (95) 76.6% (49) 73.3% (77)

Degruyter (β=0.3) 76.9% (100) 84.4% (54)* 77.1% (81)*
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combination of various models can lead to higher success rates (all
solutions can be found in Supplementary Table S4).

When sorting the dataset by plume type, composition and
duration, we find with “best range” optimal situation-specific mix
solutions with success rates of 84.6%, 83.8% and 84.6%,

respectively. With 85.4%, the highest success rates are
obtained when sorting the dataset by eruptive strength,
leading to optimal MER-specific mix solutions. An example of
optimal composition-specific weight factor combinations is
presented in Table 5.

TABLE 3 Success rates S of plume models tested for N eruptive events from dataset “all” under the specified eruptive conditions. The “best range” matching
criterion was applied. Optimal situation-specific models with largest S are marked with an asterisk. The rightmost column shows the success rates for selecting the
optimal situation-specific model under the tested conditions. TheWoodhouse and Degruytermodels were computed with plume-height correction and with wind
entrainment coefficients β= 0.5 and β= 0.3, respectively.

Group variable Subset N Success rates S [%]

Wilson Sparks Mastin Woodhouse Degruyter Optimal selection

composition basalt 30 80.0 80.0 86.7* 76.7 83.3 82.3

andesitic basalt 68 76.5 75.0 73.5 77.9* 70.6

andesite 12 75.0* 75.0* 75.0* 66.7 75.0*

dacite/rhyolite 20 90.0 90.0 95.0* 95.0* 90.0

style magmatic 62 80.6 82.3 85.5 88.7* 77.4 84.6

phreatomagmatic 31 74.2 71.0 77.4 67.7 80.6*

unknown 32 84.4* 81.3 75.0 75.0 75.0

phreatic 5 60.0* 60.0* 60.0* 60.0* 60.0*

plume type wind-dominated 39 74.4 74.4 76.9* 71.8 76.9* 81.5

intermediate 71 81.7* 78.9 80.3 80.3 77.5

buoyancy-dominated 20 80.0 85.0 85.0 90.0* 75.0

duration <1 h 38 68.4* 65.8 65.8 65.8 55.3 83.8

1–3 h 22 81.8 81.8 81.8 81.8 86.4*

3–12 h 33 84.8 87.9 90.9* 87.9 81.8

12–24 h 10 80.0 80.0 90.0* 70.0 80.0

24–72 h 13 76.9 76.9 76.9 84.6* 84.6*

≥72 h 14 92.9 85.7 85.7 92.9 100.0*

strength (MER) <104 kg/s 12 75.0 75.0 83.3* 75.0 83.3* 83.8

104–106 kg/s 47 72.3 70.2 74.5 72.3 80.9*

106–107 kg/s 53 83.0* 83.0* 81.1 81.1 75.5

≥107 kg/s 18 88.9 88.9 88.9 94.4* 66.7

TABLE 4 Optimal global mix solutions: the presented model weight factors W are examples for solutions that result in the highest success rates for the given
datasets and matching criteria. The number of all possible optimal solutions found is denoted Y. FMER was used for the “best fit” criterion. The presented results
for the models Degruyter and Woodhouse are plume height corrected and used wind-entrainment coefficients of 0.3 and 0.5, respectively.

Dataset Matching criterion WWilson WSparks WMastin WDegruyter WWoodhouse S/% Y

all best fit 0 0.10 0.90 0 0 33.8 3

best range 0.20 0.20 0 0.15 0.45 82.3 1

precise best fit 0 0.10 0.90 0 0 40.6 10

best range 0 0 0.25 0.30 0.45 85.9 97

control best fit 0 0.10 0.90 0 0 32.4 3

best range 0.25 0 0 0.75 0 80.0 19
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4 Discussion

4.1 Statistical trends for optimized model
solutions

The maximum success rates for all tested model solutions, datasets
and matching criteria are presented in Figure 4. From the datasets
tested, the highest success rates for allmodel solution types are found for
the dataset labelled “precise”. The same observation is made for the
success rates of all models (see Tables 1, 2) or mix solutions (see

Table 4). Assuming an error of 50% for cases of unknown mass
uncertainty increases the sample size, but also introduces an
additional source of error, which explains the slightly lower success
rates for dataset “all”. The “control” data subset was specifically created
to remove any potential bias on the empirical models caused by using
the same datasets for testing as was used for calibration. When being
tested with the “control” subset for both matching criteria, Mastin
remains among the models with largest S. We therefore infer that
Mastin can be seen as the “optimal global model” without falling into
the trap of circular argumentation. If the aim is to obtain MER

TABLE 5 Optimal situation-specific mix solutions: examples for model weight factors W that result in the highest success rates S for dataset “all” and the given
eruptive conditions with “best range” matching criteria. The sample size of the subsets is labelled N, the number of possible optimal solutions is labelled Y.
Degruyter and Woodhouse used plume height corrections and wind-entrainment coefficients of 0.3 and 0.5 respectively.

Grouping variable Subset N WWilson WSparks WMastin WDegruyter WWoodhouse S (%) Y

strength (MER) <104 kg/s 12 0 0 1 0 0 83.3 8,474

104–106 kg/s 47 0 0 0 1 0 80.9 5

106–107 kg/s 53 0 0.65 0 0.1 0.25 86.8 36

≥107 kg/s 18 0 0 0 0 1 94.4 913

plume type wind-dominated 39 0.25 0 0 0.75 0 79.5 33

intermediate 71 0 0 0.35 0.35 0.3 85.9 12

buoyancy-dominated 20 0 0 0 0 1 90.0 912

FIGURE 4
Overview of resulting success rates S. In the upper panel, the success rates for all tested MER model solutions are presented for all tested datasets
andmatching criteria. The lower panel presents the increase in S towards the success rate of the optimal global model, if one of the othermodel solutions
is used instead.
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predictions without the requirement or knowledge of additional
eruptive conditions, applying the Mastin model is a reasonable
strategy. This approach is currently applied, e.g., at the London
VAAC (Beckett et al., 2020). Our findings are also complementary
to (and in good agreement with) findings from a recent study which
tested models with the IVESPA data and found empirical models to be
more accurate than more complex wind-affected models, including the
(in their case uncorrected) Degruytermodel (Aubry et al., 2023). While
the exact values for S depend on the test dataset used, the general trends
of S remain unaffected by the choice of the dataset.

The lower panel of Figure 4 displays the gains in S if optimized
model solutions other than the optimal global model is applied. For
example, with the “best range” matching criterion, S is increased by
1.2%–2.9% if, instead of simply using Mastin, an optimal
combination of models (such as given by Table 4) is globally
applied. The “best fit” matching criterion reveals similar gains in
S. It is worth noting that for this matching criterion the same weight
factor solutions are found for all tested datasets (Table 4): the highest
success rates are achieved by using a model combination of 90%
Mastin and 10% Sparks. By adding 10% of Sparks to the Mastin
model predictions, the success rates of the optimal global mix
slightly increased by 0.7%–1.9% (see also Table 1).

A further increase in S can be obtained by using situation-specific
model solutions. When applying the “best fit” matching criterion with
FMERs, the success rates of optimal situation-specific models range
from 16.7% (Wilson, Sparks, Mastin for MER < 104 kg/s) to 65.0%
(Sparks for buoyancy-dominated plumes). Mastin qualifies as the
optimal situation-specific model for 14 of 21 tested eruptive
conditions, Sparks for 6, Woodhouse for 4, and Gudmundsson and
Wilson each for 2. If the “best range”matching criterion is used instead
(see Table 3), bothMastin and Degruyter are optimal situation-specific
models for 8 of 21 tested eruptive conditions,Woodhouse for 6,Wilson
for 5, and Sparks for 2. The success rates range from 60% (for phreatic
eruptions) to 100% (Degruyter for eruptions with more than 72 h
duration). These findings demonstrate that when compared with each
other, the tested plume models should not be regarded as generally
“worse” or “better”, but rather as being more likely or less likely to
provide an accurate MER prediction under given eruptive conditions.

4.2 Examination of “best range” matches

The “best range”matching criterion is a rather lenient one, which is
in principle already fulfilled by the slightest overlap between measured
and modelled mass. The type of overlap can be further statistically
analyzed by distinguishing between three cases, which describes where
the modelled mass lies compared to the measured, see Figure 1 for
illustration. These are i) cases where themodelledmass is situated in the
lower sector of MIVESPA; ii) cases where modelled mass and MIVESPA

completely overlap; iii) cases where the modelled mass is situated in the
upper sector of theMIVESPA, and therefore is higher than the measured
range. The pie diagrams of Figure 5 are an example of such a statistical
analysis. The sum of presented success rates for the lower sectors
(green), upper sectors (dark blue) and for complete overlap (bright blue)
coincide with the success rates for the “best range” criterion for different
plume types, as presented in Table 3. For wind-affected plumes, the
“best range” success rates of Mastin and Degruyter coincide, but the
closer examination of Figure 5 reveals that thematches byDegruyter are

more frequently characterized by a complete overlap than for Mastin
(49% vs. 38%). Based on this result, it could be inferred that from the
two models, Degruyter might have a higher likelihood for successful
MER prediction for wind-affected plumes. We note, however, that a
large percentage of complete overlap is only meaningful for cases where
the error bars of the predictedMER are of comparable size toΔMIVESPA.
In cases where the model uncertainties are far larger, a high overlap is
not necessarily an indicator for preciseness and should therefore not be
over-interpretated.

4.3 Effect of wind on MER predictions

When comparing the success rates formatches with the lower sector
with those for matches with the upper sector, Mastin shows with 28%
versus 10% a clear prevalence for the former. This indicates a tendency to
underestimate the MER for wind-dominated plumes. The same bias is
also visible for intermediate plumes (21% vs. 8%) but vanishes for
buoyancy dominated plumes (15% vs. 15%). This dependency of
prediction quality on windspeed is a phenomenon for simple
empirical plume models that is well known from previous studies
(Bursik, 2001; Mastin, 2014; Dürig et al., 2022) and was the main
reason for the development of wind-affected plume models in the first
place (e.g., Bursik, 2001; Degruyter and Bonadonna, 2012; Devenish,
2013; Woodhouse et al., 2013; Mastin, 2014; de’Michieli Vitturi et al.,
2015; Folch et al., 2016). It is therefore an interesting side note that for
intermediate plumes, Wilson, the simplest (and oldest) of all tested
models, is the plume-type specific model with the highest success rates.
The complexities of modelling wind-affected plumes are reflected by the
fact that the success rates for wind-dominated plumes are significantly
lower than for buoyancy-dominated plumes (see Table 3; Figure 5).

4.4 Effect of magmatic composition on
model performance

The Gudmundsson model was developed to model the
2010 Eyjafjallajökull eruption, which produced basaltic andesites
(Gudmundsson et al., 2012). Surprisingly, for Gudmundsson the
“best fit” success rates for basaltic andesitic eruptions are the lowest
(16.2%), while it shows its highest success rates for dacites/rhyolites
(30%). This might indicate that the model scale factor kI is less
dependent on composition than on other parameters, such as wind
conditions and eruptive style.

The other two empirical models (Sparks andMastin) are trained on
datasets where basaltic eruptions are arguably underrepresented.
However, we do not observe any significantly lower success rates for
eruptive events of basaltic composition (Table 3). This finding speaks
against a significant influence of a compositional bias in the underlying
datasets.

4.5 Effect of eruptive style on MER
predictions

The optimal style-specific models found were Woodhouse for
magmatic and Degruyter for phreatomagmatic eruptions.
Phreatomagmatic eruptions are characterized by a much larger
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water content in the plume, which significantly changes the heat
capacity of the mixture (Sparks et al., 1997; Degruyter and
Bonadonna, 2012). Unlike magmatic eruptions, for which the
source of energy is provided by expanding gas, phreatomagmatic
eruptions are driven by explosive molten fuel-coolant interaction
(MFCI) (Zimanowski et al., 2015; White and Valentine, 2016).
MFCI is a thermohydraulic mechanism that converts the heat of
the magmatic melt into shock waves and mechanical stress, which
drives the fragmentation of the melt and leads to the generation of
ash particles (Dürig et al., 2012b; Dürig and Zimanowski, 2012;
Dürig et al., 2020). The energy expended for both vaporization of the
water and fragmentation of the melt results in a significant cooling of
the fragmented melt (Spitznagel et al., 2013; Moitra et al., 2020).
Consequently, the temperature of tephra in phreatomagmatic
plumes is expected to be considerably lower than for ash
columns resulting from magmatic explosions. Another important
difference between phreatomagmatic and magmatic eruptions is the
abundance of fine “interactive” ash particles in phreatomagmatic
plumes that together with agglomeration effects, particle aggregation
processes and the presence of fragmented host rock lead to
differences in grain size distributions and the plume’s bulk
density (Zimanowski et al., 2003; Dürig et al., 2012a; Dürig et al.,
2020; Andrews et al., 2014; White and Valentine, 2016). All these
factors influence the plume dynamics, which might not only explain
why the models’ S are so different for both plume types, but also why
the success rates for magmatic eruptions are generally higher (with a
maximum “best range” S of 88.7%, see Table 3) than for the more
varied phreatomagmatic eruptions (with a maximum S of 80.6%).

The results in Table 3 also show that a correct identification of
the eruptive condition is crucial for an effective use of the situation-

specific model strategies, because a misclassification would lead to
significantly lower success rates. For example, let’s assume that a
phreatomagmatic eruption is wrongly identified as magmatic. If the
optimal style-specific model for magmatic eruptions (Woodhouse) is
applied to phreatomagmatic eruptions, the success rates are not as
expected (88.7%) but only 67.7%, which is lower than for any other
of the tested models. Conversely, Degruyter has, with 77.4%, the
lowest success rates of all models for magmatic eruptions. In both
cases, the optimal global model (Mastin) yields higher success rates,
which means that the situation-specific modelling strategy was not
helpful, but in fact harmful for optimizing the forecast quality. This
phenomenon is observed for all of the other grouping variables and
datasets tested. We therefore conclude that the strategies of optimal
situation-specific model (or optimal situation-specific mix)
solutions should only be applied if the eruptive condition used
for tailoring the modelling strategy is well known. Otherwise, it is
highly recommended to fall back on the optimal global mix or
optimal global model, which are both easier and more accurate than
the situation-specific solutions.

4.6 Suggested quality optimization strategy
for MER forecast

The only situation-specific mix solutions that have shown to be
more successful than the optimal eruptive style-specific model
solution are the MER-specific solutions (see example in Table 5).
Using the MER for the decision of choosing the weight factors is,
however, not expected to always be a very practical procedure, given
thatMER is the unknown parameter which we aim to simulate with

FIGURE 5
Overlap between measured total erupted mass MIVESPA and modelled mass for different plume types.
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the models. The only viable way for theMER-specific mix strategy to
succeed is by applying an iterative procedure. Based on these
considerations, we designed the procedure displayed in the flow
chart in Figure 6 to forecast the MER in a real-time plume
monitoring scenario with highest accuracy. First it is checked if
meteorological data (required for the wind-affected plume models
Woodhouse and Degruyter) are available. If this is not the case, we
suggest using the optimal global model for MER forecast
(i.e., Mastin). If meteorological data are available, in a next step
the MER category of the current eruption is classified based on a
preliminary MER estimated with the optimal global mix (Table 4).

Examples for eruptions of unambiguous strengths are eruptions
with a MER << 104 kg/s, MER >>107 kg/s or not significantly wind-
affected eruptions with a mass eruption rate that is well limited
within 104 kg/s and 106 kg/s. Based on the MER classification, the
appropriate weight factors should be selected according to Table 5.
Interestingly, for eruptions with MER <104 kg/s, Mastin has shown
to be the optimal model, despite the fact that such weak eruptions
were underrepresented in the dataset underlying this model (Mastin
et al., 2009; Mastin, 2014). When it is not possible to constrain the
category of eruptive strength with sufficient certainty, it is better to
choose another grouping variable, despite the slightly lower success
rates.

The optimal situation-specific mix solutions grouped by plume
type, eruptive style and duration all have identical success rates of 84.6%
(Supplementary Table S4). From these parameters, duration is
realistically the least practical one for real-time monitoring purposes,
due to its low predictability. Since a plume-type classification has to be
conducted anyway to apply the necessary plume height corrections for
the wind-affected plume models, we suggest using optimal situation-
specific mix solutions tailored for plume-types. Suitable model weight
factor settings are presented in Table 5.

4.7 IVESPA dataset uncertainties

The plume heights used for this study are taken from the
IVESPA database, which were acquired by a multitude of
different methods, including visual observations and
measurements with radar, lidar or satellites (Aubry et al.,
2021). This bears a potential of errors, since it has been
shown that the MER prediction quality is dependent on the
method of plume height source (Aubry et al., 2023). Future
studies could therefore focus on subsets of dataset “all” that
only contain events with known plume heights from one
measurement technique. A similar approach was followed, for
example, in recent studies on Eyjafjallajökull 2010 (Dürig et al.,
2022) and Etna (Mereu et al., 2023). As demonstrated for the
2010 Eyjafjallajökull eruption, the temporal resolution of the
plume height average has a significant impact on the outcome of
the modelled MER (Dürig et al., 2022). All plume height values
from IVESPA are averaged over the total duration of the
eruptions, a parameter which itself varies considerably. While
a single average value for plume height can be sufficient to
constrain a rather short-lived event of, for example, less than
6 h duration, it is less useful for quantifying the strengths of long-
lived eruptions that feature changing source and atmospheric
conditions. The fact that we found different results for different
durations reflects this effect.

The weather data from IVESPA used in our study are based on
ERA5, which is probably the best global product available, but due to
effect of necessary interpolation from grid points of the global model
to the location of the volcano, there can be significant errors in, e.g.,
windspeed. However, it is expected that this error is small in
comparison to the larger uncertainties introduced from plume
height and duration.

FIGURE 6
Decision tree to select the optimal MER modelling strategy. Values in square brackets indicate the success rates found with dataset “all” and “best
range” matching criterion. The optimal choice of the modelling approach depends on the availability and quality of real-time information.
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4.8 Outlier events

Seven out of the 130 eruptive events from dataset “all” were
identified as “outlier events” (see Supplementary Table S5). These
are events for which the simulated mass never meets the “best range”
matching criterion with the range of the measured erupted mass
(MIVESPA), regardless of the type of optimized model solutions. All
identified events are also part of the “precise” data subset.

In the following, the outlier events are listed and potential
aggravating factors and circumstances are discussed that might
have complicated the predictability of these outlier events:

(i) Redoubt Alaska 1989 December 19: this was a very short-lived
phreatomagmatic eruption, which lasted only 9 min (Miller and
Chouet, 1994). All tested models tested assume a steady plume,
which is fed by a stream of ash and gas with a constant MER
(Morton et al., 1956; Sparks et al., 1997). This assumption is not
suitable for eruptions of very short duration (for example, when
the ascent time of the ash column is in the same order of
magnitude as the total duration of the eruption), or for
pulsatile behavior with sufficiently long repose times (Dürig
et al., 2015b). Therefore, all models underestimate the MER.

(ii) Soufrière Hills Montserrat 1997 September 26: this magmatic
eruption lasted 60 min and was therefore also short-lived
(Bonadonna and Costa, 2012). We suggest that the steady-state
condition is not achieved andmight be themain reason why none
of the tested model solutions correctly predict the MER.

(iii) Merapi Indonesia 2010 November 4: this magmatic eruption
lasted 36 h. It started with a climactic explosion, followed by
intermittent explosions and featured source conditions of varied
eruptive activity. An additional complicating circumstance was
the observed occurrence of syn-eruptive pyroclastic flows that
might have contributed to the rising dynamics of the eruption
column (all information from: Surono et al., 2012). It is
comprehensible that using only one value (the plume height
averaged over the 36 h time interval) to describe the source
conditions of this complex sequence of events is probably too
simplistic to be able to accurately estimate the MER.

(iv) Eyjafjallajökull Iceland 2010April 14–16: The first explosive phase
of this eruption was driven by phreatomagmatic explosions and
lasted 72 h (Dellino et al., 2012). All tested model solutions tested
underestimate the eruptedmass. It could be argued that the values
given in the IVESPA database for MIVESPA (Aubry et al., 2021)
might be too high: the total eruptedmass reported in IVESPA also
includes the tephra transported by jökulhaups. If, however, only
the airborne tephra is considered, MIVESPA reduces from
1.3·1011 kg to 9.8·1010 kg (Table 1 in Gudmundsson et al.,
2012), which matches all tested optimal situation-specific
model solutions. This indicates that the water transported ash
did not contribute to the formation of the plume, because it was
trapped in the overlying glacier ice. We note that the lower value
was also used as measured erupted mass in recent case studies on
Eyjafjallajökull 2010 to investigate the effect of timing and wind
on simple plume models (Dürig et al., 2022) and to examine
plume height correction strategies for wind-affected plume
models (Dürig et al., 2023).

(v) Cotopaxi Ecuador 2015, first phase: this phreatic event is with a
(deposit-computed) MER of 3.1·103 kg/s (Bernard et al., 2016)

within the lowest 10th percentile in terms of eruptive strength
when compared to all events listed in IVESPA. The
combination of eruptive style and the fact that it classifies
as a very weak eruption might explain why all tested model
solutions overestimate the total erupted mass.

(vi) Etna Italy 2016 May 21: based on fallout measurements, this
eruption was an extremely weak eruption with a MER of only
0.7·103 kg/s, which puts this event in the lowest 5th percentile of all
eruptions listed in IVESPA in terms of eruptive strength. The
eruption took place at very windy conditions, with recorded
windspeeds of 23.3 m/s on average. Furthermore, syn-eruptive
lava flows and lava fountains were reported (all information from:
Edwards et al., 2018). It is known that empirical plume models
tend to underestimate the MER from wind-affected plumes
(Bursik, 2001; Mastin, 2014; Dürig et al., 2022). We would
therefore expect that modelling the MER of this eruption
would struggle with an underestimation bias. However, we
observe the opposite: all model solutions systematically
overestimate the total erupted mass. We therefore infer that
the syn-eruptive lava flows and lava fountains, which are
probably not controlled by the same fragmentation processes
and physics of brittle magma fragmentation observed in explosive
volcanism (La Spina et al., 2021), might have played a significant
role in contributing to the total heat budget that drove the ash
plume in a sort of “hotplate effect”.

(vii) Chaitén Chile 2008 alpha layer: this rhyolitic eruptive event
took place under very variable wind intensities and with
relatively large average windspeeds of 16.2 m/s (Folch et al.,
2008). The plume was issued from two vents, featuring a plume
height of initially over 20 km, later dropping to 11–17 km
(Folch et al., 2008; Major and Lara, 2013). The combination of
the large variability in wind intensity and plume height, and
the unusual dual vent configuration, might explain why it is so
challenging to model this eruptive event.

4.9 Plume height as proxy for MER

The six models examined in this study have the advantage
that they use with plume height h as main input parameter, which
is relatively easy to obtain, despite the important limitation that
the value can be dependent on the method of measurement itself
(Dürig et al., 2022; Aubry et al., 2023). Relatively small errors in
h, however, result in considerable uncertainties in MER, often
covering one or more orders of magnitude (see Figure 3), due to
the exponential relationship between MER and h. Applying the
discussed strategies of mixing different plume height-based
models cannot compensate for this effect, because it is
intrinsic to all models tested.

Approaches for real-time MER forecast that do not use plume-
height exist, but they require i) more sophisticated instruments and ii)
knowledge of additional parameters that are often difficult to acquire.
For example, MER prediction by infra-sound requires detailed
information on the vent geometry (Johnson and Ripepe, 2011;
Ripepe et al., 2013), without which the uncertainties are considerable
(Dürig et al., 2015b). Other methods, like electric field measurements
are still in development and need further calibration and testing under
different eruptive conditions (Büttner et al., 2000; Calvari et al., 2012).
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If instruments and necessary input data are available, the most
promising strategy to better constrain theMER is to combine several
independent prediction methods (e.g., estimates from infra-sound
with the presented plume-height based 0D model forecasts).

5 Conclusion

In the present study we empirically examined the prediction
accuracy of MER modelling strategies that are based on six plume
models. Using three different subsets of the IVESPA database (Aubry
et al., 2021), which contains independently obtained eruption source
parameters of up to 130 eruptive events, we introduced two different
matching criteria and tested for each case if the total erupted mass
derived from fallout measurements fits the predicted erupted mass. The
counts of matching predictions were summarized and referred to the
number of compared events, resulting in percentage success rates S.
Under the hypothesis that the likelihood of accurately predicting the
MER of a future eruptive event is mirrored by the success rates, we
present ways to optimize the discussed modelling strategies. It was
shown that computing FMER (Eq. (15)) instead of using the averaged
plume heights leads to higher success rates with the “best fit”matching
criterion. The success rates of wind-affected plume models are
significantly increased if a plume height correction according to Eq.
10 is applied. For the Degruyter model (Degruyter and Bonadonna,
2012) success rates were significantly higher when using a wind
entrainment rate β of 0.3. The Woodhouse model (Woodhouse
et al., 2013), however, shows higher success rates for β= 0.5.

According to our results, the expected accuracy of the modelling
strategy depends on the amount (and quality) of volcanological,
geological, geochemical and meteorological information that is
available for the monitored eruption. If no real-time information
other than plume height is available from the tested models, we
suggest choosing the Mastin model (Mastin et al., 2009), as it has
shown the highest success rates.

It was shown that instead of simply relying on the application of
one plume model for all situations, the accuracy of real-time MER
forecast could be further increased by a situation-specific selection of
plume models or/and by mixing the different models by means of
model weight factors. Based on these considerations, we introduce a
decision tree that is designed to advice stake holders in their choice
of the optimal modelling strategy (see Figure 6), when monitoring
an eruption in real-time, e.g., with the monitoring software REFIR
(Dürig et al., 2018; Dioguardi et al., 2020).
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