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In regions of the world where topography varies significantly with distance,
most global climate models (GCMs) have spatial resolutions that are too
coarse to accurately simulate key meteorological variables that are influenced
by topography, such as clouds, precipitation, and surface temperatures. One
approach to tackle this challenge is to run climate models of sufficiently
high resolution in those topographically complex regions such as the North
American Regionally Refined Model (NARRM) subset of the Department of
Energy’s (DOE) Energy Exascale Earth System Model version 2 (E3SM v2).
Although high-resolution simulations are expected to provide unprecedented
details of atmospheric processes, running models at such high resolutions
remains computationally expensive compared to lower-resolution models such
as the E3SM Low Resolution (LR). Moreover, because regionally refined and high-
resolution GCMs are relatively new, there are a limited number of observational
datasets and frameworks available for evaluating climate models with regionally
varying spatial resolutions. As such, we developed a new framework to quantify
the added value of high spatial resolution in simulating precipitation over the
contiguous United States (CONUS). To determine its viability, we applied the
framework to two model simulations and an observational dataset. We first
remapped all the data into Hierarchical Equal-Area Iso-Latitude Pixelization
(HEALPix) pixels. HEALPix offers several mathematical properties that enable
seamless evaluation of climate models across different spatial resolutions
including its equal-area and partitioning properties. The remapped HEALPix-
based data are used to show how the spatial variability of both observed and
simulated precipitation changes with resolution increases. This study provides
valuable insights into the requirements for achieving accurate simulations of
precipitation patterns over the CONUS. It highlights the importance of allocating
sufficient computational resources to run climate models at higher temporal
and spatial resolutions to capture spatial patterns effectively. Furthermore, the
study demonstrates the effectiveness of the HEALPix framework in evaluating
precipitation simulations across different spatial resolutions. This framework
offers a viable approach for comparing observed and simulated data when
dealing with datasets of varying spatial resolutions. By employing this framework,
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researchers can extend its usage to other climate variables, datasets, and
disciplines that require comparing datasets with different spatial resolutions.

KEYWORDS

high resolution, HEALPix, model evaluation, model, framework, precipitation,
computational cost

1 Introduction

Climate models serve as the fundamental technology enabling
scientists to make predictions about future changes in Earth’s
climate. Currently, many different types of models exist, including
global climate models (GCMs), regional climate models (RCMs),
and regionally refined models (RRMs). These models generate
distinct simulations of the same planet and its climate. In particular,
RRMs generate simulations at a finer spatial resolution over a
specific region than the resolution for the rest of the globe
(Randall et al., 2007; Ringler et al., 2008). There are several benefits
to increasing the spatial resolution of climate models, the primary of
which is being able to resolve and more accurately simulate smaller-
scale processes such as convection and precipitation (Roberts et al.,
2018). However, computational costs increase exponentially as
model resolution increases. In particular, betweenRRMs andGCMs,
it is currently unknown whether the benefits associated with
higher model resolution outweigh the corresponding increases in
computational power.

Increasing the resolution in climate models is absolutely
necessary to accurately simulate the climate in some locations,
however. Some regions of the world exhibit drastically more
complex topography. These topographically complex regions
often experience notable changes in weather and climates over
short distances. Changes in topography are strongly correlated
with variations in seasonality and key meteorological variables,
including clouds, precipitation, and surface temperatures. In
particular, precipitation is subject to topographical influences
as there are orographic processes that can significantly increase
the precipitation amounts on the windward sides of mountain
ranges (and, conversely, decrease precipitation amounts on the
leeward sides) (Minder and Roe, 2009). As a result, climate
models may struggle to accurately reproduce these key variables
such as precipitation in these topographically complex regions
unless their spatial resolution is sufficiently high (Randall et al.,
2007).

Most climate models with low resolution address that issue in
topographically complex regions by employing parameterizations
and downscaling techniques. For instance, simulating orographic
precipitation can be achieved by employing a subgrid
parameterization of surface elevation to appropriately enhance
precipitation amounts on the windward sides of mountain ranges
(Leung and Ghan, 1995). These techniques enable more accurate
simulations of certain atmospheric processes while maintaining
computational efficiency. However, many parameterization
techniques fail to adequately resolve the inaccuracies inherent in
climate model simulations with low spatial resolutions. Conversely,
there are significant benefits of climate simulations at higher spatial
resolutions, primarily in their improved ability to resolve complex

topography (Palmer, 2014; Bador et al., 2020; Gutowski et al., 2020;
Iles et al., 2020; Kim et al., 2022).

Recently, several GCMs have been developed with sufficiently
high resolution.While high-resolution climatemodels providemore
detailed information about Earth and its atmospheric processes,
producing global simulations at such high spatial resolutions
(e.g., 3 km or higher) remains infeasible due to the substantial
computational costs associated with running, storing, and analyzing
the massive output (Lupo et al., 2013). Additionally, because RRMs
are relatively new, little prior analysis has been conducted to
demonstrate the value added by regionally high spatial resolution
in RRMs. As a result, it is currently unknown whether the
benefits of high resolution in RRMs outweigh the increased
computational costs they entail (Fu and Lee, 2022). Furthermore,
there are very few frameworks available for the quantitative
evaluation of the benefits of high-resolution models (Fu and Lee,
2022).

Recognizing the need, the primary scientific goal of this study
is to develop a cross-disciplinary framework for quantifying the
advantages of regionally high spatial resolutions in RRMs. The
following sections outlines the development of the framework
and its application to precipitation simulations. We compared
the simulations of precipitation in GCMs, RRMs, and NASA’s
satellite observations. The comparison results are used to justify
the preference of RRMs (higher resolution) over GCMs (lower
resolution). While this study does not aim to specifically compare
precipitation simulations between models and observations
per se, precipitation is a relatively straightforward variable to
understand and compare across datasets of varying spatial and
temporal resolution compared to other climate variables. As such,
precipitation observations and simulations are chosen to evaluate
the framework of focus in this study.

2 Data and methods

2.1 Raw data

There were three primary datasets used in this study. Two are
from climate model runs, and the other is from NASA satellite
observational data.Theobservational dataset used in this study is the
NASAGlobal PrecipitationMeasurements IntegratedMulti-Satellite
Retrievals (GPM IMERG). Further details about the satellites and
precipitation retrieval process can be found in Bolvin (2020). The
GPM IMERG Final Run data were used in this study, and the data
have a spatial resolution of 0.1° globally, or roughly 11 km. This
resolution is higher than that of the data in both model runs. Only
the total precipitation rate data (precipitationCal) are used for this
study.The units of this variable are in millimeters per hour (mm/h).
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FIGURE 1
The E3SM v2 North American RRM grids reproduced from Figure 1b of
Tang et al. (2023).

FIGURE 2
The HEALPix regridding/partitioning process (Górski et al., 2005).

The primary climate model simulations used in this study are
from the Energy Exascale Earth System Model (E3SM) Version 2.
Details about this model and its data can be found in Golaz et al.
(2022), and only a brief overview is provided here. The low
resolution (LR) and North American Regionally Refined Model
(NARRM) runs from E3SM are used (Tang et al., 2023).

Both low resolution (LR) and North American Regionally
Refined Model (NARRM) simulations from E3SM were used in the
current study. While both datasets are based on output from the
same E3SM, for the purposes of this study, the LR run is considered a
GCM as it has a spatial resolution of approximately 100 km globally.
Similarly, the NARRM run is considered an RRM as it has a spatial
resolution of approximately 25 km, covering a significant portion of
North America as shown in Figure 1, with 100 km spacing between
grid points elsewhere. It should be noted that because some cloud
parameterizations in E3SM suffer from poor scale-awareness, the
NARRM adopts the hybrid timestep approach, i.e., a combination of
low-resolution physics timesteps and the high-resolution dynamics
timesteps, for the atmosphere model to achieve reasonable global
climate for CMIP6 production simulations (Tang et al., 2023). Such

TABLE 1 HEALPix pixel information with levels and associated spatial
resolution.

HEALPix pixel information

Res NSide NPixels Mean Spacing (deg) Area (sterad)

0 1 12 58.6323 1.0471976E0

1 2 48 29.3162 2.6179939E-1

2 4 192 14.6581 6.5449847E-2

3 8 768 7.3290 1.6362462E-2

4 16 3,072 3.6645 4.0906154E-3

5 32 12,288 1.8323 1.0226539E-3

6 64 49,152 0.9161 2.5566346E-4

7 128 196,608 0.4581 6.3915866E-5

8 256 786,432 0.2290 1.5978967E-5

9 512 3,145,728 0.1145 3.9947416E-6

10 1,024 12,582,912 0.0573 9.9868541E-7

Note that Res = level for the purposes of this study.

choice should be taken into account when interpreting NARRM
results relative to the LR counterpart. In these datasets, only the
convective precipitation rate (PRECC) and stable precipitation rate
(PRECL) data are used. The sum of PRECC and PRECL yields the
total precipitation rate (PRECT). The units of these precipitation
variables are all in millimeters per hour (mm/h).

All three datasets were analyzed at three temporal scales:
monthly, daily, and 3-hourly. Although the data are available for
several years between 2000 and 2020, only the year 2014 is chosen
as a representative year for the evaluation using the inter-resolution
framework.The analyzed simulated and observed data amounted to
approximately 233 gigabytes.

In addition to climate model datasets, elevation data from
the Joint Institute for the Study of the Atmosphere and Ocean
(JISAO) were used. These elevation data primarily served to assess
the topographical complexity of various regions within CONUS
(Mitchell, 2014).

This analysis focuses on the precipitation of the continental
United States (CONUS), which encompasses the region between
−130° and −60° longitude and 20°–60° latitude.

2.2 HEALPix

Due to the significant disparities in spatial resolutions among the
three datasets, quantitative comparisons necessitate the regridding
of the data to common resolution and pixels. As the E3SM
RRM run contains irregularly spaced grid points in part of
its simulations, a specific regridding process is necessary for
this study. Consequently, the datasets are remapped onto the
Hierarchical Equal-Area isoLatitude Pixelization (HEALPix) pixels
at the respective spatial resolutions (Górski et al., 2005). HEALPix
is a rearrangement of spherical model data that essentially simplifies
the comparisons between models and observations of different
spatial resolutions. The details of the mathematics behind how the
data are rearranged and interpolated are outlined in Górski et al.
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FIGURE 3
Regionally-Averaged Standard Deviation in Elevation over CONUS regions. This is a measure of topographical complexity.

(2005). This pixelization has been used in several cosmology and
engineering studies such as Gao et al. (2019), Krachmalnicoff and
Tomasi (2019), and Fernique et al. (2015). However, HEALPix has
largely remained unused in atmospheric science and climate studies
despite the fact that the pixelization is designed for spherical
mediums such as Earth’s atmosphere.

HEALPix possesses several important properties that are
pertinent to this research. Firstly, at any given spatial resolution,
all pixels have equal areas (Górski et al., 2005). This characteristic
mitigates the problem of spherical distortion encountered in
Cartesian grids. Secondly, the conversion between different
spatial resolutions in HEALPix merely entails a straightforward
partitioning of pixels of lower-resolution pixels to form four nested
pixels with higher resolution (Fu and Lee, 2022). The partitioning
process preserves the geometric similarity of the grid points as
illustrated in Figure 2. These two properties of HEALPix greatly
simplify the comparison process among all remapped datasets.
Once the data is in the HEALPix arrangement, it can be regridded
to lower resolutions, as needed, using the aforementioned partition
averaging process. Table 1 provides an overview of the HEALPix
levels and the associated spatial resolutions (Górski et al., 2005).

These properties of the HEALPix remapping make it the
preferred framework compared to other remapping techniques
used in other RCM studies. For example, Kalognomou et al. (2013)
uses a bilinear interpolation remapping method, and Eum et al.
(2011) uses a distance-based weighted average remapping method.
These methods have simple calculations when using Cartesian-
based grids on a sphere (as is the case for the models used in those
studies). However, the calculations for remapping become rather
complex when applied to the E3SM grid due to its nonuniform
spacing as seen in Figure 1. As such, using HEALPix greatly
simplifies the remapping process for models with irregularly-
spaced non-Cartesian grids. Furthermore, because the previously-
defined CONUS region has a relatively large meridional extent,

any remapping techniques used have to account for the reduced
surface area of grid points that are more poleward when computing
overall statistics. The equal-area property of HEALPix simplifies
this calculation and further justifies its use over other remapping
frameworks.

In the HEALPix arrangement, the LR, NARRM, and GPM
IMERG datasets have spatial resolutions of 203 km, 51 km, and
13 km, respectively. These are coarser spatial resolutions than those
of the original data, but the reduction is necessary to allow for the
appropriate comparisons between each of the datasets.

2.3 Metrics

Before discussing the metrics, it is important to address
the topographical complexity of CONUS. This study defines
topographical complexity by the spatial variance/standard deviation
of the elevation, and a more topographically complex region will
have a higher spatial variance in elevation.

There are several key climate model metrics analyzed in this
study, each with a different purpose for analysis. The first metric
is the bias in regionally averaged precipitation. This was chosen to
evaluate the precipitation simulations in the regions with varying
topographical complexity. In the current study, the CONUS was
divided into seven different regions as defined in the United States
National Climate Assessment: the Northwest (NW), Southwest
(SW), Northern Great Plains (GPN), Southern Great Plains (GPS),
Southeast (SE), Northeast (NE), and Midwest (MW) (USGCRP,
2018).The topographical complexity of each region, as well as which
states the regions encompass, are shown in Figure 3. The spatially
averaged precipitation values were calculated for each region, across
the three temporal scales, and for each of the original dataset within
the entire year of 2014. The HEALPix remapping was not used
during the calculation of bias in regionally averaged precipitation.
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FIGURE 4
Regionally averaged precipitation rates (3-hourly temporal scale).

Next, we analyze the distribution of precipitation rates using
the Kolmogorov-Smirnov (KS) test at the 99% confidence level on
the cumulative distribution functions (CDF). Each pair of datasets
(LR vs. NARRM, LR vs. IMERG, NARRM vs. IMERG) is compared
to obtain the KS test statistics. These statistics determine the
similarity of the precipitation rate distributions across datasets, and
also assess the presence of biases in the distributions of LR- and

TABLE 2 Kolmogorov-Smirnov test statistic values between precipitation
distributions.

Kolmogorov-Smirnov test statistics

Temporal
resolution

LR vs.
NARRM

LR vs.
IMERG

NARRM vs.
IMERG

Monthly 0.24 0.51 0.28

Daily 0.26 0.56 0.3

3-hourly 0.36 0.69 0.33

TABLE 3 Kolmogorov-Smirnov test p-values between precipitation
distributions.

Kolmogorov-Smirnov test p-values

Temporal
resolution

LR vs.
NARRM

LR vs.
IMERG

NARRM vs.
IMERG

Monthly 2.96E-5 4.74E-24 4.61E-7

Daily 2.38E-6 3.19E-29 2.41E-8

3-hourly 1.39E-11 4.79E-45 4.87E-10

NARRM-simulated precipitation. For this metric, the frequencies of
precipitation rate values are calculated using the raw precipitation
data across the entire spatial domain of CONUS and the temporal
domain of year 2014. Since the data are discrete, Gaussian kernel
density estimates are used to approximate the CDFs. HEALPix
remapping was not implemented for these two metrics as the
analysis of the raw precipitation data is necessary to assess the effects
of predicted precipitation bias.

Furthermore, we assess how the spatial variance in precipitation
changes with different HEALPix resolution levels. The purpose of
this metric is to highlight the extent to which spatial variability
of precipitation increases as spatial resolution improves. The
HEALPix-remapped data for all three datasets are regridded to each
of the coarser HEALPix spatial resolution levels. At each HEALPix
level, the spatial variance of precipitation is calculated over the
CONUS domain. This process is repeated for the seven regions to
assess any regional differences or topographical effects.

From there, we compare the HEALPix resolution levels to the
relative change in spatial variance of precipitation. This metric
offers insight into the value of higher-resolution climate simulations.
Mathematically, it is calculated by taking the spatial variance
in precipitation at each HEALPix spatial resolution level and
computing the difference in variance values between a given
HEALPix level and the previous level. The difference values are
then divided by the variance value of the previous HEALPix level.
The resulting proportions represent the relative percent decrease in
spatial variance of precipitation between a given HEALPix level and
the previous level. This process is repeated for the seven regions.

Lastly, we assess the differences in spatial variance of
precipitation between model simulations and observations. This
metric directly evaluates the performance of the precipitation
simulations compared to observations. Mathematically, it is
calculated by dividing the spatial variance in precipitation
of both E3SM remapped datasets by the spatial variance in
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FIGURE 5
(A) Probability distribution function of total precipitation rates (3-hourly temporal scale). (B) Cumulative distribution function of total precipitation rates
(3-hourly temporal scale).

FIGURE 6
CONUS spatial variance of total precipitation rates vs. spatial resolution.
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FIGURE 7
CONUS relative % change in spatial variance of total precipitation rates vs. spatial resolution.

precipitation of the GPM IMERG remapped dataset. The
resulting proportions indicate the percentages of observed spatial
variance of precipitation explained by E3SM simulations. This
is performed over the whole CONUS domain and the seven
regions.

It should be noted that the temporal domain of 2014 is
not identical between the model run data and the observational
data; The E3SM simulations for the year 2014 do not precisely
replicate the observed precipitation conditions for a given temporal
instant in that year. As such, the raw spatial precipitation rate
maps at specific temporal moments will appear significantly
different between E3SM runs and GPM IMERG. However, it
is worth mentioning that all of the aforementioned metrics
involve some form of temporal averaging in some way, and the
metrics primarily focus on the climatological aspects of CONUS
precipitation. Therefore, it is acceptable to make comparisons
between E3SM and GPM IMERG despite the disparity in temporal
alignment.

3 Results

3.1 Regionally averaged precipitation

The results of Regionally Averaged Precipitation, shown in
Figure 4, exhibit regional variations. In the NW, SW, and GPN
regions, both E3SM simulations show that the spatiotemporal
mean precipitation rates are 1 and 2 times higher than those
of GPM IMERG. Conversely, in the SE region, spatiotemporal
mean precipitation rates in both E3SM runs are approximately
70%–90% of the GPM IMERG precipitation rate. For the NE,
MW, and GPS regions, both E3SM simulations capture the
spatial-temporally averaged precipitation well, with differences
between simulated and observed precipitation rates not exceeding
20%.

3.2 Kolmogorov-Smirnov test on
precipitation rate distribution

The results of the KS tests are presented in Table 2. Notably,
for all temporal resolutions, the test statistics values are lower
for E3SM NARRM vs. GPM IMERG compared to E3SM LR vs.
GPM IMERG. This indicates that E3SM NARRM captures the
observed precipitation rate distribution more accurately than E3SM
LR. This result is not surprising considering the inherent resolution
differences between the two model runs. It should be noted that all
KS test statistics are significant at the 99% confidence level, and the
corresponding p-values are provided in Table 3.

For reference, the probability distribution function (PDF) and
cumulative distribution function (CDF) of all datasets are shown
in Figure 5. Two additional results are worth highlighting. Firstly,
as shown in the PDFs, E3SM LR simulates a significantly lower
frequency of higher precipitation rates than E3SM NARRM does,
and E3SM NARRM also exhibits lower frequencies of higher
precipitation rates than GPM IMERG. This result is expected given
that the difference in spatial resolution, with GPM IMERG having
the highest and E3SM LR having the lowest resolution among the
three datasets. This pattern holds true at the monthly, daily, and 3-
hourly scales. Additionally, increasing the temporal resolution leads
to an overall increase in the frequency of all precipitation rates,
regardless of the dataset.

The second additional result involves the CDFs of the three
datasets. Specifically, at lower precipitation rates, the CDF values in
both E3SM datasets are lower than those of GPM IMERG, before
converging closer to each other at high precipitation rates. This
indicates that the E3SM runs simulate a higher proportion of lower
precipitation rates compared to observations. Again, the pattern
holds true at each of the monthly, daily, and 3-hourly temporal
scales. This bias is common in many climate models, and E3SM
is no exception. Further details about this bias are discussed in
Pendergrass and Hartmann (2014) and Taylor et al. (2022).
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FIGURE 8
CONUS % of spatial variance of total precipitation rates explained by models vs. spatial resolution.

3.3 Spatial variance in precipitation vs.
spatial resolution

There are two important results to highlight from analyzing
the sensitivity of the spatial variance in precipitation with respect
to spatial resolution. These are shown in Figure 6. Firstly, in
both models and observations, as the HEALPix level and spatial
resolution increase, so does the spatial variance in precipitation.
While this result is not surprising, the slopes of the line plots
in the figures provide insight into the extent of additional spatial
information is captured in precipitation simulations with higher
spatial resolutions. Similarly, when examining temporal resolution,
the variance increases as temporal resolution increases. This
trend holds true when considering the seven regions within
CONUS.

The second result pertains to the comparison between E3SM
LR to E3SM NARRM. Despite having a higher HEALPix spatial
resolution, the spatial variance in precipitation of the NARRM
is lower than that of the LR. This pattern remains consistent
across changes in spatial resolution, temporal resolution, and the
CONUS regions.This result has implications for E3SMprecipitation
simulations, which will be discussed later.

3.4 Relative percentage change in spatial
variance of precipitation vs. spatial
resolution

The results for the relative change in spatial variance of
precipitation between spatial resolutions, as depicted in Figure 7,
highlight the importance of high-resolution simulations by
themselves. As the spatial resolution increases, the increase in
spatial variance from the previous spatial resolution level to the
next decreases. Still, it is worth noting that spatial variance in
precipitation increases by approximately 50% between 25 km

and 13 km at the three-hourly temporal scale. The patterns hold
consistent when considering changes in temporal resolution in
all datasets, as well as changes in regional domains. All of these
increases between spatial resolution levels demonstrate how higher
spatial resolution capture additional spatial information about
precipitation.

3.5 Percentage of observed spatial variance
in precipitation vs. spatial resolution

Results for this metric are shown in Figure 8. The first
notable result here is that the percentage of spatial variance in
precipitation explained by models generally decreases as spatial
resolution increases across all temporal scales, except for 407 km
resolution at the monthly timescale. However, the pattern generally
flips when analyzing the seven CONUS regions individually,
where models explain more variance in precipitation at the
higher spatial resolutions. The exception is the GPN region,
where the trends are quite inconsistent with both temporal
and spatial resolution changes. The second notable result is
that despite having a higher spatial resolution than E3SM LR,
E3SM NARRM explains less of the observed spatial variance
in precipitation at all spatial resolutions, timescales, and in all
of the CONUS regions. The implications of these results on
the E3SM runs’ performance are discussed in the following
section.

4 Conclusion

4.1 The new framework

In this study, a framework was developed for comparing
model simulations and observations of different spatial resolutions.
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Multiple model and observational datasets were used, and they were
regridded to the appropriate HEALPix resolution as needed. This
regridding allowed for quantitative comparisons of precipitation
between the datasets at different spatial resolutions.This framework
was tested on the E3SM LR and E3SM NARRMmodel runs, as well
as the GPM IMERG observations, which have significantly different
spatial resolutions. The remapping onto the HEALPix pixels was
necessary to compare the three datasets. This remapping process
greatly simplified the comparisons between all three datasets as
it standardized not only a common spatial resolution but also a
common layout and/or arrangement for all the data. HEALPix
enabled the inter-resolution comparisons that would have otherwise
been mathematically challenging.

Several metrics were calculated to evaluate the precipitation
from E3SM model against GPM IMERG observations. The
primary objective is to determine the viability of this framework
in comparing multiple datasets with different native spatial
resolutions. The chosen metrics were relevant for evaluating the
HEALPix framework’s viability. While some results regarding
E3SM’s performance may seem counterintuitive in the context of
climate model development, this study’s findings demonstrate that
the framework produced meaningful results for comparing E3SM
LR, E3SM NARRM, and GPM IMERG despite their significant
differences in their native resolutions. The successful application of
this framework opens up possibilities for its use in other climate
model versus observational comparisons, particularly for inter-
resolution comparisons.

4.2 E3SM

As aforementioned, several results about E3SM’s performance
showed that the E3SM RRM performs worse than the E3SM LR
in CONUS precipitation simulations. Firstly, the RRM has a lower
spatial variance in precipitation than the LR at all resolutions.
Furthermore, the RRM explains less of the observed precipitation
variance than the LR. This is because the NARRM is developed
for climate production campaigns (e.g., CMIP6), hence, it needs to
meet the criteria of reasonably simulating global climate. NARRM
adopted the hybrid time step method (i.e., a combination of
an LR physics time step and the high-resolution dynamics time
steps) in the atmosphere model to achieve the reasonable global
performance without sacrificing too much of the benefits from
high-resolution dynamics (Tang et al., 2023). The hybrid time step
approach cannot take full advantage of the high-resolution dynamics
at 25 km due to large time-truncation errors. Additionally, 25 km
spatial resolution is not sufficiently high enough to accurately
simulate small-scale precipitation features. To accurately represent
these small-scale processes, a much higher spatial resolution,
typically around 4 km or higher, is often required, and model
parameterizations must be set appropriately to account for any
spatial coarsening effects. Consequently, the 25 km resolution of the
RRM resulted in a lack of spatial variance that would otherwise
be present in simulated precipitation at a higher resolution than
25 km. Any small-scale precipitation features present in the RRM
are effectively filtered out when remapping to coarser resolutions,
and this has the effect of generally lowering the spatial variance in
precipitation.

In both of the E3SM simulations, as the spatial resolution
(HEALPix Level) increases, the observed spatial variance in
precipitation explained by both model runs also decreases. This
result can be attributed to the E3SM’s ability to simulate larger-scale
precipitation features such as atmospheric rivers, cold fronts, and
monsoonal systems. The 100 km spatial resolution of the LR may
be sufficiently high enough to accurately simulate these large-scale
precipitation features. As such, simulating these features in the RRM
at 25 km resolution did not significantly contribute to the overall
spatial variance since there was minimal additional information
gained by simulating these large-scale features at a higher resolution.

In conclusion, when considering total precipitation simulations,
the advantages of increasing the spatial resolution in the E3SM
RRM generally do not outweigh the drawbacks in terms of
increased computational costs. The RRM’s 25 km resolution may
not be high enough to accurately capture small-scale precipitation
processes, while the LR already performs well in simulating
larger-scale precipitation features at its resolution. Because E3SM
performs better in simulating large-scale precipitation features than
simulating small scale-features, increasing the HEALPix resolution
would ultimately decrease the proportion of observed precipitation
variance that E3SMexplains because the added resolutionwould not
be able to sufficiently explain the small-scale precipitation features
that become increasingly more present as HEALPix resolution
increases.

4.3 Next steps

Overall, this research has laid the foundation for comparing
models and observations across different spatial scales,
demonstrating the viability of the developed framework. Indeed,
the counterintuitive results obtained in this study regarding E3SM
precipitation simulations should not be generalized to all variables,
climate models, or regions outside of the CONUS. It is important to
recognize the complexity of climate modeling and the wide range
of factors that can influence model performance. Moving forward,
there are several promising avenues for further research. Expanding
the analysis to include other variables simulated by E3SM or other
climatemodelswould provide amore comprehensive understanding
of the model’s performance across different spatial resolutions.
Additionally, extending the study beyond the CONUS to different
regions would help assess the generalizability of the findings. To
better evaluate the computational costs associated with analyzing
datasets, developing quantifiable metrics is crucial. Incorporating
these metrics into the research would enable comparisons of
computational costs between different datasets and facilitate a more
accurate cost-benefit analysis. This analysis would help determine
whether the benefits of high-resolution climate model simulations
outweigh the drawbacks in terms of computational power.
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