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Harmful algal blooms have dangerous repercussions for biodiversity, the
ecosystem, and public health. Automatic identification based on remote sensing
hyperspectral image analysis provides a valuable mechanism for extracting the
spectral signatures of harmful algal blooms and their respective percentage in a
region of interest. This paper proposes a new model called a non-symmetrical
autoencoder for spectral unmixing to perform endmember extraction and
fractional abundance estimation. The model is assessed in benchmark datasets,
such as Jasper Ridge and Samson. Additionally, a case study of the HSI2 image
acquired by NASA over Lake Erie in 2017 is conducted for extracting optical water
types. The results using the proposedmodel for the benchmark datasets improve
unmixing performance, as indicated by the spectral angle distance compared
to five baseline algorithms. Improved results were obtained for various metrics.
In the Samson dataset, the proposed model outperformed other methods for
water (0.060) and soil (0.025) endmember extraction. Moreover, the proposed
method exhibited superior performance in terms of mean spectral angle
distance compared to the other five baseline algorithms. The non-symmetrical
autoencoder for the spectral unmixing approach achieved better results for
abundance map estimation, with a root mean square error of 0.091 for water
and 0.187 for soil, compared to the ground truth. For the Jasper Ridge dataset,
the non-symmetrical autoencoder for the spectral unmixing model excelled in
the tree (0.039) and road (0.068) endmember extraction and also demonstrated
improved results for water abundance maps (0.1121). The proposed model
can identify the presence of chlorophyll-a in waterbodies. Chlorophyll-a is
an essential indicator of the presence of the different concentrations of
macrophytes and cyanobacteria. The non-symmetrical autoencoder for spectral
unmixing achieves a value of 0.307 for the spectral angle distance metric
compared to a reference ground truth spectral signature of chlorophyll-a. The
source code for the proposed model, as implemented in this manuscript, can be
found at https://github.com/EstefaniaAlfaro/autoencoder_owt_spectral.git.
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1 Introduction

There has been an increase in harmful algal blooms (HAB)
in waterbodies in recent years due to global warming and
different human activities that contaminate andmodify these water-
bearing zones, causing severe problems to the marine ecosystems,
biodiversity, and collateral damage to the health of humans
(Guo et al., 2022). Human health is affected by the consumption
of water sourced mainly from lakes, which contains different kinds
of algae, scum, and sediments. Hence, it is necessary to determine
the proportions of these algae so that water quality management
authorities can establish safe thresholds for consumption and
recreation purposes.

The objective of this article is to identify the presence and the
percentage or fractional abundance of algae, the composition of the
different materials, and concentrations in a region of interest in
a hyperspectral image (HSI). At present, multiple techniques have
been developed to detect and quantify chlorophyll-a (Chl-a), with
the concentration being an indicator of algal presence; Chl-a models
can be divided into two branches: physics-based methods and data-
driven methods (Zhu et al., 2023). Physics-based methods simulate
the behavior of Chl-a in the waterbodies. On the other hand, the
data-driven methods are related to analyzing previous data from a
region of interest (ROI). These data can be weather variables, field
samples, and images.The last approach constitutesmachine learning
(Chong et al., 2023) and deep learning (Park et al., 2022) methods
which are applied mainly to HSIs. Additional measurements such
as temperature, wind speed, and fluorometric data samples are
acquired from the same ROI as the images.

In order to perform Chl-a extraction, it is necessary to analyze
the measurements; typically, much of these measurements are
fluorometer samples taken at the field, weather variables, and HSIs
acquired from an ROI. HSI measurements are recorded by sensors
that record spectral signatures over hundreds of narrow contiguous
bands ranging from 380 to 2,500 nm wavelengths. However, the
acquired wavelength range varies depending on the type of the
sensor (Zhong et al., 2018; Xu et al., 2019). Remote sensing is the
field in which indirect measurements of the physical characteristics
of materials on Earth’s surface based on the reflectance and emitted
radiation are acquired as hyperspectral, multispectral images and
weather variables by satellite or airborne sensors. The processed
images have several applications such as land cover studies from
image classification, spectral unmixing (SU) analysis of material
constituents, change detection, segmentation, and data fusion. Some

of the applications of remote sensing such as image classification, SU,
change detection, and data fusion are highlighted below.

Image classification is performed by constructing models
that enable the categorical analysis of each pixel in order to
assign the pixel to the most probable class. These machine
learning approaches for image classification can be subdivided
into supervised (Aravind et al., 2018; Sheykhmousa et al., 2020)
and unsupervised methods (Chen et al., 2018; Xie et al., 2018),
classical optimization techniques (Meng et al., 2020), and stochastic
optimization methods (Ahilan et al., 2019; Miao and Yang, 2021).
However, deep learning models achieve higher classification
accuracies as they exploit the spatial and spectral properties
of the images, such as convolutional neural networks (CNN)
(Chen et al., 2019; Feng et al., 2019), multimodal deep learning
(Hong et al., 2021), stacked autoencoders (Zabalza et al., 2016;
Su et al., 2018; Shi and Pun, 2020), recurrent neural networks
(RNN) (Hang et al., 2019; Liang et al., 2022; Zhou et al., 2023), and
generative adversarial networks (Shi et al., 2022; Qin et al., 2023).
Another approach is based on constructing a graph (Ding et al.,
2021; Yang et al., 2021), which depicts spatial and spectral relations
for each pixel with their surroundings using an adjacency matrix;
this enables a meaningful representation providing higher accuracy
with less data for training the algorithms; nevertheless, the
computational effort is increased. To tackle this alternative method,
mini-batches for the categories are selected (Hong et al., 2021),
without loss of accuracy.

Change detection is another important application focusing on
the spatial variations in an acquired scene, that could be small and
imperceptible, and requires the use of morphological operations
(Liu et al., 2017; Hou et al., 2022), graph embedding approaches
(Erturk andTaskin, 2021), information from SU analysis (Jafarzadeh
and Hasanlou, 2019; Guo et al., 2021), and the use of deep learning
architectures such as U-net in order to find the changes (Wu et al.,
2023).

For image segmentation, graph embedding methods have been
used to cluster ROIs (Liu et al., 2021) based on a meaningful
representation of the data; furthermore, deep learning approaches
have been developed (Dong et al., 2022). Data fusion provides
feature enhancement by combining data from different domains
that satisfy a similarity metric (Dian et al., 2019); the initial
step is known as image registration, which aims to find the
scale, angle, and translation that can be different for the image
compared to a reference image (Tong et al., 2019). Once the
correspondence of coordinates is achieved, the fusion is performed

TABLE 1 Comparative analysis of autoencoder architectures for addressing SU in the state-of-the-art, considering architectural design, loss function, ASC, and
ANC constraints.

Publication date Model name Architecture Loss function ASC ANC Paper

September 2018 uDAS Sparsity autoencoder MSE Augmented matrices L2 regularization Qu and Qi (2019)

September 2019 DAEU Deep autoencoder SAD Yes softmax No Palsson et al. (2019)

May 2020 CNNAEU Convolutional autoencoder SAD Yes softmax No Palsson et al. (2020)

November 2020 CAE Convolutional autoencoder MSE No L2 regularization Ranasinghe et al. (2020)

March 2021 UnDIP Convolutional autoencoder Abundance estimation Yes softmax No Rasti et al. (2022)

March 2021 CyCU-Net Two cascaded autoencoders MSE+abundances*δ Regularization for abundances Clamp function [0, 1] Gao et al. (2022)
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TABLE 2 A comparative analysis presenting a timeline of deep learning architectures aimed at addressing spectral unmixing analysis. The assessment criteria
include whether the deep learningmodels focus on abundancemap estimation (AM), endmember extraction (EE), or both simultaneously.

Publication date Architecture Loss function AM EE Observations Paper

August 2021 Sparse unmixing
technique using a
convolutional

network
(SUnCNN)

θ = 1
2
|Y−D fθ(Z)|

s.tX̂ = fθ̂(Z).
Yes No A deep convolutional autoencoder is proposed for

conducting spectral unmixing analysis, relying on the
utilization of a spectral data library. In the final layer,
the ASC and ANC constraints are imposed through the
utilization of a softmax activation layer

Rasti et al.
(2022)

February 2022 Bayesian fully
convolutional
neural network
for hyperspectral

unmixing
(BCUN)

Mahalanobis distance Yes Yes A fully convolutional network is introduced in Fang
et al. (2022), utilizing the foundational principles of
the deep image prior. This network aims to enhance
the estimation of spatial context in abundance maps.
The characterization of spectral signature distribution
is achieved through the application of a multivariate
Gaussian distribution. The loss function employed is
rooted in the Mahalanobis distance. Moreover, this
approach is investigated within the context of the
Bayesian framework

Fang et al.
(2022)

February 2022 Spatial–spectral
collaborative
unmixing

network for the
HSI (SSCU-Net)

L = LSAE + LSCAE + μLCOL Yes Yes A convolutional autoencoder network is introduced,
comprising two branches. One of these branches
undertakes spatial analysis using the LSAE function,
with yic and ŷic representing the original and
reconstructed pixels, respectively. Additionally, the
LSCAE loss function, which is performed using SAD, is
employed for spectral analysis within the convolutional
branch. A collaborative strategy loss function, LCOL,
conducted through theMSE, is also integrated between
these two branches. The ultimate objective function
is defined as L = LSAE + LSCAE + μLCOL, where
the μ term serves as a control parameter for pixel
reconstruction

Qi et al.
(2022)

June 2022 Multibranch
convolutional

(MB)

MSE Yes No A parallel multibranch convolutional approach is
proposed for conducting spatial–spectral analysis in
order to estimate fractional abundances

Tulczyjew
et al.
(2022)

January 2023 Cube-based
attention 3D
convolutional
autoencoder
network
(CACAE)

SAD Yes Yes The 3D convolutional architecture CACAE is employed
to extract spectral and spatial features.This architecture
facilitates spectral unmixing analysis for extracting
endmember and fractional abundance maps, utilizing
the SAD loss function. Furthermore, the features
extracted by the architecture serve as inputs for training
classifiers

Li et al.
(2023)

July 2023 Dilated
convolution
extended-
aggregated

strategy (DEAS)

Depends on the architecture
used for

GLAL = Lrec + Lsparse + Lspatial,
for CNNAEU SAD

Yes Yes An autoencoder designed for spatial feature extraction
is introduced. This autoencoder, termed DEAS,
leverages dilated convolutions and can function as an
additional component for a conventional autoencoder.
The global–local smoothing autoencoder incorporates
the DEAS block, with the feature map generated
by DEAS serving as the input for the GLA network
(Xu et al., 2022). Furthermore, the DEAS block is also
employed alongside CNNAEU, where reconstruction
is achieved by utilizing the SAD loss function.

Gao et al.
(2023)

in order to obtain an enhanced representation of the initial
data.

SU is an active field of research, the goal of which is to analyze
the materials and compositions of an acquired hyperspectral scene;
from the analysis of the reflectance of the HSI, the pure spectral
signature called endmember of each material and the proportions
of the endmembers of the different materials present in each pixel in
the HSI scene known as fractional abundance maps are estimated.
Typically, SU has been explored by classical approaches such as
linear mixing models (LMMs) (Heylen et al., 2014); optimization
approaches such as MESMA, which are based on extracting
multiple materials in a scene, resulting in the application of

classical optimization (Tane et al., 2018); and machine learning
techniques, such as support vector machine (SVM) (Wang et al.,
2013; Chunhui et al., 2018) and neural networks (Zhang et al., 2022;
Qi et al., 2023).

The LMM is a baseline algorithm for the SU framework. The
LMM is based on a linear relationship between the endmembers
or pure substances and their fractional abundances. Each pixel’s
intensity can be considered the linear combination of all materials
that belong to the acquired scene; this approach represents an
appropriate solution for themacroscopic analysis inwhich the object
in analysis represents a large percentage of the acquired scene, such
as soil, grass, and vegetation.
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FIGURE 1
Architectural illustration of the NSAE-SU for performing the SU, extracting the abundance maps, and endmembers. The input patch for the model
corresponds to the extracted patches of the original image, which is the input to the encoder, where convolutional operations, batch normalization
(BN), flatten, dense, and softmax operations to extract the abundance maps are performed. Finally, the decoder performs a dense operation with a
linear activation function for endmember extraction.

TABLE 3 Configuration of the NSAE-SUmodel and parameter settings for the
Jasper Ridge dataset.

Parameter Value

Input data 9 × 9

Number of 2D convolution filters 128

Size of 2D convolution filters 3 × 3

Number of 2D convolution filters 64

Size of 2D convolution filters 3 × 3

Number of 2D convolution filters 32

Size of 2D convolution filters 3 × 3

Number of 2D convolution filters 16

Size of 2D convolution filters 3 × 3

Number of 2D convolution filters of the decoder L

Scaling factor 3

Optimizer RMSprop

Learning rate 0.0001

Batch size 20

Epochs 250

Typically, SU is carried out using classical approaches for
endmember extraction, such as the multiple endmember spectral
signature (Yang et al., 2022) method and the LMM (Imbiriba et al.,
2018). In addition, the methods performed for the atmospheric
correction are based on the varimax-rotated principal component
method (Ortiz et al., 2019). Notwithstanding, the SU is solved using
machine learning approaches, such as neural networks (Zhang et al.,
2022; Qi et al., 2023), to increase the accuracies obtained in the
fractional abundance maps and endmember extraction. Most of the
applications of SU methods are for sediment analysis from satellite
images (Waga et al., 2022).

On the other hand, geometrical approaches have been applied
to solve the SU problem, such as N-FINDR (Winter 1999), vertex

component analysis (VCA) (Nascimento and Dias, 2005), and
fast pure pixel index (FPPI) (Das et al., 2019), and matrix-vector
non-negative tensor factorization is employed to ensure a precise
and reliable depiction of the physical characteristics of the object
(Qian et al., 2017).These methods are based on iterative algorithms,
which compute the determinant tomaximize the volume estimation
of a convex hull. In the ideal case, the endmembers or pure
substances represent the vertices, and the mixed pixel is contained
in the geometrical surface.

New strategies based on supervised and unsupervised machine
learning and optimization techniques have been developed
to improve the endmember extraction algorithm’s accuracy
(Xu et al., 2019; Shah et al., 2020). The majority of the unsupervised
approaches are based on autoencoders for endmember extraction
and estimation of the fractional abundance maps (Palsson et al.,
2020; Ranasinghe et al., 2020; Hadi et al., 2022). The autoencoders
used to address the SU framework are configured as non-
symmetrical models, where the encoder has more degrees of
freedom in the design to add more layers. Commonly, the
constraints for non-negativity (ANC) and sum to one (ASC)
are included in the encoder. On the contrary, the decoder
typically possesses one layer for conducting the endmember
extraction and has additional layers added for non-negative
regularization.

Typically, the autoencoders present similarities in the
architectural design of the encoder stage which has multiple layers
for performing the abundance map estimation, thus allowing for
flexibility in the design, more than the decoder, which usually has
only one layer to extract the endmembers. Most of the variations
in autoencoders are related to the loss function, the complexity of
the activation functions, the regularization layers, data curation,
and batch selection. To illustrate the differences in the architectural
design ofmodels for SU, some architectures are presented as follows.
Ranasinghe et al. (2020) proposed a convolutional autoencoder,
where the encoder performs three convolutional operations, flatten
and dense operations; the last dense layer is set to equal the number
of endmembers. The encoder extracts the endmembers, and the
last layer performs the reconstruction for the abundance map
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FIGURE 2
Quantitative analysis of different patch sizes for (A) the Samson dataset and (B) the Jasper Ridge dataset, aimed at selecting optimal patch sizes using
the SAD metric. The extracted spectra by NSAE-SU are compared with the GT for each material.

FIGURE 3
Proposed workflow for spectral unmixing analysis of the HSI2 image.
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FIGURE 4
RGB images of the datasets used to evaluate the performance of the NSAE-SU model. (A) Samson, (B) Jasper Ridge, and (C) Lake Erie HSI2 image with
ROIs highlighted.

estimation. On the other hand, Ghosh et al. (2022) proposed a deep
learning algorithm based on transformers for image reconstruction
and the spectral angle distance as a loss function. Ayed et al. (2022)
proposed a deep learning model with three stages. The initial stage
performs the spectral and spatial analysis based on the preprocessing
of the data using principal components analysis (PCA), the second
stage is the feature learning performed by a simple autoencoder,
and the last stage applies the convolutional autoencoder in order to
extract the endmembers and compute the estimation of fractional
maps. Although the autoencoder presents an interesting alternative,
there are still challenges due to the spectral variability within
acquired scenes that need to be addressed. This variability can
impact the consistency of results across different datasets.

In order to perform endmember extraction and fractional map
estimation, we propose a new method for the analysis of optical
water types for detecting Chl-a based on an unsupervised deep
learning approach.Themethod is composed of five stages: the input
is the HSI image of Lake Erie (HSI2), the ROI selection that enables
the analysis of the waterbodies by regions due to the large size of
the images, the spectral derivative computation for performing the
sun glint correction, and a block for endmember extraction using
the model non-symmetrical autoencoder for SU (NSAE-SU) for
detecting the Chl-a in Lake Erie. In addition, other endmembers,
such as HABs, sediments, and surface scum, are detected.

This article introduces and assesses a new deep autoencoder
called NSAE-SU for endmember extraction and estimation of
fractional abundance maps. The main contribution is to the field of
SU analysis for finding the spectral endmembers of each material
and the fractional abundancemaps of endmembers in each pixel.We

propose a convolutional autoencoder, where the encoder performs
the convolutional operations, and the ASC constraint is applied
based on the customization of a regularization layer during the
inference process in the batch normalization stage before the input
patch to the network is selected. In addition, in order to ensure
that the abundance maps satisfy the constraint of sum-to-one,
a softmax activation with a scale factor of 3 is applied. At the
decoder stage, the ANC constraints restrict the non-negativity of the
endmembers, and the last 2D-convolutional operation is performed.
Additionally, we evaluate the performance of the proposedworkflow
illustrated in Figure 3. The HSI of Lake Erie, which does not have
a ground truth (GT) for the endmembers and abundance maps, is
used. The workflow is applied to extract the optical water types or
endmembers, and their abundance maps for each ROI are selected
in the HSI2 image. Finally, we propose the best configuration
and settings for the hyperparameters. The main contributions are
summarized as follows:

• A convolutional autoencoder model that can perform the
endmember extraction and the fractional abundance map
estimation, exploiting the spatial and spectral features of the
HSI, is proposed.Themodel addresses the problemof themixed
pixels, with a batch normalization layer applied to the two-
dimensional input patches, which is customized to avoid the
influence of the learned scaling factor, also known as gamma
factor; the ASC constraint is imposed at the encoder stage; the
loss function is the cross-entropy; and the ANC is applied at the
decoder stage. This architecture achieves better results than the
SOTA reports. The model is assessed with benchmark datasets
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FIGURE 5
Extracted endmembers for the Samson dataset using the techniques CNNAE, UnDIP, and NSAE-SU models compared with the GT. The colors for the
endmembers are red—CNNAE, green—UnDIP, blue—NSAE-SU, and cyan—GT. (A) Water spectral signature, (B) soil spectral signature, and (C) tree
spectral signature.

TABLE 4 Comparison between themodels UnDIP (Yu et al., 2022), CNNAEU
(Yu et al., 2022), VCA (Nascimento and Dias, 2005; Ranasinghe et al., 2020),
CAE (Ranasinghe et al., 2020), MV-NTF (Qian et al., 2017; Zheng et al., 2021),
and NSAE-SUmodel for performing the endmember extraction for the
Samson dataset using the spectral angle distancemetric.

Method/materials NSAE-SU UnDIP CNNAEU VCA CAE MV-NTF

Water 0.060 0.130 0.113 0.200 0.710 0.091

Tree 0.029 0.022 0.041 0.055 0.066 0.754

Soil 0.025 0.040 0.048 1.839 0.182 0.254

Mean SAD 0.038 0.064 0.067 2.095 0.320 0.366

such as the Jasper Ridge and Samson, and a data curation
workflow is proposed for the HSIs of Lake Erie to remove
spectral variability and noise.
• We proposed a workflow to address the spectral variability and
noise in the HSIs in order to find the material composition and

TABLE 5 Comparison between themodels: UnDIP (Yu et al., 2022), CNNAEU
(Yu et al., 2022), VCA (Nascimento and Dias, 2005; Ranasinghe et al., 2020),
CAE (Ranasinghe et al., 2020), MV-NTF (Qian et al., 2017; Zheng et al., 2021),
and NSAE-SUmodel for performing the abundancemap estimation for the
Samson dataset using the root mean square error metric.

Method/materials NSAE-SU UnDIP CNNAEU VCA CAE MV-NTF

Water 0.091 0.426 0.202 1.111 0.279 0.503

Tree 0.172 0.252 0.172 0.245 0.181 0.438

Soil 0.187 0.267 0.198 1.284 0.284 0.441

Mean RMSE 0.150 0.315 0.190 0.879 0.248 0.461

the fractional abundance maps for different ROIs belonging to
the image based on the computation of spectral derivatives.
• An unsupervised deep learning model called NSAE-SU is
proposed.The NSAE-SU can accurately perform the extraction
of the endmembers, particularly for water and soil, without
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FIGURE 6
Comparison of the abundance maps extracted from the Samson dataset between with the GT or reference maps and the following models: CNNAEU
(Palsson et al., 2020), UnDip (Rasti et al., 2022), and NSAE-SU.

removing spectral bands from the image. In addition, themodel
is also robust in extracting the abundance maps of water, soil,
and trees.
• We present a pipeline that is designed to perform both
endmember extraction and abundance map estimation. This
pipeline is applied to a case study involving HSI2 images by
comparing extracted endmembers by the new approach with
spectral libraries containing different concentrations of Chl-
a, cyanobacterial scums, Nymphoides peltata, and Potamogeton
crispus. Through this comparison, we gain insights into the

materials and microorganisms, facilitating the identification of
the best fit for the extracted endmembers with the available
signatures. Our method offers a valuable alternative for
analyzing material compositions over water bodies.

The rest of this article is organized as follows: Section 2
provides the background of HSIs, LMM, a publication review,
and mathematical foundations for the deep autoencoder.
Section 3 describes the NSAE-SU method and its application. The
experiments withHSIs are described in Section 4. Section 5 presents
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TABLE 6 Comparison between themodels UnDIP (Yu et al., 2022), CNNAEU
(Yu et al., 2022), VCA (Nascimento and Dias, 2005; Ranasinghe et al., 2020),
CAE (Ranasinghe et al., 2020), MV-NTF (Qian et al., 2017; Zheng et al., 2021),
and NSAE-SU for performing the endmember extraction for the Jasper Ridge
dataset using the spectral angle distancemetric.

Method/materials NSAE-SU UnDIP CNNAEU VCA CAE MV-NTF

Water 0.077 0.252 0.061 0.139 0.143 0.344

Tree 0.039 0.149 0.060 0.405 0.203 0.232

Soil 0.118 0.114 0.140 1.535 0.147 0.335

Road 0.068 0.086 0.134 0.530 1.247 0.338

Mean SAD 0.076 0.150 0.099 0.652 0.435 0.312

the metrics used to assess the NSAE-SU model. The analysis of
the results and the selection of hyperparameters are explained in
Section 6 for the benchmark datasets and for HSI2 images. Finally,
the conclusions are presented in Section 7.

2 Hyperspectral unmixing

2.1 Hyperspectral images

HSIs have hundreds of narrow bands, providing a continuous
measurement for each pixel in a limited wavelength range; this
range depends on the sensor type. One of the most popular
wavelength range is near-infrared (nm) and middle infrared (nm).
The measurement is performed from the emitted and reflected light
in a scene (Vivone, 2023).

HSIs can be visualized as a hypercube or a 3D representation
with dimensions given by W×H× L, where W×H represents the
width and height of the image, respectively, indicating the spatial
resolution, and L corresponds to the number of spectral bands. The
HSI offers high spectral resolution while generally having lower
spatial resolution. This unique characteristic makes it especially
valuable for analyzing the material composition of individual pixels
through SU.

FIGURE 7
Extracted endmembers for the Jasper Ridge dataset performed by the techniques CNNAE, UnDIP, and NSAE-SU models and compared with the GT.
The colors of the endmembers are red—CNNAE, green—UnDIP, blue—NSAE-SU, and cyan—GT. (A)Water spectral signature, (B) road spectral signature,
(C) soil spectral signature, and (D) tree spectral signature.
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TABLE 7 Comparison between themodels UnDIP (Yu et al., 2022), CNNAEU
(Yu et al., 2022), VCA (Nascimento and Dias, 2005; Ranasinghe et al., 2020),
CAE (Ranasinghe et al., 2020), MV-NTF (Qian et al., 2017; Zheng et al., 2021),
and the NSAE-SUmodel for performing the abundancemap estimation for
the Jasper dataset using the root mean square error metric.

Method/materials NSAE-SU UnDIP CNNAEU VCA CAE MV-NTF

Water 0.112 0.201 0.183 2.212 0.133 0.298

Tree 0.172 0.160 0.199 0.380 0.201 0.387

Soil 0.232 0.132 0.294 1.754 0.193 0.396

Road 0.192 0.109 0.308 0.264 0.145 0.570

Mean RMSE 0.177 0.150 0.246 1.152 0.168 0.413

2.2 Linear mixing models

The spectral signatures presented in an acquired scene are
considered endmembers, and their proportion in each pixel is the
abundance map. Typically, the LMM performs the endmember
extraction and estimation of the fractional abundance maps based
on the physical behavior of the interaction between the light and
the endmembers, described as a linear function, as we see in
Eq. 1.

Yn =Mαn + ηn
s.t1Tα = 1

αn ≥ 0. (1)

In the given context, M represents the endmember matrix with
dimensions L×R, where R signifies the number of endmembers.
The variable αn represents the proportion of endmembers in each
pixel Yn, while ηn denotes the noise vector. The abundance maps
are subject to two constraints: ASC, ensuring that the abundances
add up to 1, and ANC, which ensures that the abundance values are
non-negative.

2.3 Publication review

SU analysis is currently a prominent topic in the field because it
can be performed using unsupervised algorithms. These algorithms
leverage the spectral signatures of different components in an image
to estimate themainmaterials present in a scene and their respective
proportions in each pixel.

In recent years, significant progress has been made in the
application of deep learning algorithms to SU (Bhatt and Joshi,
2020). These advanced algorithms demonstrate great potential in
harnessing both spatial and spectral relationships to enhance overall
performance. They excel in improving measurements such as the
spectral angle distance for endmembers and the root mean square
error (RMSE) for fractional abundance maps.

In Table 1, we provide a summary of the models used for
addressing SU. These models focus on architectural descriptions
that enable endmember extraction and fractional map estimation.
The table highlights the loss functions and the constraints for ASC
and ANC applied by the authors. Furthermore, the table includes
significant details regarding the architectures utilized and their
specific characteristics and configurations.

Two different architectures are proposed in the works
(Palsson et al., 2019; Qu and Qi, 2019): one built upon sparsity
autoencoders and the other adopting a shallow autoencoder
approach. Each of these architectures employs loss functions,
such as mean squared error (MSE) and spectral angle distance
(SAD). Notably, the first architecture integrates ASC constraints
using augmented matrices, and the shallow autoencoder utilizes
the softmax function in the final layer. On the other hand, the
utilization of convolutional architectures in Palsson et al. (2020);
Ranasinghe et al. (2020); Gao et al. (2022); Rasti et al. (2022)
enables the exploitation of spatial and spectral feature extraction.
These architectures utilize SAD and MSE and perform abundance
estimation by employing loss functions.

Despite their differences, similarities between these approaches
and convolutional autoencoders can be found, mainly due to their
ability to incorporate spatial–spectral relations. However, it is worth
noting that some variations in the preprocessing step exist, such as
using the entire image as in Qu and Qi (2019); Ranasinghe et al.
(2020); Rasti et al. (2022) or utilizing patch sizes as in Palsson et al.
(2020); Gao et al. (2022).

Furthermore, deep learning architectures have been utilized to
tackle SU analysis by leveraging spectral information, as depicted in
Table 2, primarily through the use of spectral libraries (Rasti et al.,
2022). In this context, a loss function has been proposed based on an
adaptation of the LMM, whereZ represents the input to the network
and fθ denotes the deep network with parameters θ. The ASC and
ANC constraints are imposed using the softmax activation in the
last layer to estimate the abundance maps.

On the other hand, Fang et al. (2022) address SU analysis
using a Bayesian approach, where endmember extraction is
carried out by applying a multivariate Gaussian distribution. A
collaborative approach based on a two-streamnetwork is introduced
to enhance the accuracy of endmember and fractional abundance
map estimation, as presented in Qi et al. (2022). The first branch
conducts spatial analysis in this setup, while the second handles
spectral convolution estimation. Inspired by the multi-branch
approach, Tulczyjew et al. (2022) presented a network to exploit the
spectral, spatial, and spectral–spatial features in order to address the
estimation of the fractional abundance maps.

Li et al. (2023) introduces a 3D convolutional autoencoder for
conducting SU analysis, utilizing the SAD loss function. After
extracting the endmember and fractional abundance maps, both
the input HSI and the weights derived from the autoencoder
are employed for classifier training. Conversely, Gao et al. (2023)
proposes the utilization of dilated convolutions to establish
spatial and spectral relations. This block can seamlessly be
integrated into an existing autoencoder architecture to facilitate SU
analysis.

2.4 Mathematical foundations of the
autoencoder

In order to perform the endmember extraction and the
fractional abundance map estimation, a deep convolutional
autoencoder is proposed, as illustrated in Figure 1. An autoencoder
is an unsupervised deep neural network that has learned the
structure of the data and performs feature extraction due to a latent
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data representation.This method does not require labels for SU, and
the HSI data analysis can be performed without the GT.

An encoder and decoder together constitute the autoencoder
model. The encoder is given by fe = E (xd) and performs
transformation of the input data into a hidden representation.Then,
the decoder reconstructs the data x̂d = D(( fe)), subject to a loss
function, given by the following equation:

L(xd,D(E(x̂d))) . (2)

The reconstructed data can be represented as a forward pass
given by Eq. 3, with αD and αE being their respective activation
functions at the hidden layers of the model, and wd and we being
the weighted matrices for the decoder and encoder, respectively
(Goodfellow et al., 2016).

xd = αD (wd (αe (we))) . (3)

However, in order to obtain an accurate reconstruction result
in feature enhancement based on the learned distribution of the

training data, it is necessary to apply a regularized function, given by
Eq. 4, where λ is a tuning parameter, and J ( fe,we,wd) is a penalty
function.

L = L(xd, x̂d) + λJ ( fe,we,wd) . (4)

In order to perform SU analysis using the autoencoder, it is
necessary to impose the ASC and ANC constraints at the encoder
configuration; this enforces the endmember and abundance maps
to be non-negative and not greater than 1. The encoder encodes the
input data in a latent space, performing convolutional operations,
leaky ReLU activations, and dropout to prevent overfitting.

X̂d = [X̂1, X̂2, X̂3,…, X̂L] . (5)

X̂d =W
N
d [σ
(N−1)(1),σ(N−1)(2),σ(N−1)(3),…,σ(N−1)(W×H)] . (6)

X̂d =Wd
(N)
(W×H)×R × σR×(W×H). (7)

Subsequently, the decoder reconstructs the data patch from the
latent space; the data patch is given by Eq. 5, and the decoder can be

FIGURE 8
Comparison of the abundance maps extracted from the Jasper Ridge database with the GT or reference maps and the following models: CNNAEU
(Palsson et al., 2020), UnDip (Rasti et al., 2022), and NSAE-SU.
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FIGURE 9
The extracted endmembers from 10 runs of the Samson dataset are displayed, for NSAE-SU featured in subfigure (A), CNNAEU in subfigure (B), and
UnDIP in subfigure (C).

rewritten as Eq. 6, whereWd corresponds to the weightmatrix of the
decoder, and σ are the activation functions from the previous (N-1)
layers. However, as is required to perform R endmember extraction,
the last layer has R neurons, resulting in Eq. 7, which is similar to
Eq. 1.

3 Proposed method

3.1 NSAE-SU autoencoder

In order to perform the endmember extraction and fractional
map estimation, a convolutional model is proposed, as depicted
in Figure 1. The model is a convolutional autoencoder, and the
layers are arranged as described in Table 3 The loss function used
is the cross-entropy given by Eq. 8, where P is the number of
patches. The input shape selected is patches of size 9× 9; then four
convolutional operations are applied with the following filter sizes
(3× 3× 128), (3× 3× 64), (3× 3× 32), and (1× 1×R),where R is the

number of endmembers. Between each convolutional operation, a
dropout operation is performed to prevent the overfitting of the
data, except at the first convolutional operation, as the input data
are directly applied to the convolutional operation. Then, the ASC
constraint for the abundance maps is performed by the softmax
function.

L = − 1
P

P

∑
i=1
(αi logα̂i) . (8)

Next, at the decoder, a 2D convolutional operation is performed
to reconstruct the HSIs with filters of size (7× 7× 198); the
weights of the last layer are the extracted endmembers for each
image.

3.2 Hyperparameter configurations

The NSAE-SU model is an unsupervised deep learning model
autoencoder. The NSAE-SU is programmed in Python using the
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FIGURE 10
Boxplot analysis illustrating the Wilcoxon results obtained from the comparison of endmember extractions between NSAE-SU and CNNAEU for the
Samson dataset. The subfigure (A) displays the water endmember, (B) shows the tree endmember, and (C) shows the soil endmember. Boxplot analysis
illustrating the Wilcoxon results obtained from the comparison of endmember extractions between NSAE-SU and UnDIP for the Samson dataset. The
subfigure (D) displays the water endmember, (E) shows the tree endmember, and (F) shows the soil endmember.

TensorFlow libraries; the encoder and decoder integrate the model.
The abundance map is estimated by the encoder, and endmember
extraction is done by the decoder.The encoder uses the Leaky ReLU
activation function with a slope of 0.1 in four 2D convolutional
processes to estimate the abundance map; after the first 2D
convolution is applied, custom batch normalization is conducted
by each batch, removing the gamma factor, which is typically
performed during a batch normalization operation.Then, a dropout
with a rate of 0.03 is applied for the consecutive convolutional
operations. This is performed in the ASC layer, and a softmax
operation is applied using a scale factor of 3; the details for each
filter are given in Table 3. After the abundance maps have been
estimated, the decoder executes a 2D convolutional operation,
whose number of filters equals the number of image bands. A non-
negative kernel is employed to add ANC requirements; since the
number of endmembers must be greater than 0, a kernel constraint
is applied to avoid the non-negativity. The optimizer employed is
the RMSprop, and the learning rate is 0.0001, with 250 epochs in
total.

Table 3 illustrates the selected hyperparameters that were tuned
for the Jasper Ridge dataset and then reused for the other datasets.
The decisions regarding the size of the filters utilized in the
convolutional stages of the encoderweremade thoughtfully, as larger
filters could induce a blurring effect in the abundance maps. This
blurring effect might lead to a loss of fine spatial details, making
it challenging to differentiate between various materials. Following
this, the number of filters in the decoder is contingent upon the
count of end members and can be tailored for each HSI.

On the other hand, the optimal input patch sizes were
determined using the SAD metric within a search grid that
encompassed various patch dimensions. These dimensions were
defined heuristically as [(9x9), (15x15), (30x30), (60x60), and
(90x90)] for both the Samson and Jasper Ridge datasets, as shown
in Figure 2. Each plot within the figure illustrates the SAD scores
obtained for each endmember across the different patch sizes. For
the Samson dataset, the most effective configuration was identified
with an input patch size of (9x9) for water, trees, and soil. Conversely,
the optimal input patch size for the Jasper Ridge dataset was (15x15)
for the four materials: trees, water, soil, and road. However, all the
parameters for the benchmark datasets and HSI2 images were set
using the (9x9) grid patch size. This decision was made due to the
maintained SAM differences within a range of 0–0.15 across the
benchmark datasets.

3.3 General pipeline for the HSI2 Lake Erie
images

This section presents the workflow developed to address the
SU of the HSI2 hyperspectral image for endmember extraction and
the estimation of abundance maps. The proposed workflow has
five stages, as illustrated in Figure 3, and the steps are explained
as follows: the first stage is the data representation of the HSI
in hypercube format with sizes W×H× L. The second stage is
the selection of ROIs; this procedure is necessary because of the
high spatial resolution of the image HSI2 496× 5000; the image
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FIGURE 11
The extracted endmembers from 10 runs of the Jasper dataset are displayed for (A) NSAE-SU, (B) CNNAEU, and (C) UnDIP, respectively.

is subdivided into rectangles of small areas in order to cover the
entire image [(W1 ×H1 × L),…,(Wn ×Hn × L)], and the areas of
these rectangles are heuristically chosen Figure 4. Once the ROIs
are selected, the third stage involves the performance of the spectral
derivative (SD) to remove the sun glint effects in the image; the SD is
given by Eq. 9, where x is the middle band, and k is the step-length,
which corresponds to the hypercube wavelength.

f ‘ (x) ≈
f (x+ k) − f (x− k)

2k
. (9)

1) Jasper Ridge: This dataset has 224 bands, out of which 194 are
chosen after the noisy channel correction, and has a resolution
of 100× 100, where the wavelength range of each recorded scene
is 380–2500 nm; the Jasper Ridge dataset has four endmembers,
as follows: road, soil, water, and tree.

2) Samson: This dataset is a HSI with 156 bands and a spatial
resolution of 95× 95, and the wavelength range recorded by each
pixel of this scene is 401–889 nm. This dataset has three ROIs
selected from the original HSI, each of which has its respective

GT. Samson datasets have three endmembers corresponding to
soil, tree, and water.

3) HSI2 image of Lake Erie: This dataset was acquired by the NASA
during the campaign flight of 2017. After the acquisition stage,
these images were preprocessed for atmospheric correction. The
image is called the HSI2 image in this paper and has a spatial
resolution of 496× 5000× 170. The HSI2 image does not possess
GT for the endmembers and the abundance maps. Instead, the
GT is extracted from optical water types acquired from field
measurements explained in the proposed methods section.

The data are represented in a 2D array once the spectral
derivatives have been completed in order to extract the patches
for the suggested model NSAE-SU; the batch sizes having the
dimensions 9× 9× L are the input data for the model, and the last
stage is used to visualize the abundance maps and the endmembers.
This workflow is executed for each ROI of the HSI2 image, the
algorithm executed for the HSI2 is depicted in Algorithm 1.

In order to mitigate the variability due to noise in HSIs,
various approaches have been proposed. Hong et al. (2019)
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FIGURE 12
Boxplot analysis illustrating the Wilcoxon results obtained from the comparison of endmember extractions between NSAE-SU and CNNAEU for the
Jasper Ridge dataset. The subfigure (A) displays the water endmember, (B) shows the tree endmember, (C) exhibits the soil endmember, and (D) exhibits
the road endmember. In the bottom row, subfigures (E–H) correspondingly exhibit the water, tree, soil, and road endmembers for NSAE-SU vs. UnDIP.

FIGURE 13
Endmembers extracted from the HSI2 Lake Erie image using the NSAE-SU for each ROI, as follows, (A) red ROI, (B) green ROI, (C) cyan ROI, (D) blue
ROI, and (E) yellow ROI.

utilized the scaling factors of the endmembers for noise removal.
Another method, proposed in Duan et al. (2019), involves a three-
step process. First, an average is employed for dimensionality
reduction. Then, a multiscale feature analysis is conducted

using a relative total variation method that is robust to image
noise.

Spectral derivatives are a technique used to reduce noise and
remove variability in HSIs (Tsai and Philpot, 1998). This method
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FIGURE 14
Abundance maps extracted from the selected ROIs for the HSI2 image, where AM-0, AM-1, AM-2, and AM-3 represent the number of the abundance
map associated with the endmembers.

involves convolving the spectra with a spectral direction filter,
effectively eliminating random noise and minimizing the influence
of spectral details. It is particularly beneficial for HSIs with low
spatial resolution. In the case of studying HAB images with high
spatial content, spectral derivatives can be employed as a noise-
removal filter.

The algorithms are executed in a Dell precision server 7920
Rack XCTO Base, Intel Xeon Gold, Graphic card 4 GB NVIDIA
T1000, 1 TB SATAhard drive, 64 GBRAM, performance optimized.
In terms of computational cost, the NSAE-SU model primarily
incurs complexity from matrix multiplications, as it is composed
of 2D convolutional operations. This results in a computational
complexity of O (nmp), where n represents the number of samples,

m denotes the dimension of the input, and p signifies the dimensions
of the output features (Mertens, 2002; Hong et al., 2019; Hong et al.,
2021).

4 Experimental analysis

The experiments for the proposed method are conducted
on three different datasets, of which two are benchmark
datasets: the Samson and Jasper Ridge datasets. The other
dataset corresponds to the HSI2 NASA flight campaign from
2017. The datasets used in the experiments are described as
follows:
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Input: ROIs

Output: Endmembers extracted, fractional abundance

maps.

h← 3

for each ROI in range (ROIs) do

 input_patches = extract_patches (ROIs)

 f′(x) = f(x+h)−f(x−h)
2h

 endmember_NSAE-SU, abundances_NSAE-SU =

NSAE-SU(f′(x))

end for

Algorithm 1. Pseudo-code of the workflow for performing the endmember
extraction and fractional abundance map estimation for the HSI2 Lake Erie
image.

5 Performance metrics

In order to evaluate the performance of the proposed algorithm,
the extracted endmembers and fractional abundances are evaluated
separately. For the endmember extraction, the spectral angle
distance is given by Eq. 10, where m̂i represents the endmembers
extracted for the model andmi are the GT endmembers.

SAD = 1
R

R

∑
i=1

arccos(
⟨m̂i,mi⟩
‖m̂i‖2‖mi‖2

), (10)

For the abundance maps, mean square error is used, which is given
by Eq. 11, where α̂i represents the abundances of all pixels for i
endmember and αi is the reference abundance maps.

MSE = 1
R

R

∑
i=1
‖αi − α̂i‖ . (11)

6 Results and discussion

This section presents and discusses the results of applying
the general workflow and the NSAE-SU for SU analysis of the
benchmark datasets and the HSI2 Lake Erie HSI.

6.1 Endmember extraction and abundance
map estimation from benchmark datasets:
Samson and Jasper Ridge

In order to assess the performance achieved by the NSAE-SU for
endmember extraction (EE) and abundance map (AM) estimation,
it is applied to the Samson and Jasper Ridge benchmark datasets.The
performance of NSAE-SU on the Samson dataset is also compared
with five methods, three of them based on deep learning, such
as CNNAEU, UnDIP, and CAE; a classical method based on a
geometrical approach, VCA; and a non-negative tensor factorization
MV-NTF method. The endmembers extracted from the Samson
dataset by the five baseline algorithms and the model NSAE-SU are
depicted in Figure 5.The figure shows the endmembers generated by
the baseline algorithms compared to the GT. Each spectral signature
has been scaled between 0 and 1 to facilitatemeaningful comparison.

TABLE 8 Description of the number of patch sizes that are input into the
NSAE-SUmodel. Each ROI is stacked with size 9×9×170 for each area.

ROI Area Patch size

Red 25,730 (23068, 9, 9, 170)

Green 25,344 (22680, 9, 9, 170)

Cyan 19,340 (17125, 9, 9, 170)

Blue 17,856 (15640, 9, 9, 170)

Yellow 19,296 (17000, 9, 9, 170)

As described in the Experimental analysis section, the Samson
dataset possesses three endmembers: water, soil, and road, and the
measure used to assess the endmembers’ fidelity is the SAD, as
described in the Performance metrics section. Table 4 shows the
performance obtained for the baseline algorithms and the NSAE-
SU. The NSAE-SU algorithm achieved better performance for the
water endmember extraction, obtaining metrics of 0.060 and 0.025
for the soil, and it achieved the best mean SAD. On the other hand,
the abundance maps are evaluated using the RMSEmetric (Table 5).
Figure 6 illustrates the abundance maps for UnDIP, CNNAEU,
GT, and NSAE-SU algorithms. In this evaluation, our algorithm
outperforms the other baseline algorithms, achieving better results
for water 0.091 and soil 0.187.The second benchmark dataset under
study is the Jasper Ridge dataset. This dataset consists of four
endmembers: water, tree, soil, and road.TheGT and the abundances
maps are depicted in Figure 8. Table 6 presents the performance of
endmember extraction measured by the SAD. Notably, the NSAE-
SU method outperforms other algorithms, achieving an SAD of
0.039 for the tree endmember and 0.068 for the road endmember.
The water endmember also yields a favorable SAD value of 0.077.
In terms of mean SAD, the NSAE-SU method demonstrates
superior performance compared to baseline algorithms, with an
average SAD of 0.076. Furthermore, the extracted endmembers
are illustrated in Figure 7. Regarding the abundance maps, better
performance is observed for the water abundance map with an
RMSE of 0.1121, and an RMSE of 0.2316 is observed for the soil
abundance map (as indicated in Table 7). Figure 8 displays the
abundance maps obtained for CNNAEU, UnDIP, NSAE-SU, and
the GT.

To verify the robustness of the experimental design and
evaluate the NSAE-SU model, the CNNAEU and UnDIP models
were executed 10 times each. This was done to facilitate the
Wilcoxon statistical analysis on benchmark datasets like Samson
and Jasper Ridge, depicted in Figure 9, Figure 10, and Figure 11
respectively, and the extracted endmembers are illustrated for the
respective models NSAE-SU, CNNAEU, and UnDIP. Subsequently,
the Wilcoxon test is conducted, employing the spectral angle
distance metric, on each model’s extracted endmembers. The
resulting SAD values from each model are then compared against
those from the NSAE-SU model using the Wilcoxon test.

Figures 10A–C illustrate a boxplot analysis that contrasts NSAE-
SU with CNNAEU for the endmembers water, tree, and soil.
This analysis reveals statistically significant differences between
our algorithm and CNNAEU in the extraction of water and
tree endmembers. The NSAE-SU model outperforms by yielding
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FIGURE 15
Comparison between the spectra provided in Ficek et al. (2011), as ground truth, and the spectra extracted by the NSAE-SU model illustrate the best
match using the SAD metric for the red and green ROI, respectively. (A) The best match obtained for the red ROI is the Chl-a-3 spectra and the
endmember 1 extracted from NSAE-SU. (B) The best match obtained for the green ROI is the Chl-a-2 spectra and the endmember 1 extracted from
NSAE-SU. In figures (C) and (D), the provided illustration offers a comparison between the spectra extracted by the NSAE-SU model evaluated using the
SAD metric, and the ground truth data from the paper Liang et al. (2017) for the green and cyan regions of interest (ROIs). In (C), the most favorable
match for the green ROI aligns with the Chl-a-33 spectra and the endmember 1 extracted from NSAE-SU. (D) for the cyan ROI, the optimal
correspondence is observed between the Chl-a-44 spectra and endmember 2 extracted from NSAE-SU.

SAD metrics close to 0, indicating high similarity between
the endmembers extracted by NSAE-SU. However, for soil,
CNNAEU demonstrates superior outcomes. On the other hand,
when comparing the NSAE-SU and UnDIP models using the
Wilcoxon test, as shown in Figures 10D, E, and 10(F), our algorithm
outperforms UnDIP in terms of endmember extraction for water.
This improvement is reflected in the better SAD results. Notably,
there is a high correlation between the endmembers extracted by
NSAE-SU and the ground truth for the Samson dataset. For tree
and soil endmembers, UnDIP achieves superior results in the SAD
metric.

Figures 12A–D depict boxplot analyses that compare NSAE-
SU with CNNAEU for the Jasper Ridge dataset using the

Wilcoxon test across the four extracted endmembers. These
analyses reveal statistical differences for the water and tree
endmembers, with the NSAE-SU model demonstrating a superior
performance based on SAD metrics. However, no statistically
significant differences were observed for the soil and road
endmembers.

On the contrary, in the comparison between NSAE-SU and
UnDIP, as shown in Figures 12E–H, across the four extracted
endmembers, this analysis indicates statistical differences for
water, tree, and soil. Notably, NSAE-SU exhibits superior
performance when compared to UnDIP. However, for the
road endmember, UnDIP presents a more favorable SAD
metric.
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TABLE 9 Results for the SADmetric comparison of the spectral signatures of
different Chl-a concentrations extracted from Ficek et al. (2011), with the
endmembers obtained fromNSAE-SU.

Red ROI Green ROI Cyan ROI Blue ROI Yellow ROI

Chl-a-1 0.771 0.334 0.382 0.339 0.364

Chl-a-2 0.738 0.311 0.416 0.307 0.328

Chl-a-3 0.369 0.352 0.754 0.463 0.456

Chl-a-4 0.453 0.417 0.798 0.507 0.490

Chl-a-5 0.550 0.408 0.742 0.476 0.453

Chl-a-6 0.605 0.567 0.896 0.629 0.601

6.2 Endmember extraction and abundance
map estimation for the HSI2 Lake Erie
hyperspectral image

The NSAE-SU model is employed to extract endmembers, as
shown in Figure 13, and computation of fractional abundance maps
for the HSI2 image is depicted in Figure 14. This analysis aims to
discern the distinct spectral signatures present in the image. The
experiment is conducted on the five ROIs selected previously and
classified in Manian et al. (2022). The selected ROIs are called the
following: red ROI with an area of 25,730 pixels, green ROI with
an area of 25,344 pixels, cyan ROI with an area of 19,430, blue
ROI with an area of 17,856 pixels, and yellow ROI with an area of
19,296 pixels, as depicted in Figure 4. Once the ROIs are selected,
a spectral derivative is used to perform the atmospheric correction,
using k = 3, which is defined heuristically.

The data are then distributed in a patch size of 9, 9, and 170; the
number of patches changes due to the difference in the area of the
ROIs, as shown in Table 8. Subsequently, each ROI is analyzed, and
the abundance maps and endmembers are extracted, as shown in
Figure 13.

It is essential to compare the recovered endmembers with
baseline spectral signatures to conduct the analysis; for this
case study, we propose two comparison methods. The first is a
comparison method to analyze the presence of Chl-a spectral
signature, which is provided in the paper Ficek et al. (2011) with

eight curves that possess the following Chl-a concentrations,
respectively, for each curve: 0.020mgL−1, 0.038mgL−1, 0.052mgL−1,
0.112mgL−1, 0.276mgL−1, 0.742mgL−1, 0.966mgL−1, and 1.660mgL−1.
Each concentration curve for this analysis will be called Chl-a-1,
Chl-a-2, Chl-a-3, Chl-a-4, Chl-a-5, and Chl-a-6, respectively.

The second method involves analyzing the spectral
signatures extracted from Liang et al. (2017) of cyanobacteria
scum, Nymphoides, Potamogeton, and varying proportions
of Chl-a. The concentrations are as follows: suspended
solid (SS)—266.2mgL−1, Chl-a—0.0083mgL−1; SS—228.7mgL−1,
Chl-a—0.0077mgL−1; SS—127.7mgL−1, Chl-a—0.0034mgL−1;
SS—65.9mgL−1, Chl-a—0.0023mgL−1; SS—28.8mgL−1, Chl-
a—0.0024mgL−1; SS—21.2mgL−1, and Chl-a—0.0057mgL−1. To
distinguish between the labels used for the initial comparison, each
concentration curve of Chl-a is assigned a specific identifier: Chl-a-
11, Chl-a-22, Chl-a-33, Chl-a-44, Chl-a-55, and Chl-a-66. The SAD
metric is employed for the analysis utilizing the reference spectra
provided in papers Ficek et al. (2011); Liang et al. (2017), and the
endmember estimation is carried out by the NSAE-SU model.

Figure 15A shows the comparison between the reference spectra
provided by Ficek et al. (2011) and the spectra obtained for NSAE-
SU for the red ROI. The best approximation for the SAD metric is
0.369, which is obtained between the endmember 1 extracted from
NSAE-SU and Chl-a-3, which possesses 0.052mgL−1 of the content
of Chl-a. Figure 15B analyzes the green ROI, whose best match
according to the spectral angle distance is 0.311 betweenChl-a-2 and
the second endmember extracted from NSAE-SU. The SAD metric
obtained for each region of interest using the spectra of Ficek et al.
(2011) as ground truth, and the spectra obtained using the NSAE-
SU method are summarized in Table 9, for the best endmembers
for each ROI. The comparison between the endmembers obtained
fromNSAE-SU and the ground truth provided by Liang et al. (2017)
is evaluated using the SAD metric for each ROI. The results are
summarized in Table 10 and depicted in Figures 15C, D. In this
context, the term endmembers refers to the spectral signatures
extracted from the NSAE-SU model.

The concentration of Chl-a-33 compared to endmember 1
demonstrates the best curve fitting for the green ROI, while Chl-
a-44 compared to endmember 1 achieves the best curve fitting for
the cyan ROI. Additionally, comparing Chl-a-33 to endmember 2

TABLE 10 Results for the SADmetric comparing the spectral signatures of different Chl-a andmacrophytes under different concentrations extracted from
Liang et al. (2017), with the endmembers obtained fromNSAE-SU.

Red ROI Green ROI Cyan ROI Blue ROI Yellow ROI

Cyanobacterial scums 0.741 0.639 0.739 0.545 0.798

Nymphoides peltata 0.845 0.746 0.834 0.635 0.885

Potamogeton crispus 0.786 0.695 0.762 0.587 0.799

Chl-a-11 0.540 0.447 0.447 0.547 0.754

Chl-a-22 0.654 0.617 0.640 0.733 0.857

Chl-a-33 0.448 0.307 0.319 0.376 0.658

Chl-a-44 0.477 0.321 0.307 0.356 0.669

Chl-a-55 0.616 0.549 0.547 0.650 0.822

Chl-a-66 0.619 0.551 0.563 0.659 0.832
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provides the best curve fitting for the yellow ROI, as evaluated using
the SAD metric. Figures 15C, D illustrate the optimal curve fitting
for the green and cyan ROIs according to the SAD metric. The best
concentration of Chl-a for Chl-a-33 is Chl-a 0.0034mgL−1, and for
Chl-a-44, it is Chl-a 0.0023mgL−1.

7 Conclusion

An unsupervised deep learning model for endmember
extraction and fractional abundance map estimation from the HSI
is presented.The NSAE-SUmodel performs well for the benchmark
HSI datasets, such as the Samson and Jasper Ridge datasets, and for
the study case of the HSI2 image over Lake Erie. The model is able
to identify the endmembers for the water, soil, and road and the
abundance maps for water, road, and trees better than the baseline
algorithms. Additionally, the spectral signatures extracted using the
NSAE-SU model over the Lake Erie HSI is analyzed to determine
the presence of Chl-a. The 9× 9 patch size is determined to be the
ideal configuration, and the best hyperparameter settings for the
model are listed in Table 3. The models operate at a nominal speed
of approximately 3 h and 45 min.

The proposed workflow can be utilized for studying various
material compositions within HSIs. Building upon the initial
framework, it is feasible to analyze waterbodies and diagnose the
condition of coral reefs, as well as assess their degradation. This
assessment can be conducted at different time intervals to facilitate
change detection by studying distinct spectral signatures present in
each image.
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