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There are abundant deep coal resources in northern Shaanxi, but the fragile
natural environment in this area hinders the large-scale exploitation of oil-rich
coal. In-situ thermal conversion of deep coal to oil and gas will become an
environmentally friendly technology for oil-rich coal mining. Accurate prediction
of oil-rich coal tar yield in various regions is a prerequisite. Based on a particle
swarm optimization algorithm and two machine learning algorithms, BP neural
network and random forest, a prediction model of tar yield from oil-rich coal is
constructed in this paper. Combined with the particle swarm optimization
method, the problem of slow convergence speed and possibly falling into local
minimum value of BP neural network is solved and optimized. The results showed
that the PSO-BP had a convergence speed about five times faster than that of the
BP neural network. Furthermore, the predicted value of the PSO-BP was
consistent with the measured value, and the average relative error was 4.56%
lower than that of the random forest model. The advantages of fast convergence
and high accuracy of the prediction model are obviously apparent. Accurate
prediction of tar yield would facilitate the research process of in-situ fluidized
mining of deep coal seams.
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1 Introduction

Tar-rich coal is a resource that integrates coal, oil, and gas attributes, and it has
received significant attention due to its high tar yield (Ju et al., 2021; Du and Li, 2022).
When the coal is subjected to pyrolysis (500°C–700°C) and Gray-King assay, coal with a
tar yield of more than 7% and less than or equal to 12% is classified as tar-rich coal (Jiang
et al., 2020; Shi et al., 2022). This type of coal is an important way to increase oil and gas
supply (one tonne of tar-rich coal can yield approximately 10% oil and 500 m3 of
combustible gas (Marshall et al., 2015; Chen et al., 2017; Li et al., 2022; Ma et al., 2022),
thereby realizing clean and efficient utilization of coal resources. Specifically, China is
rich in tar-rich coal resources but faces the pressure of “poor oil and gas” energy, which
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has promoted the development of the coal-to-liquids industry
(Wang et al., 2020; Wang et al., 2021; Liu et al., 2023a; Liu et al.,
2023b; Liu and Li, 2023). The subversive idea of deep fluidization
mining is to realize the local fluidization of solid resources in
deep earth, form liquefied, gasification, electrochemical,
biological, and mixed fluidization resources, and efficiently
and intelligently transfer them to the surface in the form of
fluidization. The subversive theory and technical conception of
deep-ground fluidized mining break through the limitation of the
traditional mining depth of coal solid mineral resources, and
fundamentally subvert the mining mode of reliable resources.
Oil-rich coal’s oil and gas properties ensure in-situ conversion in
fluidized mining technology. The fluidized mining technology of
deep coal seams has also been deeply studied (Zhang et al., 2023;
Zhang et al., 2023; Li et al., 2023). Oil-rich coal has been one of
the important ways to guarantee national energy security in
China. However, more than 80% of coal is directly combusted
for power generation, result in a massive wastage of precious oil
resources (Xu et al., 2015; Ju et al., 2021). Moreover, only a few
coal samples were tested for tar production during past geological
explorations, limiting the study and large-scale development of
tar-rich coal (Fu et al., 2023; Wang et al., 2023). Thus, it is
essential to explore the mathematical relationship between tar
yield and the geological evaluation index of tar-rich coal to
predict the tar yield.

In the study of the tar-rich coal in oil-rich coal mining areas,
some scholars have summarized the mathematical relationship
between tar yield and coal seam thickness, industrial analysis,
macrolithotype and micro-composition, ash content, actual
density (Shi et al., 2022). Furthermore, a prediction model for
the tar yield of low-rank coal in Shenfu Southern mining area
was established using multiple linear regression and other
mathematical methods, and the multiple correlation coefficient
reached 0.8 (Guo et al., 2021). A general relationship exists
between tar yield and these parameters, but the Pearson
correlation coefficient is low, indicating a complex nonlinear
relationship. Thus, a machine learning method is suitable for
investigating the relationship between tar yield and other
geological evaluation indices of coal. With the progress of science
and technology, the technique of machine learning is more and
more applied to the geological coal industry such as gas outburst
prediction (Wu et al., 2020; Gao et al., 2023; Zhu et al., 2023), coal
ash softening temperature prediction (Liang et al., 2020), coal
gangue identification (Wang et al., 2022), coal dust wettable
identification (Zheng et al., 2023), coal seam impact risk
assessment (Zhang et al., 2022), etc. It has become a new
research hotspot in coal geological engineering practice to mine
the relationship between various nonlinear big data through
machine learning algorithms to realize data prediction. Based on
the geological data, coal quality testing data and geophysical logging
data of Huangling mining area in the past geological exploration
stage, the relationship between tar-rich coal tar yield and
geophysical logging data has been studied, and the calculation
model of tar-rich coal tar yield and logging compensation density
value has been established (Yan et al., 2022). Using logging data, BP
neural network technology has been applied to predict coal tar yield
(Zhao et al., 2021).

Although the above study can get a particular-pattern of tar
yield, it is only a rough estimate. The research using the BP neural
network method to predict the tar yield is still in the beginning
stage. There are some problems, such as slow convergence speed
and easy falling into the local optimum, so it can not realize the
accurate prediction of the tar yield of the coal that has been mined
before but has not been tested (Zhang et al., 2022; Li et al., 2022).
In this paper, we established the prediction model of PSO-BP,
which combines the PSO algorithm and BP neural network based
on the geological evaluation index of tar-rich coal. In this paper,
the particle swarm optimization algorithm (PSO) is used to
optimize the BP network connection weights and thresholds to
overcome the defects of BP network. Based on the measured coal
quality data in the past, the PSO-BP tar yield prediction model
was established to predict the coal tar yield. The convergence
speed and prediction accuracy are significantly improved
compared with the traditional BP network.

2 Materials and methods

2.1 Experimental data

Samples of coal were obtained from coal seam 2–2 in oil-rich
coal mining areas, which have high calorific value, rich tar, low
ash, low sulfur, and low phosphorus. The coals were analyzed
according to ISO 17247:2013 (Coal-Ultimate analysis) and ISO
17246:2010 (Coal-Proximate analysis). Proximate analysis used
an automatic analyser to determine the moisture (Mad), ash (Ad),
volatile matter (Vdaf), and fixed carbon (FCad) content of coal
samples. The ultimate analysis of coal was performed to
determine the elemental content of C,H and S. The seven
geological evaluation indices [volatile matter (Vdaf), ash (Ad),
moisture (Mad), fixed carbon (FCad), Sulfur (St,d), hydrogen
(Hdaf) and carbon (Cdaf)] and tar yield values of 52 coal
samples were used for this research. These seven coal quality
indicators are the external manifestation of the essential nature of
coal. From the analysis results of these seven coal quality
indicators, the types of coal, processing and utilization ways
and mining technologies can be related and corresponding
policies can be adopted for efficient mining.

Some studies show that with the increase of volatile matter, the
coal tar yield shows a weak, increasing trend. The moisture content
in coal decreases with the increase in coal grade, and the moisture
content also affects the tar yield. The effect of ash content on tar yield
is reflected in that clay minerals in ash composition are positively
correlated with tar. In contrast carbonate minerals are negatively
correlated with tar yield (Du and Li, 2022). Tar yield is also closely
carbon structure of the carbon in coal. Carbon content (Cdaf) and
hydrogen content (Hdaf) determine the H/C atomic ratio of coal,
which indicate the key hydrogen-rich structure or the distribution
type of hydrogen and oxygen elements in coal (Liu et al., 2016; Li
et al., 2022), which plays a more critical role in tar yield. The
migration of sulfur content (St,d) during pyrolysis also affects the tar
yield. In addition, as the most widely tested items in coal, these seven
indices have been generally recorded in the previous exploration
results. The selection of these seven indices to predict the coal tar
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yield of great significance to realize the full utilization of the previous
exploration results.

2.2 BP neural network

The BP network has a simple structure, is easy to use, and has
broad applicability (Hinton et al., 2006). The design of the BP neural
network is shown in Figure 1, which is composed of an input layer, a
hidden layer and an output layer. The layers are fully connected to
each other (Wu et al., 2020; Wang et al., 2022). The input layer is the
normalized value of each coal geological evaluation index, and the
output layer is the value of tar yield to be predicted.

2.3 Particle swarm optimization (PSO)
algorithm

Although BP neural network has excellent self-learning, high
fault tolerance, good generalization performance, and other
advantage, but could be better, there are some things that could
be improved. Given the main defect of slow convergence speed,
many researchers focus on combination with other intelligent
algorithms. The combination with different intelligent algorithms
is mainly combined with genetic algorithm (GA) and Particle Swarm
Optimization (PSO) algorithm. We introduce PSO to improve the
convergence speed and accuracy of the tar yield prediction model.

Based on previous research, the PSO algorithm can obtain the
optimal global value and assign it to the weight and threshold of the
BP neural network, which can overcome some of the defects of the
BP neural network (Li et al., 2022; Zhu et al., 2023). PSO is an
algorithm that searches for the best solution by simulating the
movement and flocking of birds. The algorithm randomly
initializes a flock of birds over the search space, where each bird

is called a “particle.” These “particles” fly with a certain velocity and
find the best global location after some iterations. The steps of the
PSO algorithm are as follows (Moazen et al., 2023; Song et al., 2023;
Yin et al., 2023).

Step 1. Initialize the particle swarm (there are n particles): assign a
random initial location and velocity to each particle.

Step 2. Calculate the fitness value according to the objective
function of the optimization problem.

Step 3. Compare the fitness value of the particle’s current location
with its historical best location (pbest). If the fitness value of the
current location is better, the place location is replaced.

Step 4. Compare the fitness value of the particle’s current location
with its global best location (gbest). If the fitness value of the current
location is better, the gbest is replaced.

Step 5. Update the velocity and location of each particle according
to Eq. 1 and Eq. 2.

vkid � wvk−1id + c1r1 pbestid − xk−1
id( ) + c2r2 gbestd − xk−1

id( ) (1)
xk
id � xk−1

id + vk−1id (2)
vkid represents the d-dimensional component of the velocity

vector of particle i in the K-th iteration; xk
id represents the

d-dimensional component of the position vector of particle i in
the K-th iteration; c1 and c2 represent the acceleration constant and
are used to adjust the maximum learning step length; r1 and r2
represent two random parameters with a value range of [0,1] to
increase the randomness of search. Inertia weight w represents the
non-negative parameter and is used to adjust the search range of the
solution space.

FIGURE 1
BP neural network structure for predicting tar yield.
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Step 6. The global optimum is output if the stopping criteria are
achieved, Otherwise, the algorithm goes back to Step 2.

2.4 Random forest regression

Random forest is a supervised machine learning method that
integrates decision trees as individual learners. It further introduces
randomness into the training process of decision trees, so that it has
excellent anti-overfitting and anti-noise ability. The random forest
algorithm performs the following steps.

1) Extract a training set from the original sample. Each round uses
Bootstrapping to extract n training examples from the original
sample set (with replacement sampling). A total of k extractions
are made.

2) One training set obtains a model at a time, resulting in k models
from k training sets.

3) For the regression problem, calculate the mean of the above
model as the final result.

3 The establishment of a tar yield
prediction model

3.1 Structure design of BP neural network

Firstly, the node number of the input and output layers of the BP
network is determined according to the actual problem. Then the
most appropriate hidden layer number and node number are
determined on the premise of ensuring the accuracy of the
algorithm. As for the number of hidden layers, the three-layer
BP network of a single hidden layer can complete the nonlinear
mapping of any dimension (Hinton et al., 2006; Liang et al., 2020;
Zhang et al., 2022). Thus, the network structure of a single hidden
layer is adopted. As for the number of nodes in the hidden layer, too
many nodes may lead to a massive amount of computation, while
too few nodes may reduce the model’s accuracy (Tang et al., 2023;
Xie et al., 2023). Thus, the number of hidden layer nodes is usually
determined according to the empirical formula, as shown in Eq. 3:

H � �����
I + O

√ + b (3)
Where H, I and O are the nodes of the network’s hidden layer,

input layer and output layer respectively. B is a natural number
from (0,10).

3.2 The structure of particles and
populations

Based on the particle population of training sample data, the
mapping relationship between the weight and threshold of the BP
network and the particle dimension of PSO is established. Suppose
the number of neurons in the input layer, hidden layer and output
layer of the BP network is I, H and O respectively, the spatial
dimension of PSO particles is d=I×H+H×O+O, which corresponds
to the number of weights and thresholds in the BP neural network.

3.3 Construction of fitness function

Themean square error calculation formula of BP neural network
output is used as the fitness function of PSO algorithm, as shown in
Eq. 4.

F � MSE � 1
n
∑
n

i�1
yi − y′

i( )
2

(4)

Where yi is the i-th actual output value of the network; y′i is the
expectation value of the i-th.

3.4 Design of PSO-BP neural network model

The steps of weight and threshold of BP neural network
optimized based on particle swarm optimization are as follows.
The algorithm flow of the PSO-BP model is shown in Figure 2.

Input: Training sample set.

Step 1. Initialize network parameters.

1) Set the learning parameters of the BP network. These include the
activation function, training function, learning rate (lr), goal
error (goal), and maximum iterations (epochs), which are
determined based on the training sample data.

2) Set the parameters of the PSO algorithm. The parameters in the
particle swarm are initialized, including the number(n) of
particles, their initial location (xi) and velocity (vi) of particles,
acceleration constants (c1, c2), inertia weight (w), optimal
personalized value (pbest) and global optimal value (gbest).

Step 2. Iteratively update particle locations, velocities, individual
optimal values, and global optimal values.

1) Calculate the fitness value F(x) of each particle based on Eq. 4,
and then calculate the pbest and gbest.

2) Update the location and velocity of particles based on Eq. 1 and
Eq. 2, and then update the pbest and gbest.

Step 3. Evaluate whether one of the following conditions is met. If
yes, go to Step 4; otherwise, Step 2.

1) The training errors of the network meet the accuracy
requirements.

2) The training frequency of the network reaches the maximum
number of iterations.

Step 4. Output the global optimum (gbest) and assign the weight
and threshold to the network. The algorithm ends.

Output: A trained BP neural network. This illustration belongs
to 3.5.

3.5 The structure of random forest

The establishment of random forest model is inseparable from the
combination of decision trees. Similar to the flowchart of the tree
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FIGURE 2
Flow of PSO-BP model algorithm.

FIGURE 3
Random forest principle for predicting tar yield.
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structure, a decision tree is a recursive process from top to bottom. It
starts from the tree’s root node, selects the optimal features in different
internal nodes, determines the corresponding branch according to the
test output, and the final result comes from the nodes of the leaf of the
decision tree (Figure 3).

4 The studying and training of the tar
yield prediction model

4.1 Learn parametric sample selection

We collected 52 coal quality analysis data of coal seam 2–2 in oil-rich
coalmining areas, and used the data set randompartition function in the
python language sci-kit-learn machine learning library to take 40 coal
quality analysis data as the training data set of the model, and the other
12 coal quality analysis data as the test data set of the model. The
industrial analysis and elemental analysis data of 40 groups of coal
samples are used as training dataset for the model. The dataset includes
seven geological evaluation indices [volatile matter (Vdaf), ash (Ad),

moisture (Mad), fixed carbon (FCad), Sulfur (St,d), Hydrogen (Hdaf), and
carbon (Cdaf)] and tar yield values of 40 coal samples used as the model
output parameters. Part of the original training sample data is shown in
Table 1. The statistical data of the actual training sample and the
correlation coefficients with the tar yield are shown in Table 2.

4.2 Preprocessing training data

If the geological evaluation indices of coal with significant
differences are directly input to the model, the prediction
accuracy will be reduced and the convergence speed will be slow.
Therefore, the z-score standardized method was adopted to map the
input sample data to the same magnitude, as shown in Eq. 5:

zij � xij − �xj

sj
i � 1, 2,/, n, j � 1, 2,/, m( ) (5)

Where Xij represents the data of the i-th sample and j-th
variable before standardization; Zij is the standardized data; �xj

and sj are the average and variance values in the data series.

TABLE 1 Original training sample data (partial data).

Serial
number

Moisture
(Mad)%

Ash
(Ad)%

Volatile matter
(Vdaf)%

Fixed carbon
(FCad)%

Sulfur
(St,d)%

Carbon
(Cdaf)%

Hydrogen
(Hdaf)%

Tar yield
(Tar.d)%

1 6.76 4.49 36.78 56.3 0.34 83.4 4.68 9.4

2 6.19 9.19 35.65 54.82 0.87 81.38 4.12 7.8

3 5.34 10.79 37.31 52.94 0.43 81.53 4.7 9.2

4 5.71 9.97 37.73 52.86 0.47 81.67 4.88 11.1

5 5.18 10.97 36.99 53.19 26.72 0.51 81.53 4.8

6 5.93 7.25 37.66 54.39 27.94 0.45 81.81 4.86

7 6.07 7.24 37.69 54.29 27.82 0.49 81.83 4.83

8 5.73 7.47 36.62 55.29 27.83 0.57 82.2 4.65

9 4.59 18.9 37.12 48.66 23.62 0.86 80.51 4.28

10 5.62 18.57 36.17 49.05 23.67 0.65 80.82 4.33

11 5.74 10.84 37.34 52.66 26.08 0.94 81.06 4.27

. . . . . . . . . . . . . . . . . . . . . . . . . . .

TABLE 2 Statistical data of various coal quality indicators.

Indicators Average Variance Kurtosis Skewness Correlation coefficient

Moisture (Mad)% 6.32 1.31 1.20 0.44 0.08

Ash (Ad)% 9.84 73.38 19.93 3.80 −0.18

Volatile Matter (Vdaf)% 38.08 10.76 0.05 0.25 −0.11

Fixed Carbon (FCad)% 52.31 34.43 8.81 −2.22 0.20

Sulfur (St,d)% 0.68 0.20 11.43 2.86 −0.45

Carbon (Cdaf)% 80.98 3.01 5.01 −1.85 0.16

Hydrogen (Hdaf)% 4.47 0.13 −0.02 −0.15 0.23

Tar Yield (Tar.d)% 8.02 1.71 0.48 −0.18 1.00
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4.3 Select and set model parameters

4.3.1 Select studying and training parameters of BP
networks

Based on the practical problem, the number of nodes in the
input and output layers of the BP neural network was determined
to be 7 and 1 respectively. These values were then substituted into
Eq. 3 to calculate that H ranged from 2 to 13. After repeated tests,
the optimal number of hidden layer nodes was determined to be
4. The target error goal was 0.25, the learning rate was set to
0.005, and the maximum number of iterations was set to epochs =
3000. The activation function for the hidden layer was selected as
the Sigmoid function, a smooth function biased towards
derivative and can map any input to the range of [0,1]. The

BP neural network’s iterative training and optimization process is
shown in Figure 4.

4.3.2 Set the PSO algorithm parameters
The number of particles generally ranges from 20 to 200. A large

number of particles leads to a robust global optimization ability of
the algorithm but also increases the amount of computation and
slows down the convergence speed. Thus, based on the complex
nonlinear relationship between the input and output of the model,
the number of particles was set to 50 to obtain the global optimum.

The inertia weight w affects the global and local search ability of
particles. The more oversized w is, the more conducive it is to global
search; the smaller w is, the more conducive it is to local search.
Therefore, the value of w was set to 0.1.

The acceleration constants c1 and c2 are the weights that adjust
the role of their experience and social experience in their motion.
The fixed c1 and c2 are only limited to the application of some
problems and cannot be generalized to all problem domains. In
general, c1 + c2 ≤ 4, and c1 = c2 = 1.49445 is commonly used.

To balance the algorithm’s running speed and the practical
problem’s needs, the maximum of iterations was set to 30 (Li et al.,
2022).

4.3.3 Set the random forest parameters
To establish a reliable tar yield prediction model, it is necessary

to adjust the parameters of the random forest regression algorithm
to obtain the optimal algorithm parameters.

The most crucial algorithm parameter is the number of decision
trees. A small number of decision trees will not make the effect of the
model entirely play, and a large number of decision trees will not
only reduce the training and prediction speed of the model, but also
cause the problem of over-fitting. In this problem, when the number
of decision trees is greater than 50, the accuracy performance of the
model almost stops improving. Therefore, the value 50 is selected as
the optimal this paper’s random forest regression algorithm in this
paper.

FIGURE 4
BP neural network iterative training optimization process.

FIGURE 5
PSO-BP neural network iterative training process.
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Parameters such as max tree depth, max min leaf nodes, and
max number of features have little impact on the random forest
regression model, and we keep the default Settings in the scikit-learn
machine learning library.

4.4 Comparison of model training speed

The original training data in Table 1 were imported into the BP
and PSO-BP models for training after standardized processing. The
training times required for both models to achieve the target

accuracy requirements were obtained. The iterative training
process of the PSO-BP neural network is shown in Figure 5. The
random forest model is not iterative, so we don’t compare its
training speed.

It can be seen from Figure 5 that the PSO-BP prediction model
needs about 400 iterations to meet the accuracy requirements, while
the BP neural network prediction model needs about
2000 iterations. Therefore, the training speed of the PSO-BP
prediction model was about five times faster than the BP
prediction model when meeting exact same accuracy
requirements. It indicates that the BP network optimized by the
PSO algorithm overcomes the problem of slow convergence speed,
and improves the training speed.

5 Practical engineering project

In engineering practice, the model’s generalization ability is
more important than the fitting performance. To test the
prediction performance and universality of the tar yield
prediction model, we used three models of BP neural network,
PSO-BP, and random forest to predict the tar yield values of the
12 test set data mentioned above and compared them with the
measured values.

The test set data are standardized and then imported into BP
model and PSO-BP model respectively. Since the random forest
model is not sensitive to the numerical magnitude, the test set
brought into the random forest model does not need to be
standardized. The comparison between the predicted and
measured values of each model is shown in Figure 6, and the
corresponding error is shown in Table 3.

Figure 6 shows deviations between the predicted values of the
three predictive models and the measured values. Notably, the

FIGURE 6
Comparison of predicted values and measured values of tar yield
in each model.

TABLE 3 Analysis of tar yield prediction deviation.

NO. Actual
value (%)

BP
prediction (%)

Relative
error (%)

PSO-BP
prediction (%)

Relative
error (%)

Rf
prediction (%)

Relative
error (%)

1 9.2 8.37 8.97 8.08 12.12 8.60 6.47

2 7.9 6.60 16.42 7.12 9.83 6.97 11.79

3 10.1 8.00 20.79 7.95 21.27 7.07 30.03

4 6.8 6.14 9.64 6.77 0.37 7.12 4.68

5 8.6 9.29 7.99 7.87 8.48 7.89 8.29

6 6.3 6.80 7.88 7.01 11.21 8.81 39.79

7 9 8.52 5.28 8.87 1.44 7.69 14.56

8 8.3 8.70 4.77 8.23 0.86 8.36 0.70

9 7.6 7.92 4.25 7.88 3.65 7.73 1.75

10 7.3 7.18 1.62 7.84 7.43 6.98 4.36

11 8.5 8.99 5.73 8.48 0.24 8.85 4.14

12 7.6 7.68 1.02 8.03 5.62 8.73 14.85

AVG 8.1 7.85 8.17 7.84 7.17 7.90 11.73
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PSO-BP network model is more accurate than the BP network
and random forest model, with a better fitting effect and the
predicted values are closer to the measured values. As shown in
Table 3, the relative errors of the PSO-BP network model are
minor. Compared with the BP network model, the PSO-BP tar
yield prediction model has a more stable nonlinear fitting ability
and more vital generalization ability. Compared with the
random forest model, the results of the PSO-BP model are
more accurate. The model is a simple and effective method
for predicting the tar yield, indicating the nonlinear relationship
between the geological evaluation index (industrial analysis and
elemental analysis) and the tar yield index of coal.

6 Conclusion

Based on the three machine learning algorithms, a tar yield
prediction model was constructed for seven geological evaluation
indices of tar-rich coal in oil-rich coal mining areas. Following
conclusions were drawn.

(1) The convergence speed of the PSO-BP model was about five
times faster than that of the traditional BP network, thus
overcoming the disadvantage of slow convergence speed of
the BP network.

(2) The coal tar yield of the 2–2 coal seam in oil-rich coal mining
areas was predicted, and verified, demonstrating the model’s
easy implementation, high prediction accuracy, and strong
generalization ability.

(3) The practical engineering project showed that the predicted
values of the PSO-BP model were close to the measured
values. The relative error of the PSO-BP model was smaller
than that of the random forest model, and the average
relative error of the 12 test samples was reduced by
4.56%. Therefore, the prediction accuracy and
universality of the PSO-BP model were significantly
improved compared to the random forest model,
providing reliable data support and a new technical
approach for coal tar yield prediction.

In conclusion, the PSO-BP prediction model provides reliable data
support and a new technical approach for predicting coal tar yield.
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