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Earthquake Early Warning (EEW) is an alert system, based on seismic wave
propagation theory, to reduce human casualties. EEW systems mainly utilize
technologies through both network-based and on-site methods. The network-
based method estimates the hypocenter and magnitude of an earthquake using
data from multiple seismic stations, while the on-site method predicts the
intensity measures from a single seismic station. Therefore, the on-site method
reduces the lead time compared to the network-based method but is less
accurate. To increase the accuracy of on-site EEW, our system was designed
with a hybrid method, which included machine learning algorithms. At this time,
machine learning was used to increase the accuracy of the initial P-wave
identification rate. Additionally, a new approach using a nearby seismic station,
called the 1+ αmethod, was proposed to reduce false alarms. In this study, an on-
site EEW trial operation was performed to evaluate its performance. The warning
cases for small and large events were reviewed and the possibility of stable alert
decisions was confirmed.
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1 Introduction

When an earthquake occurs, the earthquake early warning (EEW) service rapidly detects
and analyses the P-wave and transmits warning messages to the public. The pre-hazard early
warning system plays a role in disaster prevention in cities (Eichenberger et al., 2013; Liu
et al., 2021). The EEW has been proven to be highly effective in reducing human casualties
since the 2000s (Allen and Melgar, 2019). The aim of EEW is to notify the public about
imminent strong ground shaking and to protect the people, public systems, and national
infrastructure (Heaton, 1985; Strauss and Allen, 2016; Allen and Melgar, 2019). Therefore,
EEW systems were operational or/and being tested in over 20 countries (Cremen and
Galasso, 2020). In the United States (Bostrom et al., 2022), Mexico (Santos-Reyes, 2019;
Vaiciulyte et al., 2022), Japan (Doi, 2011; Nakayachi et al., 2019, Peru (Bossu et al., 2022)
New Zealand (Becker et al., 2020), and Italy (Satriano et al., 2011), EEW is known to have a
high public perception for its usefulness.

The relevant societal aspects related to EEW systems have been highlighted (Dallo et al.,
2022). Thus, the operator considers the propagation system, the thought process about the
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system setting for alert, and the importance of actionable message
content. Currently, the purpose of EEW is 1) to provide the
necessary information to warn the public and respond to actions;
2) to lead to safety for populations at risk of imminent threats using
the messages; and 3) to minimize response delay (National
Academies of Sciences, 2018). However, the decision-making of
EEW alert speed is more important than the transmission of this
information. Therefore, many studies have attempted to reduce the
lead-time of EEW (Picozzi et al., 2015). The Korea Meteorological
Administration (KMA) conducts a network-based EEW service for
earthquakes and has recognized the limitations of this technology in
shortening warnings. Therefore, KMA has recently promoted
research on an on-site warning method and is currently trial
testing it.

EEWs are developed based on two approaches: the network-
based method (Chen et al., 2015; Colombelli et al., 2015; Behr et al.,
2016; Chung et al., 2019) and the on-site method (Hsiao et al., 2009;
Parolai et al., 2015; Caruso et al., 2017; Spallarossa et al., 2019).
Network-based EEWs are used worldwide, which estimate the
hypocenter and magnitude of an earthquake using the time and
amplitude of P-waves at multiple seismic stations. A warning is
issued if the estimated magnitude exceeds the threshold set by each
country or region through an automatic process. The propagated
seismic intensity measures (IMs) in each area using ShakeMap
(Verros et al., 2017), from the estimated magnitude and
hypocenter, can be predicted. However, network-based EEW
requires data from several observatories (at least three) to
determine the hypocenter and magnitude. Therefore, EEW takes
several seconds to make a warning decision after the occurrence of
an earthquake. However, owing to this time required for a warning
decision, certain areas, called the “blind zones,” are affected by the
earthquake even before the alarm is triggered (Caruso et al., 2017).
Furthermore, the time from a large seismic ground motion to the
alarm is termed the “lead time” (Cremen and Galasso, 2020). The
mission of EEW development is to increase accuracy while
reducing lead time. However, this leads to errors in hypocenter
information, increasing the incidence of false alarms (Allen and
Melgar, 2019).

The on-site EEW is based on data from a single seismic station,
which predicts the IM from the P-wave first motions without
estimating the magnitude and location of the earthquake.
Nakamura’s Urgent Earthquake Detection and Alarm System
(UrEDAS) earthquake warning system (Nakamura, 1988;
Nakamura et al., 2011) can be considered an early version of this
on-site EEW. UrEDAS is an earthquake disaster prevention system
with an automatic train controlling system for the Seikan undersea
tunnel and Shinkansen lines (Nakamura and Saita, 2007). This
method only requires the P-wave first motion information from
a single seismic station; therefore, the lead time is reduced more than
that of network-based EEW. In addition, on-site EEW can be used
for buildings (Ventura et al., 2019), structures (Bindi et al., 2016),
schools, and specific areas (Wu andMittal, 2021) because the system
alone operates without a network. However, the on-site EEW can
produce false and missed alarms due to its lower accuracy compared
to the network-based EEW, making it difficult to use for public
service in smart cities. Therefore, EEW decision-making strategy,
should be set off with the lowest missed-alarm and false-alarm
probabilities operated (Wang et al., 2018).

Artificial intelligence (AI) and big data technologies have
become increasingly important in the field of environmental
management and disaster mitigation (Zhang and He, 2020). This
underscores the importance of exploring new and innovative ways
to integrate these technologies into early warning systems for natural
disasters. One of the primary components of EEW systems is the
rapid detection and identification of seismic waves. However,
traditional methods based on empirical elements and
characteristic patterns [e.g., short-term average and long-term
average (STA/LTA) (Allen, 1982) and filter-picker (Lomax et al.,
2012)] have limitations in terms of accuracy. This has led researchers
to explore the potential of machine learning (ML)-based technology
as a replacement for these conventional methods in earthquake
detection [e.g., CRED (Mousavi et al., 2019), DetNet (Zhou et al.,
2019), DPick (Yanwei et al., 2021), EQTransformer (Mousavi et al.,
2020), Yews (Zhu et al., 2019)]. The use of ML-based detect models
has shown higher accuracies in earthquake detection than
traditional models such as the detection of STA/LTA and filter-
picker. However, it should be noted that ML-based models require a
time window of >2 s for several reasons. Firstly, convolutional and/
or recurrent neural networks extract semantic features from images
of waveform and frequency characteristics, which requires a longer
time window to capture sufficient information. Secondly, as
mentioned previously, earthquakes may be underestimated when
applying a short P-wave time window, as the characteristics of
P-waves are not properly taken into consideration. Therefore, it has
been difficult to apply EEWs as they must rapidly and reliably
discriminate event signals within a few seconds (Meier et al., 2019).

Another challenge in the field of EEW is the implementation of
AI for the entire system, which is shown represent research to as
Deepshake (Datta et al., 2022). This technology not only detects
earthquakes but also provides source information, such as
magnitude and hypocenter, based on AI, thereby supporting
decision-making for alarms. However, as noted by Datta et al.
(2022), perfect detection and rapid analysis cannot be guaranteed
due to several factors. Firstly, ML models heavily rely on training
data established from previous seismic events, which may not
accurately represent future events. Secondly, specific propagation
wave properties are challenging to consider in ML models because
they are influenced by site and path effects. Thirdly, the seismic wave
collection time window required to detect using ML still needs to be
reducing. Consequently, no public on-site EEW service has been
operated using AI-based systems yet.

Our goal was to combine the strengths of existing technologies
for rapid EEW. The Korea Meteorological Administration (KMA)
tried to complement on-site warning, which was based on a single
station. To achieve this, KMA utilized an ML-based earthquake
identification method to increase the accuracy of detecting P-waves.
However, this method did not completely filter out artificial waves
that were similar to seismic waves. Additionally, KMA introduced a
secondary detection network, called “ α ,” to improve detection
accuracy. ML-detection requires a minimum of 2 s of seismic wave
collection time, and it was possible to detect nearby seismometers
during this period. So, KMA included the presence or absence of
seismograms from this period in our alert decision-making process.

The South Korean seismic observation network uses
seismometers that are located within 14 km of each other because
nearby seismographs can detect the P wave within 2 s in the case of
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an earthquake occurring inland. This helps to reduce the false alarm
rate even if ML-based seismic detection misinterprets a non-
earthquake signal as an earthquake, by relying on detection at a

nearby observatory. The resulting technology is called the Korean
on-site (KOS) EEW (Seo et al., 2021a). KOS combines a deep
learning model with the initial P-wave detector after the filter-

FIGURE 1
Processing steps in Korean on-site earthquake early warning.
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picking step to increase the accuracy of event detection in a single
station. IMs are estimated based on the passed P-wave.
Subsequently, the earthquake was identified from the signal of a
passing filter picker at the nearby observation station. This method is
known as the 1+ αmethod (Seo et al., 2021b, Korean Patent No. 10-
221818), which increases the accuracy of event warning
determination. In KOS, " α " refers to any device or system that
can detect earthquakes, but this study is defined as only KMA
seismic stations that have passed stable operation conditions.

In this study, the literature related to the KOS EEW, the ML-
based filter (MLF), and outfitting model were thoroughly
investigated and systematically summarized. Subsequently, to
evaluate the stable alert decisions and performance, real-time
tests were conducted by the KMA. This study is extremely
significant because real-time operation cases of on-site warning
technology are also very limited. Finally, the KOS EEW was
inspected in real-time for normal, missed, and false operations,
as a public service in Korea.

2 Methodology

2.1 Korean on-site earthquake early warning

Figure 1 illustrates the procedure of the KOS EEW based on
Korean Patent No. 10-221818 (Seo et al., 2021b). To avoid triggering
an alarm in response to a non-earthquake signal or weak seismic
intensity, the system includes four filtering steps. The first step
triggers the earthquake signal, and the Step 2 identifies whether the
triggered signal is an initial P wave or not, using an ML-based
learned filter. Up to the Step 2, the focus is on detecting the initial
P-wave of seismic waves. The third step determines the seismic
intensity, which is an area that the user can select. The fourth step is
an empirical determination of the appropriateness of a signal that
has passed the previous steps base on an α station. When KOS EEW
issues an alert, it means that the seismic waves are strong enough to
potentially cause damage in the target region. However, it is
challenging to achieve perfect performance with only a small
number of sensors. Therefore, the trial operation system records
data according to predetermined procedures and evaluates each
stage of the alarm judgment. In this chapter, a detailed description of
each step is described.

The Step 1 of the KOS EEW is the triggering stage, in which the
P-phase is picked because the picking time is the start of signal

analysis. Traditional triggering modules, such as STA/LTA (Allen,
1982) and filter-picker (Lomax et al., 2012; Fujinawa and Noda,
2013; Mittal et al., 2019), were employed. STA/LTA detects a sudden
increase in amplitude of a large signal generated for a short time
compared to the normal average amplitude. The filter-picker
method additionally used a characteristic function of the signal
in which was amplitude for each period. So, earthquakes and
artificial noise have different characteristics for each period,
making filter-picker method more accurate than the STA/LTA.
For the Korean Peninsula, the optimized filter-picker of KMA
version (OFPK) sets a time window of 0.5 s immediately after the
P-wave is triggered. Table 1 summarizes the threshold of the
characteristic function of OFPK.

The Step 1 of KOS EEW acts as a trigger to mark the start of the
system’s operation. However, it is not perfect and only indicates that
a signal has suddenly occurred. For accurate alarm production,
further confirmation is needed to ensure that the signal is indeed a
seismic wave. This is done by collecting more seismic waves over
time after being triggered and checking if they are correct based on
the seismic waves collected for a certain period. To enhance the
identification rate of seismic signals and improve the accuracy of the
alarm, an ML-based filter was included in the Step 2 (Figure 2).
Although the Step 1 and Step 2 could be combined from the
viewpoint of P-phase picking accuracy, the system has divided
the step as ML-based P-wave identification requires an additional
2 s after P-wave triggering. In the Step 2, we could filter out both of
the S-wave by earthquake and the noise. Thus, the resulting signal
can be only identified as the P-wave of the earthquake.

In the Step 3, KOS EEW determines the alarm based on the
predicted seismic intensity. The predicted intensity measure (IM) is
calculated from the initial P-wave using an empirical model
developed by Lee et al. (2020), which is based on Kanamori’s
method (Kanamori, 2005). At this time, the initial P-wave
amplitude in the vertical direction (i.e., displacement, velocity,
acceleration) during a 2 s time window (in Step 2) is calculated.
Then, the peak ground velocity (PGV) of the entire seismic record is
estimated. The empirical formula proposed by Lee et al. (2020), as
follows:

log PGV( ) � 1.885 + 0.905 · log Pd( ) (1)
log PGV( ) � 0.765 + 1.302 · log Pv( ) (2)
log PGV( ) � −1.038 + 1.001 · log Pa( ) (3)

where Pd, Pv, and Pa are the maximum displacement, velocity, and
acceleration values of the initial P-wave, respectively. The final PGV
is calculated as the arithmetic mean of the three values and
converted into IM following the modified Mercalli intensity
(MMI) of the KMA.

MMIKMA � 2.1939 · log PGV( ) + 5.0918 MMI: Ⅰ − Ⅴ( ) (4)
MMIKMA � 2.4686 · log PGV( ) + 5.0996 MMI: Ⅴ −Ⅷ( ) (5)
A warning was determined following the MMIKMA estimated

using Eq. 4 and Eq. 5. At this stage, KOS EEW sets an alarm based on
the operator’s desired IM or MMI threshold.

The Step 4 involves considering the pass of OFPK from a nearby
seismic station to control false alarms that may occur due to
uncertainty in seismic/non-seismic event judgment. During the
2 s delay in issuing the warning in the Step 2, a new nearby

TABLE 1 Count of decision cases for KOS EEW.

Parameter Filter-picker

Lomax OFPKa

Tfilter Filter window 0.865 s 0.108 s

Tlong Long term window 12 s 10 s

S1 Threshold of characteristic function (CF) 9.36 10.36–20.36

S2 Integral of CF exceeds the value 9.21 10.32–20.32

Tup Time window used for pick validation 0.388 s 0.359–1.759

aOFPK: Optimized filter-picker for the Korean Peninsula.
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station can be added to detect the signal. The total analysis time
theoretically takes 3 s less, comprising 2 s after picking and 1 s less
required for calculation up to Step 3. Given the dense seismic
observation network on the Korean Peninsula within a radius of
14 km, the P-wave can reach the next station within the time
required for analysis by the first station, confirming the warning
within the 3 s required for on-site EEW using observation from the
nearby station.

In an optimal case, if the record is collected for 2 s at the first
station, the first step will be operated at the neighboring station. If
the data is delayed or the detection fails, the system waits for
detection from a nearby observatory. Therefore, if the initial
detection is defined as first detection and active station (FDAS),
the conditions for α are 1) Stations within 2–40 km apart from
FDAS; 2) Operates for 4 s based on FDAS detection time (KMA,
2022).

After determining the FDAS in the KOS EEW system, any
subsequent detection stations will be considered as α stations. This
means that any observatory on the operating seismic network can
become an α station based on the conditions of the fourth step. This
approach ensures that only one alarm is produced for each
earthquake, thereby controlling the occurrence of simultaneous
multiple alarms. Moreover, the KOS EEW aims to issue warnings
within 5 s of the initial observation, with any warnings issued after
5 s being the main rule for the KMA’s network-based EEW. This
strategy enables the system to operate on-site and network
simultaneously.

2.2 Judgment of management perspective

It is important to note that during the test operation, we checked
each step of the procedure sequence to ensure that the system was
functioning properly. The judgment criteria from a management
perspective were also considered to ensure that the system was not
generating false alarms or missing alarms. We summarized the
management perspective judgment criteria based on the
procedure sequence, and the yellow box on the right in Figure 1
illustrates these criteria.

Non-earthquake signals, such as artificially generated signals,
blasting, and mechanical anomalies, can pass through to Step 4. If a

warning is triggered by a non-earthquake signal, it can be defined as
a false alarm. On the other hand, a false alarm can also be caused by
small seismic waves which was a failure of the seismic intensity
prediction. In addition, even a strong wave (i.e., MMI is over V, IM
induced damage by shaking) may not pass Step 1 to Step 4, and in
this case, it can be defined as a missed alarm because the alarm did
not sound.

Normal alarms are determined after a series of processes, which
include signal detection via OFPK, P-wave picking using MLF,
passing the warning intensity thresholds, and signal detection at
nearby stations within 4 s. If non-earthquake signals are blocked
normally, it is considered normal operation. When a strong wave is
transmitted due to an earthquake, and an alarm is issued, this is also
considered normal operation. It was mentioned that an error of
1 grade (MMI) is an acceptable level for users, and permitted alarms
were defined accordingly.

2.3 Design of machine learning filter

Recently, hazard prediction field has being usedML based on the
empirical relationship which was images, signal, and big data (He
et al., 2020; Ozsagir et al., 2022; Aminpour et al., 2023). However,
due to the mathematical complexity of these models, human
empirical decisions are still required for assistance in some cases.
Seismic wave phase picking is an example in seismology that
requires human assistance. Therefore, many researchers have
focused on signal detection-based ML, which requires high
accuracy (Zollo et al., 2014; Parolai et zl., 2017; Meier et al.,
2019; Mousavi et al., 2019; Zhou et al., 2019; Zhu et al., 2019;
Mousavi et al., 2020; Yanwei et al., 2021; Datta et al., 2022). Our
system also aimed to accurately detect the initial P-wave using MLF
in KOS EEW, which identifies signals within the first 2 s from the
arrival of the seismic wave. The MLF is included in the next stage,
and the schematic diagram of the training procedure is shown in
Figure 2.

To developMLF (Lee, 2020; Seo et al., 2021a), the following steps
were systematically performed:

1) 3-component waveforms of 4 s were collected based on the
detected signal from Korean Peninsula. The time at which the

FIGURE 2
Design of the training procedure of the machine learning filter (MLF).
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initial P-wave was detected was called the picking time. The data
length was 4 s around the picking time (i.e., picking ±2s). The
training dataset comprised two horizontal components and one
vertical.

2) The training data were transformed to the log-Mel power
spectrum. In the frequency domain analysis, data were
processed in 1s. Features with a frequency and amplitude of
64 points were constructed. The extracted feature size of the
input data was 768 (3 axis × 4s × 64 points).

3) Feature learning was designed to perform convolutional operations,
ReLU activation functions, and max pooling five times, repeatedly.

4) The proposedmodel was designed to spread the features obtained in
previous step to the fully connected layer to identify the P-wave,
S-wave, and background noise, and finally assigning them to three
classes using the dropout and softmax functions.

The convolutional neural network (CNN) was applied, as
summarized in Table 2. Data from the local seismic network
from January 2015 to March 2020 was employed, comprising
727 local earthquakes with a magnitude of ≥2.0 and 103 large
teleseismic records. 1,734 events from Taiwan were used due to
the non-sufficiency of the Korean data. Micro earthquakes were also
included to increase the trigger accuracy (Lee, 2020). Thus,
2,564 earthquake data were employed.

To identify earthquakes and non-earthquakes, a dataset dividing
the P-wave and S-wave sections in the earthquake record was
developed. Non-natural earthquakes (e.g., resulting from fallen
earthquakes, nuclear tests, and explosions) and noise data were
added to enhance the identification rate. Thus, 3,189,583 sample
data were developed.

To verify the performance of the model, the dataset was divided
into training sets (1,826,357) and demonstrated test sets (1,363,226)
(Seo et al., 2021a). However, models trained directly with this dataset
showed an exponential decrease in P-wave detection accuracy with
longer learning times. The reason for the decrease in performance
was that, in machine learning, the model was overfitted for training
data. Therefore, overfitting is a critical concern in machine learning
as it pushes the optimization boundaries too far and leads to a
decrease in the model’s overall performance.

2.4 Troubleshooting for overfitting of MLF

When a model is overfitted to the training data, its performance
on new and unseen test data may suffer, despite achieving high
accuracy on the training data. This is often due to the model being
optimized for noise properties that are specific to the training
dataset. To address overfitting, the following three approaches
were employed.

Firstly, P-waves, S-waves, and large noise samples, as well as
balanced volumes, were augmented. The data-driven ML model
learns specific patterns from a given dataset by itself. However, to
achieve an optimally trained ML model, a vast amount of training
data on earthquake records was needed. Insufficient data may cause
misgeneralized predictions on new input data, resulting in
overfitting. During the development of MLF, 2,564 earthquakes
were used. As there were multiple records observed at various
observatories per earthquake, there were 81,394 wave forms. This
accounts for only 2.6% of the total dataset, indicating a severe data
imbalance that needed to be solved. Therefore, Lee (2020)

TABLE 2 Convolutional neural network.

Layer Filter × column × row Filter (kernel) size Pooling size Weights Biases

Input 1×3×256 - - - -

Conv_1 26×3×256 3×3 - 234 26

Pool_1 26×3×85 - 3 - -

Conv_2 26×3×85 3×3 - 6,084 26

Pool_2 26×3×28 - 3 - -

Conv_3 26×3×28 3×3 - 6,084 26

Pool_3 26×3×9 - 3 - -

Conv_4 26×3×9 3×3 - 6,084 26

Pool_4 26×3×3 - 3 - -

Conv_5 26×3×3 3×3 - 6,084 26

Pool_5 26×1×1 - 3 - -

Flatten 26 - - - -

Dropout 26 - - - -

FCLa 8 - - 208 8

Output 2 - - 16 2

Total parameters 24,934

aFCL: fully connected layer.
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performed learning by repeatedly using existing seismic data while
varying the data-cutting section based on the original data.

Although this method may not be appropriate in terms of data
learning, we used it empirically because there is still a limit to using
artificial seismic waves. To solve this problem, we balanced the data
by duplicating and adding P-waves, S-waves, and large noise
samples to the training and test sets (Lee, 2020). As a result, the
learning of MLF increased the number of training and test samples
to 4,063,907 and 2,865,106, respectively. Table 3 shows the number
of data configured for data learning. Although there was still a data
imbalance in the training set, the test set was configured to keep the
number of data as similar as possible.

Second, dropout is a method of randomly dropping neurons
in the hidden layer according to a preset ratio to limit
participation in neural network training. For example, in
Figure 3, only 80% of neurons are involved in learning,
according to the hyperparameters of the predetermined
dropout rate of 0.2 when training the neural network model.
It avoids the problem of the artificial neural network model
depending on several neurons in a specific layer. It also
improves the learning stability of the MLF model and reduces
the probability of the model being overfitted to the training data.

Third, the global loss function through weight regularization to
prevent overfitting was reconstructed. MLF applied the sigmoid
activation function Eq. 6 to the output of CNN to convert it to a
normalized value between 0 and 1 for P-wave classification. A
global loss function was then used to express the difference
between the two sigmoid transform values, P-wave and non

P-wave, as a binary cross entropy (BCE) loss Eq. 7 (Yeung
et al., 2022). However, this function cannot prevent overfitting
if the amount of training data is insufficient or the learning
proceeds too long. Generally, ML models are trained to perform
well on new data (test data), rather than the training data.
Therefore, the loss function, which is the learning criterion of
the model, needs a trick to ‘regulate’ the model to prevent its
complex fitting to training data and overfitting in the learning
process. L2 regularization is a weight regulation technique using
L2-norm Eq. 8, one method for calculating the size of a vector. In
this study, a global loss function was constructed to learn the
P-wave detection model by adding a L2 regularization function to
the loss function comprising the existing BCE. The
L2 regularization function prevents our model from being too
limited to training data to cause overfitting and increases versatility
by establishing a hyper parameter λ that regulates the relative
proportions of learning and regulation of the data Eq. 9.

f sigmoid �
1

1 + e− xw+b( ) (6)

where x is the input vector data; w is the weight vector; b is scalar
value of bias.

BCE loss, which measures the difference between P-waves and
non-P-waves based on the information or entropy, can be expressed
using the sigmoid function as follows:

LBCE � −1
n
∑n
i�1

yilog σ xi( ) + 1 − yi( )log 1 − σ xi( )( )[ ]
� −1

n
∑n

i�1 yilog
1

1 + e− xw+b( )( ) + 1 − yi( )log 1 − 1
1 + e− x2+b( )( )( )[ ] (7)

where i is an index of the input data; n is the number of input data; xi

is the i-th input sample; yi is the target label of xi

L2norm w( ) w‖ ‖2 �
���������������
w2

1 + w2
2 +/ + w2

n

√
(8)

For computational convenience, the global loss function of the
model was reconstructed by eliminating the square root of the
L2norm and adding the regularization adjustment parameter λ, as
follows:

Lglobal � LBCE + λ

2
LR � LBCE + 2

λ
w2

1 + w2
2 +/ + w2

n( )
� −1

n
∑n
i�1

yilog
1

1 + e− xw+b( )( ) + 1 − yi( )log 1 − 1
1 + e− xw+b( )( )( )[ ]

+λ
2
w| |2 (9)

By applying the above approaches, the accuracy of P-wave
detection through the MLF increased to approximately 98.65%
after passing through the filter.

TABLE 3 Balanced data set for MLF (Lee, 2020).

Initial P wave of earthquake Non-detecting signal of MLF

S wave of earthquake Noise (non-event
signal)

Special (i.e., sinking and blasting
event)

Training set 1,544,998 196,715 2,299,288 22,905

Test set 1,053,709 165,218 1,616,059 30,120

FIGURE 3
Brief appearance of the dropout method.
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3 Implementation of real-time trial
operation

We performed an extensive review of the simulation for KOS
EEW before the Trial Test. The result of simulations of
69 historical earthquakes was summarized in Supplementary
Appendix S1 (KMA, 2022). The simulations resulted in
12 successful alarms, 3 false alarms, and 2 missed alarms,
confirming the feasibility of the technology. However, we
acknowledge that simulations have limitations in accounting
for communication delays, data loss, and unknown noise
(i.e., non-earthquake signals). We only showed the false alarm
due to overestimated. For simulations, it is difficult to determine
“false alarm” for non-earthquake signals. Therefore, a trial
operation is necessary to further evaluate the technology’s
effectiveness in real-time operation.

The model performance was analyzed using earthquakes from
10-08-2020 to 03-31-2022. Initially, events were selected
considering possible triggering warnings about the on-site
warning issuance criteria. Earthquakes that met one or more
of the following conditions during the study period were selected:

1) ML ≥2.5 that occurred in Korea, 2) earthquakes with a
maximum intensity of IV or greater, and 3) tremors felt. In
addition, two cases were included in the analysis. The first one
was an ML 6.7 earthquake that occurred in the sea of Oita
Prefecture (Kyushu), Japan, in January 2022, which
transmitted vibrations to the Korean Peninsula and recorded a
maximum seismic intensity Ⅲ. This earthquake was included to
examine the possibility of on-site warning of a teleseismic
earthquake. The second one was a false alarm case for a non-
seismic event. During the trial operation, most warnings relating
to non-seismic events did not pass through the four steps in KOS
EEW. However, there was one case of a warning decision made
for a non-seismic event. Figure 4 and Table 4 show the
distribution of 22 events used for the on-site EEW analysis
over the seismic stations. The warning threshold applied to the
KOS EEW was V on the MMI scale, rounded off after the PGV
calculation.

Table 4 includes the initial report time and the first detected
station information for network-based EEW. The initial report time
is the time when seismic source information is generated based on
three or more detection stations. However, the information

FIGURE 4
Korean on-site earthquake early warning trial operation results from 10.08.2020 to 03.31.2022. Gray circles indicate seismic stations, and red and
blue open circles indicate earthquakes for which warnings have been issued and have not been determined, respectively.
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generated at this time may not be completely reliable (Cho et al.,
2022b). Therefore, the KMA takes into account decision-making
factors for notification judgments. There was one actual alarm,

which was the earthquake that occurred in the Seogwipo sea area
on 14 December 2021, with a ML 4.9. The alert of EEW were issued
for this event as it was predicted to be ML 5.3 (No. 18 event).

TABLE 4 List of earthquakes used for test operation (ML ≥ 2.0).

No. Origin
time (UTC)

Latitude
(°)

Longitude
(°)

ML Depth
(km)

IM FDAS Network-based
EEW 1st report

time (s)Name Epicentral
distance (km)

Detected
time (s)

1 11-06-2020
09:27:23

36.43 128.14 2.0 8 II SAJB 2.91 +2 +7

2 11-08-2020
06:26:09

36.41 128.22 2.9 9 IV SAJB 5.60 +2 +6

3 11-14-2020
15:00:29

35.76 129.18 2.1 17 III DUC 1.76 +3 +5

4 12-23-2020
12:28:20

37.73 126.73 2.2 12 III GMPB 10.88 +3 +6

5 02-05-2021
19:40:03

35.81 127.53 2.7 5 IV DGHA 4.65 +2 +6

6 02-15-2021
09:59:25

35.99 126.84 2.5 14 IV NPR 6.30 +3 +7

7 03-15-2021
17:51:52

35.76 129.19 2.6 18 III DUC 2.15 +2 +6

8 04-13-2021
12:56:15

36.02 126.91 2.0 13 III NPR 4.65 +2 +6

9 04-19-2021
05:20:27

35.07 125.08 3.7 15 II HGDB 41.87 +8 +16

10 05-12-2021
21:04:28

35.89 127.33 2.0 10 III JEO2 6.29 +3 +7

11 07-30-2021
20:17:10

35.65 128.4 2.5 22 III CHRB 14.67 +4 +7

12 08-29-2021
04:03:23

35.31 128.49 2.2 9 III CLSA 5.87 +2 +7

13 09-11-2021
17:04:46

35.53 128.53 2.1 13 II CHPR 4.75 +2 +6

14 09-19-2021
21:58:49

34.88 127.25 2.2 8 III MNDB 12.59 +2 +6

15 09-23-2021
03:02:43

35.42 128.49 2.6 16 IV CLSA 6.36 +2 +7

16 10-06-2021
12:55:48

35.25 127.86 2.5 13 III SACA 18.22 +4 +7

17 11-11-2021
16:31:05

36.15 129.38 2.1 8 II PHA2 4.85 +2 +6

18 12-14-2021
08:19:14

33.09 126.16 4.9 17 V MRD 10.30 +4 +13 (Alert: +16)

19 12-15-2021
13:02:14

35.79 127.8 2.3 10 IV WICA 6.54 +3 +8

20 01-21-2022
16:08:37

32.73 132.10 6.7 31 III BSAA 381.37 Out layer

21 02-02-2022
03:04:55

35.72 128.99 2.4 19 III GSNA 4.59 +4 +8

22 03-05-2022
13:16:21

36.39 127.13 2.4 12 III KOJ2 9.08 +3 +8
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4 Results and discussion

4.1 Warning cases during the trial operation

The EEW alarm can be classified as ‘normal’ if they correctly
detect an earthquake, ‘miss’ if they fail to detect an earthquake, and
‘false’ if they report an earthquake when none has occurred. Non-
seismic events (e.g., artificial signal, ambient noise) or micro-
earthquakes were classified as false alarms and normal
operations. During the trial operation, no alarm failure cases
occurred. Among the total of 22 earthquakes that occurred, four
raised alarms. An earthquake case issued an accurate warning
according to the threshold set in the system. Two additional
warnings that did not meet the threshold and one warning due
to a non-earthquake were also issued, confirming the cases of false
alarms. In the rest of the event cases, no alarms were generated
because the seismic waves did not exceed the set threshold.
Therefore, it was considered normal operation.

The two false alarm cases were thoroughly reviewed. The first
case in Figure 5A is an earthquake that occurred on 13 April 2021.
Here, the predicted IM was higher than the seismic intensity
announced by the KMA. Three seconds after the earthquake, a
signal was detected at the NPR station, 4.65 km away from the
epicenter. The initial P-wave caused by the earthquake was
accurately identified. Next, the P-wave was detected at the
second station (ISGB). Figure 6A shows the waveforms
recorded at each station. Although the earthquake was
detected at the second station, the IM was predicted as V,
based on the amplitude of the initial P-wave recorded at the
first station; an alarm was triggered immediately. However,
the observed MMI was III, for which no alert should have
been issued.

In the second false alarm case (see Figure 5B), signals were
simultaneously detected at the PDG and ICN2 stations on
20 January 2022. The seismic intensity and magnitude could not
be recorded because it was not an earthquake. However, the Step

FIGURE 5
Alarm cases during the Korean on-site earthquake early warning trial operation period. (A) False alarm that occurred on 13 April 2021. (B) False alarm
that occurred on 20 January 2022. (C) Permitted alarm case that occurred on 15 February 2021. (D) Normal alarm case that occurred on 14 December
2021.
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2 filter identified a signal as a P-wave at the first station. The
predicted IM was V, and subsequently the signal was detected at
the ICN2 station, which was 28.88 km away from the first one. The
signals recorded at both stations are shown in Figure 6B. The two

signals did not have similar amplitude over time and showed
different frequency components. Thus, it was hypothesized that
they were generated by two unrelated sources that did not correlate
with each other. It was confirmed that temporary noise generated at

FIGURE 6
Initial seismic waveforms at first and second (or α) stations. (A) False alarm that occurred on 13 April 2021. (B) False alarm occurred on 20 January
2022. (C) Permitted alarm case that occurred on 15 February 2021. (D) Normal alarm case that occurred on 14 December 2021.

TABLE 5 Classification of alarm types based on confusion matrix.

Section KOS EEWa operation (or prediction)

Warning No warning

Signal Moderate–large earthquake (IM at the first detection station ≥ Ⅴ) Normal/permitted alarm (TPb) Missed alarm (FNc)

Small earthquake (IM at the first detection station < Ⅴ) or Non-seismic event False alarm (FPd) Normal operation (TNe)

aKOS EEW: Korean on-site earthquake early warning.
bTP: true positive.
cFN: false negative.
dFP: false positive.
eTN: true negative.

TABLE 6 Results of the confusion matrix of Korean on-site earthquake early warning (KOS EEW) system.

Section KOS EEW without step 4 KOS EEW

Warning No warning Warning No warning

Signal Moderate–large earthquake (IM at the first detection station ≥ Ⅴ) 2 0 2 0

Small earthquake (IM at the first detection station < Ⅴ) or Non-seismic event 29 1,190,529 2 1,190,556
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two nearby stations could be misinterpreted as an event, resulting in
a false alarm.

The permitted alarm case is shown in Figure 5C. An earthquake
of ML 2.5 occurred on 15 February 2021. The OFPK detected the
signal at the NPR station located 6.3 km from the epicenter, 3.7 s
after the earthquake. A permitted warning was determined as the
signal was subsequently detected at the nearby ISGB station.
Furthermore, the observed seismic intensity was IV, which
differed from the predicted value and did not exceed the warning
threshold. Therefore, the issued alarm was acceptable because there
was a possibility of vibration being felt at the stations closest to the
epicenter. Waveform records are shown in Figure 6C. In KOS EEW,
the NPR station overestimated IM and issued alarms twice during
the trial. In Figure 6, specific cases in which the S-wave reached
within 2 s of the P-wave time window (PTW) were shown and the
S-wave in the PTW-induced overestimation MMI in Step 3 was
included.

The second is a normal alarm case caused by an earthquake of
ML 4.9 that occurred in the Seogwipo sea area on 14 December 2021.
This case is shown as Figure 5D. It was the eighth most severe
earthquake to strike the Korean Peninsula since digital seismic
observation began in 1999, causing significant seismic vibration
at the site. The network-based EEW calculated the magnitude as
5.3 in the initial analysis using records from eight observation
stations. Accordingly, an early warning was issued via text

messages on Jeju Island. For this case, the KOS EEW analysis
was as follows. A signal was detected at the MRD station,
10.31 km away from the epicenter, 4.1 s after the earthquake, and
passed the P-wave identification stage. The predicted IM at theMRD
station passed the warning threshold as VI and a normal warning
was determined immediately after the signal was detected at the
nearby GOS2 station. The results are shown in Figure 6D.

4.2 KOS EEW performance evaluation for
warning decision

To determine the performance of the on-site EEW, four types of
events were examined using the confusion matrix that allows the
analysis of Type 1 and Type 2 errors. The different types of alarms
for the base of the confusion matrix are summarized in Table 5.
Earthquake alarms issued are classified as normal and missed
alarms, and if no alerts are required, they are classified as false
alarms and normal operation. As an exception, if KOS EEW
determined an alarm of an event in which the specific station
recorded a seismic intensity of IV, it was regarded as an accepted
(or permitted) operation. This case occasionally occurs in Step 3 (the
IM prediction Step). In Step 3, the empirical function based on linear
regression analysis was applied in KOS EEW. If the difference
between the predicted and observed intensities is one or less, it is

FIGURE 7
Initial P-wave identification failure cases at the nearest station from the epicenter that occurred on: (A) 6 November 2020; (B) 5 February 2021; (C)
16 November 2021; (D) and December. 15, 2021.
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considered an acceptable level of error. Therefore, it was defined as a
permitted alarm and classified as a normal alarm. In the confusion
matrix, normal and permissible alarms belong to true positive (TP),

false alarms belong to false positive (FP), and normal operations
belong to true negative (TN). Missed alarms belong to false negative
(FN); however, they did not occur during the trial operation.

FIGURE 8
Blind zone for the 12.14.2021 ML4.9 earthquake. (A) The case of network-based earthquake early warning (EEW) and (B) the case of KOS EEW. The
blue and dashed lines are the distance and radius that the P-wave can travel in 16 s. The red and dashed lines are the distance and radius that the S-wave
can travel in 16 s. S-wave radius at the time of alarm decision is the blind zone.

FIGURE 9
Lead times for seismic stations based on intensity measurements. Blind time is the interval zone before the alarm of KOS EEW, and it is illustrated in a
gray box.
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The performance of the model by setting different criteria was
additionally evaluated. The social responsibility of public
institutions that issue disaster alerts may be more important than
situations induced by errors or false alarms. False alarms in EEW
systems have caused panic and confusion in the past. For example, in
Japan, a false alarm in January 2018mistakenly recognized two small
earthquakes as one big earthquake, leading to temporary panic
among millions of people. The head of the Japan Meteorological
Administration had to apologize for the mistake (BBC, 2018).
Similarly, in the United States, a warning about a large-scale
earthquake off the coast of California was issued 92 years after it
had actually occurred due to a computer error, causing confusion
among people (BBC, 2017). InMexico, a false alert was issued in July
2014 by Sky Alert, a popular smartphone app, resulting in many
people responding to the false alarms (Reddy, 2020). These incidents
highlighted the importance of effective management in ensuring the
reliability and effectiveness of such system.

Based on the confusion matrix, the performance evaluation was
classified into two categories: 1) KOS EEW and 2) KOS EEW
without Step 4. KOS EEW without Step 4 is a non-applied 1+ α

station method. Both methods are summarized in Table 6.
The P-waves that exceed the alarm threshold were assigned to

“Positive” class, and the S-wave and noise signal of
microearthquakes were classified as “Negative” class for
1,190,560 sample data that occurred in 2021. KOS EEW
without Step 4 produced more alarms than KOS EEW, and it
was confirmed that 27 additional alarms could be triggered.
Accuracy is defined as the number of correct precedents
(i.e., TP and TN) divided by the number of cases (TP, TN, FP,
FN) that can be caused by KOS log data Eq. 10. In both cases, the
accuracy was close to 100% because numerous non-alarm signals
occurred during the test operation. Therefore, the primary focus
was on the cases where an alarm occurred (TP and FP). The
precision was calculated as the number of normal and permitted
alarms (TP) divided by the total number of warnings (sum of TP
and FP) Eq. 11. Precision was 6.4% and 50% for KOS EEW
without Step 4 and KOS EEW, respectively. Therefore, KOS EEW

determines alarms with a higher precision capability than KOS
EEW without Step 4.

Accuracy � TP + TN
TP + FP + TN + FN

(10)

Precision � TP
TP + FP

(11)

In addition, a few cases of failed analysis were found at the first
station, during the trial operation for small earthquakes finally
determined as normal operations. Out of 22 analyzed events,
P-wave identification failed in four earthquakes at the first station
(refer to Figure 7). Although the analysis using waveforms at the first
station failed, the signals at the respective second stations were
classified as P-wave and passed Step 2. Such failures did not cause
problems in the warning process, as they were finally determined to be
normal operation without alarms for small magnitude events. The
picking time and MLF passes by each station for the four earthquakes
are summarized in Supplementary Appendix S1. The picking times
for the two stations required for the KOS EEW were 5.1, 4.2, 3.4, and
5.2 s after the earthquake occurred. The picking times required for the
network-based EEW were 5.8, 5.6, 4.6, and 5.7 s. Therefore, even if
P-wave identification fails at the first station, KOS EEW can notify an
earthquake faster than the network-based EEW. This method makes
our seismic warning system more stable by additional filtering, and
the output results mis-analyzed in the previous step are not passed to
the next step. However, a reinforcement cement method may be
necessary, including Step 2 of MLF.

4.3 Comparison of network-based EEW and
KOS EEW

The potential effectiveness of an EEW system based on the
lead time and blind zone could be estimated. In the case of the
Seogwipo sea area event (14 December 2021, ML 4.9) on Jeju
Island, the network-based EEW in the KMA estimated a
magnitude of 5.3 based on eight stations, and Jeju citizens

TABLE 7 Comparison of lead time.

Station name Epicentral distance (km) RPTa (s) NWTb − RPT (s) KWTc − RPT (s) KWTc − E4Td (s) KWTc − E5Te (s)

MRD 10.30 6.8 - 9.2 - 1.2 - 3.5 −1.4

GOS2 23.72 10.3 - 5.7 2.3 1.7 2.7

HA2B 34.85 13.0 - 3.0 5.0 4.8 -

SGP2 36.59 14.7 - 1.3 6.7 0.8 -

JJU2 52.10 18.6 2.6 10.6 - -

PYSB 67.46 23.2 7.2 15.2 - -

GUJA 74.98 27.7 11.7 19.7 - -

UDO 88.09 31.3 15.3 23.3 - -

CJD 97.46 32.2 16.2 24.2 - -

aRPT: Record time of PGA.
bNWT: warning time of Network-based EEW (= Origin time +16 s).
cKWT: warning time of KOS EEW (= Origin time +8 s).
dE4T: Excess time of Ⅳ.
eE5T: Excess time of Ⅴ.
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received the message through the cell broadcasting service,
because the magnitude of 5.3 of network-based EEW was
estimated with the initial P-wave for eight trigger data.
However, a reanalysis of source parameters showed that the
magnitude was less than that calculated by EEW. The KMA
confirmed this earthquake 13 s after it occurred (Table 4, No,
18). In the case of a sea earthquake, determining the location with
only the three observations is difficult, and additional observation
stations are needed to calculate the location and magnitude. As a
result, Jeju citizens received an earthquake early warning message
16 s after the earthquake occurred. At this time, the added time of
3 s due to the communication propagation time. In contrast, in
KOS EEW, the entire process of issuing the on-site alarm would
take only 8 s, including the telecommunication transmission
time. The blind zone area was estimated based on the time to
send the alarm (see Figure 8). The propagation speeds of the P-
and S-waves were assumed to be 6.5 and 3 km/s, respectively.
KOS EEW reduced the blind zone by one-fourth compared to the
7,235 km2 of the network-based EEW.

The lead time based on the seismic observatories on Jeju
Island was analyzed. The delivery of alert time in both network-
based EEW and on-site EEW was defined in the same way as
the blind zone. The times between the warnings and the arrival of
shaking are variable according to the area or platform (McBride
et al., 2023). However, it was assumed that the communication
delay time was to be 3s. Most users trained in earthquake
response can react to drop, cover, and hold on (DCHO)
after an early warning message (Porter, 2016). Users who
receive an EEW require 3s to follow the DCHO protocol
(Minson et al., 2018). Therefore, the minimum lead time of 3s
was applied.

Figure 9 presents the results of the lead time analysis for each
seismic station based on the improved MMI. The MMI criterion
set by KOS is V, but for closer examination, we also set it to IV. The
exact lead times based on the threshold of IV are summarized in
Table 7. For seismic structural engineering applications of EEW,
the strategy of threshold-based IM can be adopted (Iervolino,
2011). When the lead time is based on PGA, the network-based

FIGURE 10
Application of the KOS EEW outside the Korean seismic network. Case of an earthquake (Table 4, No. 20) outside the KMA seismic network: (A)
Epicenter and detected stations (B) Seismic waveform at the detected stations.
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EEW can prepare for any damage induced by earthquake at
GOS2 station. However, if the lead time is determined based on
PGA in areas near the epicenter, it is likely to be set as a time after
damage. Therefore, it is required to standardize for vibrations of
induced damage rather than the reference based on IM. When
setting the threshold of IV, the lead time was decreased at the
MRD, GOS2, and HA2B observatories. Consequently, KOS EEW
shows it could prevent damage from 34.85 km (based on the HA2B
station).

In addition, teleseismic earthquakes that occurred during the
trial operation period were analyzed. On 21 January 2022, at 16:08:
37 (UTC), an earthquake of ML 6.7 occurred 73 km southeast of Oita
Prefecture, Japan (see Figure 10). Themaximum seismic intensity III
was recorded in Busan and the observed seismic intensity in the
surrounding area was Ⅱ. In the KOS EEW, a signal was detected at
BSAA, approximately 834 km from the epicenter, 88.5 s after the
earthquake occurrence. The signal was identified as a P-wave in Step
2 MLF. However, the predicted MMI did not pass the threshold.
Therefore, it was classified as a normal operation.

This confirmed the potential of the KOS EEW response to
large teleseismic earthquakes, although the advantage of on-site
EEW in reducing the blind zone cannot be confirmed. The KOS
EEW could generate alarms for the teleseismic events if the IM
exceeded the warning thresholds. The potential of the KOS EEW
to generate an alarm using data from local stations for large
earthquakes in nearby countries, such as Japan or China, was
displayed.

5 Conclusion

This study reviewed the effectiveness of the on-site EEW
system to prepare for earthquake disasters in urban cities or social
infrastructure and thoroughly summarized MLF and
outfitting models. Subsequently, a real-time trial operation of
KOS EEW was carried out to evaluate and verify its stable alert
decisions and performance, and the following conclusions can be
drawn.

(1) In order to develop KOS EEW, empirical methods were
combined with robust methods based on artificial
intelligence. This process was able to effectively avoid
overfitting and improve P-wave detection. The proposed
MLF procedure increased the success rate of P-wave
detection; however, it was not perfect. Therefore, connection
of a second station was used for filtering out false positives
belonging to non-seismic events called the 1+ α method, which
was effective when the spatial density of the observation stations
was secured to cover the high-frequency vibration damping
effect.

(2) We conducted a test-run of a KOS EEW that utilizes fewer
observatories than the network EEW, and confirmed its
effectiveness in providing prompt notifications during the
Seogwipo Sea area earthquake event. This method also
showed a reduction of more than a quarter in the blind
zone. However, to fully utilize KOS EEW for Management
Perspective, it is still wondering to determine the optimal
alarm method and control the rate of false alarms.

(3) The network-based EEW can provide accurate earthquake
information and stable warning to the public. On the other
hand, KOS EEW prioritizes speed and may not provide
comprehensive information about earthquakes to citizens.
In terms of damage prevention, KOS EEW has set a standard
IM, and warnings are triggered when there is strong vibration
in the target area of the earthquake. Therefore, this
technology is expected highly utilizable to reduce
earthquake damage based on trial test cases.

(4) Korea’s seismic observation network is undergoing changes
to enhance earthquake observation and EEW (Cho et al.,
2022a). As a result, borehole-type seismometers are being
installed more frequently than on the ground surface, which
is different from other countries. Consequently, methods
predicting intensity measures based on boreholes are being
developed (Jang et al., 2023; Lim and Ahn, 2023). However,
due to the lack of data from the changed observation network,
it is challenging to improve P-wave detection accuracy. In the
future, MLF’s P-wave detection accuracy will need to be
improved through additional earthquake data training, and
prediction accuracy can be further enhanced by considering
site effects.
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