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Themodulus of compression and coefficient of compressibility of soft soils are key
parameters for assessing deformation of geotechnical infrastructure. However,
the consolidation tests used to determine these two indices are time-consuming
and the results are easily and heavily influenced by workmanship, testing
apparatus, and other factors. Therefore, it is of great interest to develop a
simple approach to accurately estimate these compressibility indices. This
article presents the development of three machine learning (ML) models—at
artificial neural network (ANN), a random forest model, and a support vector
machine model—for mapping of the two compressibility indices for soft soils. A
database containing 743 sets of measured physical and compression parameters
of soft soils was adopted to train and validate the models. To quantify model
uncertainty, the accuracies of the ML models were statistically evaluated using a
bias factor defined as the ratio of the measured to the predicted compression
indices. The results showed that all three ML models were accurate on average,
with low dispersion in prediction accuracy. The ANN was found to be the best
model, as it provides a simple analytical form and has no hidden dependency
between the bias and predicted indices. Finally, the probability distribution
functions of the bias factors were also determined using the fit-to-tail
technique. The results of this study will be helpful in saving cost and time in
geotechnical investigation of soft soils.
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1 Introduction

The Guangdong–Hong Kong–Macao Greater Bay Area (GBA) in China is undergoing
ongoing and extensive infrastructure construction. Due to the widely distributed marine
sedimentary soft soils in the GBA, geotechnical infrastructure resting on soft soils is usually
challenged by both excessive deformation and insufficient bearing capacity throughout the
lifetime of service. To assess infrastructure deformation, a set of laboratory and in situ tests
(Bo et al., 2018; Orense et al., 2018) must be routinely performed in order to determine both
the physical and the mechanical properties of the soil for projects in soft soil areas. For
example, consolidation tests (Zabielska and Katarzyna, 2018) are conducted to study the
compressibility of soft soils and consolidation is typically quantified by two indices, namely,
the modulus of compression and the coefficient of compressibility.
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While consolidation tests are a routine type of geotechnical
laboratory test, they have several drawbacks in cases of soft soil.
First, the tests can be very time-consuming (Holtz et al., 2010) and
costly, especially for multi-stage consolidations. Second, sample
disturbance is usually unavoidable when transporting soft soils
from sites to the laboratory. These disturbances can result in
significant alterations of soil structures and, thus, the
compressibility (Lunne et al., 2006). Finally, errors relating to
testing apparatus are also uncontrollable.

Due to these drawbacks, the development of a simple, practical,
and sufficiently accurate equation to rapidly assess soil
compressibility indices is highly desirable. Koppula (1981) used
the least squares technique to regress the physical parameters of soft
clays against their compression indices. Empirical regressions are
applicable to estimate the settlement of structures resting on
cohesive soils. Amiri et al. (2018) used multiple linear regression
to estimate unsaturated shear strength parameters using several
indices of the physical properties of soil as function inputs. Liu et al.
(2018) reported on the relationships between the mechanical
properties of clays and temperature. Motaghedi and Eslami
(2014), Mcgann et al. (2015), Cao and Wang (2013), Lim et al.
(2020), and Schneider et al. (2008) empirically linked data from CPT
on sleeve friction, cone tip resistance, and porewater pressure data to

soil properties including cohesion, friction angle, soil classification,
overconsolidation ratio, and shear wave velocity. Yoon et al. (2004)
and Yan et al. (2009) proposed empirical correlations of
compression index for marine clay based on regression analysis
and Bayesian inference. Finally, Cao et al. (2019) determined soil
stratigraphy using a Bayesian method based on CPT.

While the development of empirical equations using traditional
regression approaches to predict the mechanical properties of soils
has facilitated geotechnical analyses to a large extent, it remains
challenging to establish accurate correlations, owing to the major
uncertainty in and great complexity of soil properties (Ching and
Phoon, 2014). Over the past decades, the applicability of machine
learning (ML) approaches, such as artificial neural networks
(ANNs), random forest (RF) methods, and support vector
machines (SVMs), among others, has been well-proven in terms
of their ability to efficiently and accurately map highly non-linear
problems in a wide variety of areas of engineering (Arditi and Pulket,
2010; Chen et al., 2021), including geotechnical engineering.
Successful examples of applications include analyses of slope
stability (Kardani et al., 2021; Meng et al., 2021) and deformation
(Zhang et al., 2019; Zhang et al., 2020a; Zhang W et al., 2021); pile
designs (Makasis et al., 2018; Zhang et al., 2020e); prediction of the
bearing capacity of strip footings (Acharyya, 2019; Sadegh et al.,
2021); lateral wall deformation and basal heave stability for braced
excavations (Goh et al., 1995; Zhang et al., 2020); soil constitutive
relations (Najjar and Huang, 2007); liquefaction resistance of sands
(Kim and Kim, 2006); lining response for tunnels (Zhang et al.,
2020g); calibration of resistance factors for reliability-based load and
resistance factor design (Hu and Lin, 2019); prediction of soil
transparency (Wang et al., 2021); analysis of ground settlement
induced by shield tunneling (Zhang et al., 2020c); reliability analysis
by SVM (Pan and Dias, 2017); and mapping of groundwater
potential using SVM, RF, and GA models (Naghibi et al., 2017),

FIGURE 1
Construction of an ANN: (A) layered network; (B) artificial neuron.

FIGURE 2
Diagram of a random forest regression model.
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among others. In addition to solving geotechnical analysis problems,
these ML approaches have also achieved success in mapping from
the physical parameters of soil to the mechanical parameters.
Moreover, Park, and Lee (2011), Pham et al. (2019a), Pham et al.
(2019), and Zhang et al. (2020f) studied the compressibility feature
of soils using ML techniques. Das et al. (2011), Kanungo et al.
(2014), Kiran et al. (2016), Pham et al. (2018), and Zhang L et al.
(2021) developed ML models to estimate the shear strength
parameters of soils under various conditions. Çelik and Tan
(2005) and Samui et al. (2008) determined preconsolidation
pressure using an ANN and an SVM method, respectively. For
details of additional applications, readers are also referred to the
state-of-the-art reviews of ML applications in geotechnical and
geoscience engineering areas conducted by Shahin Mohammad
(2016), Moayedi et al. (2019), Zhang and Ching et al. (2021),
Zhang et al. (2020f), and Hou et al. (2021).

Although the development of ML models of soil mechanical
parameters remains a hot topic that continues to attract attention,
few studies have reported employed bias statistics for quantification
of model uncertainty. Most previous studies have used the mean
absolute error (MAE), root mean square error (RMSE), and
coefficient of determination (R2) to characterize model accuracy.
However, we offer a reminder that a lack of model bias statistics
(i.e., the mean, coefficient of variation (COV), and probability
distribution function) makes it difficult to make use of ML
models in reliability-based analysis and design.

The present study first introduces a large database consisting of
743 sets of measured physical property parameters and
compressibility indices based on laboratory tests for soft soils
sampled from a city in the GBA of China. The main physical
property parameters are water content, density, and void ratio.
The compressibility indices for the soils are the modulus of
compression and the coefficient of compressibility. Next, a set of
ML techniques (ANN, RF, and SVM) are adopted to develop useful
models for efficient and accurate mappings from the three
aforementioned common physical parameters to the two

compressibility indices. Finally, the model uncertainties of the
proposed ML models are evaluated, where model uncertainty is
quantitatively defined by the statistics of the bias factor, defined as
the ratio of the measured to predicted compression indices. The
probability distributions of the model biases are also investigated.
The performance of each of the machine learning models developed
is discussed and the models are compared on performance. The
results of this study demonstrate the feasibility of applying ML
techniques to make prompt assessments of the compressibility of
soft soils in the GBA area based on simple physical properties of
the soil.

2 Methodology

The methodology used in this study consisted of two parts. The
first was model development, in which several ML models (ANN,
RF, and SVM) were developed. The second was model evaluation
using the model bias method (Ching and Schweckendiek, 2021; Jin
et al., 2018). In model development, the physical properties of the
soils were used as inputs to the ML models and the mechanical
properties were the targets. The main physical parameters were
water content, void ratio, and density of soft soil. The mechanical
parameters were compression indices obtained from compression
(CP) tests. The database is introduced in Section 3.

Typically, the MSE is used as an indicator of the accuracy of
machine learning models. However, theMSE is not sufficient to fully
capture model uncertainty. Therefore, the present study adopted the
model bias method described below for the characterization of the
model uncertainty of the machine learning models. The bias is
defined as the ratio of the measured to the predicted value. Technical
details of the machine learning models and the model bias method
are provided in this section.

2.1 Artificial neural network technique

The use of ANNs is widely accepted as a technique that is
capable of efficiently handling almost any regression or classification
problem given sufficient data. Structurally, an ANN consists of an
input layer, several hidden layers, and an output layer (Figure 1A).
The learning process of an ANN includes forward propagation of
information and backpropagation to adjust the error (Rafiq et al.,
2001). Figure 1B illustrates how a neuron transmits information in
ANN forward propagation. Suppose there are m neurons in hidden
layer k, denoted as nk1, n

k
2,. . ., n

k
m (the neurons in the input layer can

be denoted as n0i ). Then, the t
th neuron in hidden layer k+1, denoted

as nk+1t , is calculated as (Haykin, 2009):

nk+1t � f zk+1t( ) � f ∑i�m
i�1

wk
t,in

k
i + bk+1t

⎛⎝ ⎞⎠. (1)

nk+1t is computed in two steps: first, a summing function zk+1t �∑i�m
i�1 wk

t,in
k
i + bk+1t is computed, where wk

t,i is the weight representing
the strength of the connection between the neurons nki and nk+1t . The
connection strength is positively correlated with the value of the weight.
Parameter bk+1t is the bias. Step two is to substitute zk+1t into the activation
function f(x) as f(zk+1t ) to solve non-linear mapping problems.

FIGURE 3
Diagram of a support vector machine model.
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Commonly adopted functions for f(x) are the “tanh,” “sigmoid,” and
“ReLu” functions. Haykin (2009)discusses the selection of activation
functions for different mapping scenarios with ANN models.

The difference between the outputs (each predicted value ŷp)
and the targets (each measured value ym) is called the error and is
defined as ε � ŷp − ym. Backpropagation is employed to tune the
weights w and biases b until ε2 is minimized. This value of ε2, which
can be expressed as ε2 � ∑k

1ε
2
k/k � ∑k

1(ŷp,k − ym,k)2/k, is referred to
as the mean squared error (MSE).

The input data are usually randomly divided into three subsets in
the development of an ANN model: training, validation, and test sets.
The same process is carried out for each set of the target (measured)
data. The training set is used to determine the weights and biases of the
neurons, and the validation set is utilized to prevent overfitting
problems during the training process. Hence, the optimal weights
and biases that minimize ε2 are determined using both the training
and the validation sets together. The test data are used to evaluate the
learning effectiveness of the ANN model. If this is unsatisfactory, the
ANN model requires further optimization through adjustment of the
hidden layers or the numbers of neurons, use of different activation
functions or training algorithms, or other changes. Additional technical
aspects of the ANNmethod are described by Rafiq et al. (2001), Haykin
(2009), and Demuth et al., 2014.

2.2 Random forest technique

The random forest method is an ensemble learning method that
provides solutions for classification and regression problems. The main

idea is to grow a number of decision trees through bagging and random
feature selection. Each decision tree has high variance and thus is often
rather poor in generalization. As illustrated in Figure 2, the RF
regression model is constructed by assembling several individual
decision trees, and predictions are made by averaging. Note that the
generalization ability of the classification model is improved by voting.
The “forest” reduces the variance by averaging and greatly enhances
prediction accuracy.

Suppose a training dataset D � (X, y), where X is an n × p data
matrix and y is the corresponding n-vector. The data not in the training
dataset at each bootstrap can be referred to as “out-of-bag” (OOB).
Normally, the RF algorithm is as follows (Efron and Hastie, 2016):

Step 1: Select the number of trees B and random features m ≤p;
typically, m � 



p
√

or p/3;

Step 2: Bootstrap a subset of D by randomly sampling n rows with
replacement B times, denoted as D*

i ;

Step 3:Develop a tree r̂i(x) to its maximum depth usingD*
i at each

node in r̂i(x), sampling m of the p features to make each split;

Step 4: Bag these trees and take the average at any point x0. The
resulting RF prediction can be expressed as

r̂RF x0( ) � 1
B
∑i�b
i�1

r̂i x0( ). (2)

FIGURE 4
Histograms and cumulative distributions of the physical parameters (ω, ρ, e) in CP tests.

TABLE 1 Summary of the minimum, mean, median, maximum, and COV values for the physical (ω; ρ, e) andmechanical (Es; α) parameters taken from the database.

Type of test Parameter Minimum Mean Median Maximum COV

CP ω (%) 39.80 65.76 65.70 98.60 0.15

ρ (g/cm3) 1.42 1.60 1.60 1.86 0.04

e 1.00 1.76 1.75 2.56 0.15

Es (MPa) 0.53 1.56 1.47 3.74 0.34

α (MPa−1) 0.77 1.75 1.67 3.52 0.28
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Step 5: At each bootstrap, compute the OOB error for each
response observation.

The aggregate OOB error is obviously the average of each
individual OOB error. The OOB error is a performance indicator
that can be used to test the generalization ability of the RF model;
hence, no cross-validation or additional testing set is required. The
RF model can be optimized by adjusting the parameters B and m if
the overall OOB estimate of error does not meet the prescribed
threshold value. Additional technical details on RF models can be
found in, e.g., Breiman (2001), Efron and Hastie (2016), and Liaw
and Wiener (2002).

2.3 Support vector machines

The SVM method is a classifier in which the main idea is to
establish a classification hyperplane as a decision surface. As shown
in Figure 3, the optimal separating hyperplane is the classification
hyperplane ωx + b � 0 that creates the largest margin between the
hyperplane and the nearest data. In more recent applications
involving regression and time series prediction, SVMs have also
shown excellent performance (Drucker et al., 1997; Müller et al.,
1997). As with classification, the goal of SVM regression is to
identify an optimal separating hyperplane function fSV(x) that
creates the largest margin between targets for all the training dataset
and is also as flat as possible (Efron and Hastie, 2016). Assume
function fSV(x) is a linear function with the following form:

fSV x( ) � ωT
s ϕs x( ) + b, (3)

where ϕs(x) is a set of mapping functions that connect the
source data to a high-dimensional feature space, ωs is the weight,
and b is the threshold. Flatness in Eq. (3) means that the SVM
regression problem is equivalently reformulated as a convex
optimization problem with a target of minimizing ω2; it can be
written as by Smola and Schölkopf (2004):

minimize
1
2
‖ω2

s ‖
subject to yi − ωsϕs x( ) − b

∣∣∣∣ ∣∣∣∣≤ ε. (4)

Equation (4) implicitly assumes that mapping precision ε does in
fact exist for the function fSV(x). In SVM models, different ø
functions are generally used to construct classifiers with satisfactory
performance. For highly non-linear cases, kernel functions are used
to expand ø and enhance its mapping ability. The present study
adopts a Gaussian kernel function (i.e., a radial basis function) with
an exponentially decaying function for ϕ, consistent with most
studies in the literature, e.g., Scholkopf et al. (1997), Krishnan
et al. (2018), Mangalathu and Jeon (2018), and Scholkopf and
Smola (2018). The technical details of SVMs are described by
Scholkopf et al. (1997), Smola and Schölkopf (2004), and
Scholkopf and Smola (2018).

2.4 Characterization of model uncertainty

Bias statistics proposed in model bias methods, such as the bias
mean, bias coefficient of variation (COV), and bias probability
distribution, have been widely employed to characterize model

FIGURE 5
Plots of compression indices versus physical parameters in the CP test results.
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uncertainty. In this study, the predicted values were the outputs of
the machine learning models, while the measured values were
available directly from the database. The bias mean represents
the average accuracy of the model, while the bias COV
represents the dispersion in prediction accuracy. The bias
probability distribution is used as an input to reliability-based
analyses of machine learning models. Lastly, the randomness of
the bias also needs to be checked.

3 Database of soft soil properties

The database of compression indices of soil soft established by
Lin et al. (2022) was used in the present study for the development of
the machine learning models. For completeness, the database is
briefly re-described here.

The database consists of 743 sets of physical properties and
corresponding compression indices for soft soils. Soft soil samples
were obtained from Shenzhen, a major megacity in China. The
physical parameters of moisture content (ω), density (ρ), and void
ratio (e) were obtained through a succession of geotechnical tests.
The compression indices (i.e., modulus of compression ES and
coefficient of compressibility α) were derived from soil
compression (CP) tests. On the basis of these data, a 743 ×
3 data matrix I � [ω, ρ, e] as the input matrix and a 743 ×

2 target matrix Ŷ � [ES, α] were built for the development of
three machine learning models for prediction of compression
indices, as described in the next section. As stated in Section 2,
the particular machine learning models employed were an ANN, an
RF model, and an SVM model.

Figure 4 shows histograms and cumulative plots of the physical
parameters from the CP tests. Essentially, the values of ω, ρ, and e
were < 83.20%, 1.73 g/cm3, and 2.20, respectively, in over 95% of
cases, and they were < 65.70%, 1.60 g/cm3, and 1.75, respectively, in
over 50% of cases. Table 1 summarizes the statistics of the physical
parametersω, ρ, and e, as well as themechanical parameters Es and α
(minimum, mean, median, maximum, and coefficient of variation
[COV]). The ranges of the physical parameters ω, ρ, and e were
39.80% to 98.60%, 1.42 to 1.86 g/cm3, and 1.00 to 2.56, respectively,
with average values of 65.76%, 1.60, and 1.76 g/cm3; these values are
very close to the medians and also match the symmetric histograms
shown in Figure 4. The COV values, indicating dispersion, showed a
medium-sized value of 15% in the cases of both ω and e, and a small
value of 4% in the case of ρ (Phoon and Kulhawy, 1999). In terms of
the compression indices, the values ranged from 0.53 MPa to

FIGURE 6
Plots of the training process for the ANNmodel: (A) illustration of
the proposed ANN for mapping the compression indices of soft soils;
(B)mean squared error (MSE) versus number of epochs during training
of the ANN model.

FIGURE 7
Influence of the number of trees and leaves on OOB MSE in the
RF model: (A) for Es; (B) for α.
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3.74 MPa and from 0.77 MPa-1 to 3.52 MPa-1 for Es and α,
respectively. The COVs for both parameters were approximately
30%, which is regarded as a medium degree of dispersion.

Figure 5 shows plots of the mechanical parameters (Esand α)
versus the physical parameters (ω, ρ, and e) in the CP tests. Visually,
the mechanical parameters are statistically correlated to the physical
parameters. For example, the modulus of compression Es tends to
decrease as ρ increases, and to increase as ω and e increase. In
contrast, for α, the reverse trends occur, in which α decreases as ω
and e increase and increases as ρ increases. The aforementioned
correlations can be proved by Spearman’s rank correlation tests. As
shown in Figure 5, all of the Spearman’s p-values for correlations
between the physical and mechanical parameters were below 0.05.

It should be noted that various other factors, such as saturation,
formation environment, stress history, liquid limit, plastic limit, and
organic matter content, may also affect the compression indices of soft
soils. Data on some of these are also available in the source database. For
example, the degree of saturation was 100% for all soft soil samples.
Moreover, all samples had similar formation environments and similar
stress histories as they were taken from the same soil stratum. Hence,
these two factors did not vary and were not explicitly considered here.
Parameters such as liquid limit, plastic limit, and sampling depth were
also excluded from the model input to keep the machine learning
models simple, practical, and analytical.

4 Development and evaluation of ML
models

This section first presents the details of the construction of
machine learning models (i.e., the ANN, RF, and SVM models)
for mapping to the compression indices of soft soils (i.e., Es and
α) from the physical parameters (i.e., ω, ρ, and e) based on
the database introduced in Section 3. Subsequently, an
evaluation of the accuracy of each model is presented; these
were evaluated on the basis of model biases λ (i.e., λEs and λα),
which are defined as the ratio of the measured to the predicted
compression indices. Finally, the performances of the three
models are compared.

4.1 Model construction

4.1.1 ANN model
The ANN configuration was determined using a trial-and-error

approach, technical details of which are described by Lin et al.
(2022). In this study, the use of one hidden layer containing three

neurons was found to be adequate to yield satisfactorily accurate
predictions while maintaining the simplicity of the network. It
should be noted that, while the addition of more hidden layers
and neurons can enhance the mapping ability of the ANN model,
this did not produce a clear improvement in the present study and
imposes a risk of overfitting due to an insufficiently large database
(less than 103 data points). Figure 6 illustrates the proposed ANN
model for compression indices.

As shown in Figure 6A, the tanh activation function was used in
connections both from the input layer to the hidden layer and from
the hidden layer to the output layer. The corresponding weight and
bias matrices are W01 and B01 and W12 and B12, consisting of
3×3 elements inW01, 3×1 elements in B01, 2×3 elements inW12, and
2×1 elements in B12. Through comparison of the measured
compression indices and the corresponding predictions, the
squared error was calculated as ε2k � (Ŷp,k − Ym,k)2. Therefore,

the mean squared error (MSE) ε2 � ∑k�743
k�1 ε2k/743 was obtained

by traversing all samples and calculating the mean of all squared

errors. The MSE was used as the optimization indicator for training

the ANN; this was therefore minimized to determine the optimal

values of W01, W12, B01, and B12.
The ANN model was constructed, trained, and tested via the

MATLAB™ platform using Bayesian regularization (BR) training
algorithms. Since the built-in BR backpropagation algorithm in
MATLAB™ simultaneously trains and verifies an ANN model,
designation of an additional validation set was not necessary.
Hence, the input matrix I � [ω, ρ, e] was divided into two sub-
matrices: a training set Itrain (3×520) containing 70% of the data
from I, and a test set Itest (3×223) containing the remaining data.
Similarly, the output matrix Y consisted of two subsets, Ŷtrain and
Ŷtest, containing 70% and 30% of Ŷ, respectively. Itrain and Ŷtrain

should match. Other percentages may be employed in dividing the
data into training and test sets; however, the influence of this choice
was insignificant in this case, due to the abundance of the available
data to establish the ANN (Figure 6A).

As shown in Figure 6B, the MSE gradually reached a
minimum value as the epoch increased. Here, an epoch is a
complete training cycle in which all data are used once and the weights
and biases are optimized to yield the minimum MSE. Training was
stopped at epoch 85, at which point the best training performance (lowest
MSE) was 0.085668. The optimal W01, W12, B01, and B12 were
determined to be:

W01 �
0.334 1.191 0.520

−0.357 − 1.066 − 1.738
−0.420 0.175 − 1.138

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, B01 �
0.683
−0.282
−0.802

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦,

TABLE 2 Summary of the mean, COV, and probability distributions of the model biases for the ANN, RF, and SVM models.

Model λES λα

Mean COV Probability distribution Mean COV Probability distribution

ANN 1.00 0.17 Lognormal 1.00 0.17 Table 4

RF 1.00 0.15 Table 4 1.00 0.15 Table 4

SVM 1.01 0.17 Table 4 1.01 0.17 Table 4
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W02 � −1.225 − 1.043 0.393
0.688 0.371 0.365

[ ], B12 � 0.359
−0.375[ ].

This ANN is simple, having an explicitly analytical form
consisting of simple physical parameters, and it offers
convenience for engineers in that the model can readily be
applied in practice. The technical details are described by Lin
et al. (2022).

4.1.2 RF model
The RF model was also developed using the MATLAB™

platform. As discussed in Section 2.2, OOB error is used as an
optimization indicator for RF models, and is determined by the
numbers of trees (B) and leaves (NL). Figure 7 shows the OOBMSEs
(OOB errors) for both Es and α with B � [1, 50] andNL � 5, 10, 20,
50, and 100. Visually, the OOB MSE decreased as B increased, but
became very stable after B≥ 20 in the case of both Es and α. While
increasing the B value continuously reduced the OOB MSE, the
reduction was insignificant in practical terms and a larger B value
could result in overfitting. Therefore, the number of trees used in
this case was B � 20 for both Es and α. Regarding the number of
leavesNL, the OOBMSEs reached a minimum value of 0.095898 for
Es forNL � 10, and a minimum value of 0.087289 for α forNL � 20.
Furthermore, the number of featuresm is routinely determined to be
m � 



p
√

or m � p/3 according to Efron and Hastie (2016). Hence,
parametermwas either 1 or 2. Based on this analysis, the parameters

selected for the RF model developed to estimate each of the
compression indices were B � 20,NL � 10 for Es and B � 20,NL �
20 for α.

4.1.3 SVM model
The key points in establishing an SVM regression model are

to determine the kernel function and to optimize the model
parameters. In this study, the main options considered for the
kernel function were Gaussian, polynomial, sigmoid, and linear
kernels. The corresponding MSEs for the SVM model using each
of these kernels, based on the full dataset, were computed as
0.0840 for the Gaussian kernel, 0.1178 for the polynomial
kernel, 0.0929 for the sigmoid kernel, and 0.0925 for the
linear kernel. In addition, the corresponding coefficients of
determination (R2) were 0.6892, 0.5639, 0.6561, and 0.6577,
respectively. These two indicators clearly showed that the
Gaussian kernel function was the best option; this kernel
represents a local smoothing fit, the value of which decreases
as the distance between a data point and the hyperplane
increases. The polynomial kernel was not selected since this
type of kernel is computationally intensive and time-
consuming. The sigmoid and linear kernels were not adopted
here owing to low prediction accuracy compared to the Gaussian
kernel. Therefore, the Gaussian kernel was used for
development of the SVM model for prediction of
compression indices.

FIGURE 8
Measured compression indices versus values predicted by the trained ML models using all datasets: (A–C) Esm versus Espand αm versus αp for the
ANN, RF, and SVM models, respectively.
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FIGURE 9
Plots of model biases versus predicted compression indices for the ANN, RF, and SVM models.

TABLE 3 Summary of results of Spearman’s rank correlation tests between biases and input parameters or predicted compressibility parameters.

Parameter Model λES λα

Spearman’s ρ p-value Spearman’s ρ p-value

ω ANN −0.01 0.912 −0.02 0.631

ρ −0.03 0.360 0.01 0.708

e 0.01 0.765 −0.03 0.454

Esp 0.01 0.770 N/A N/A

αp N/A N/A 0.02 0.551

ω RF 0.03 0.405 −0.07 0.051

ρ −0.09 0.011 0.115 0.002

e 0.04 0.230 −0.08 0.021

Esp 0.12 0.001 N/A N/A

αp N/A N/A 0.17 0.000

ω SVM 0.26 0.000 −0.46 0.000

ρ −0.31 0.000 0.46 0.000

e 0.32 0.000 −0.50 0.00

Esp 0.06 0.091 N/A N/A

αp N/A N/A 0.03 0.462
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Optimization of model parameters for this type of model mainly
involves the penaltyC and theGaussian kernel coefficient ξ. Typically, the
larger the penalty, the higher the loss and the lower the number of support
vectors; thus, the more complicated the hyperplane is. The coefficient ξ
reflects the influence of a single point on the hyperplane. A data point
with a larger ξ means selection of the support vector is more difficult. In
this study, the setting ranges used for bothC and ξ were [–10, 10], and the
interval was 0.5, producing a matrix of settings C × ξ � 41 × 41 and a
total of 1,681 combinations of C and ξ. Using the same datasets to train
and test the SVMmodel for each [C, ξ] combination, values ofC � 0 and
ξ � −1.0 were found to lead to the minimum MSE. Hence, these values
were used in the SVM model for prediction of compression indices.

4.2 Model evaluation

The R2 values calculated on the basis of all data were 0.827,
0.769, and 0.689 for the ANN, RF, and SVM models, respectively.
While the MSE and R2 values provided initial indications of the
relative accuracies of the three models, bias statistics have practical
use in further evaluating model uncertainties. In this study, bias
statistics such as the mean and coefficient of variation (COV) were
computed to further quantify the accuracy of the machine learning
models developed. Here, bias is defined as the ratio of the measured
to the predicted compression indices, i.e., λEs � Esm/Esp and
λα � αm/αp. The means and COVs of the biases are summarized

FIGURE 10
Cumulative distributions and K–S normality test results for the biases of the three ML models.

FIGURE 11
Fit-to-tail technique applied to the tail distributions of five model biases.
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in Table 2. All the means were essentially 1.00 (range: 1.00 to 1.01),
and the COVs were no greater than 0.20 (range: 0.15 to 0.17) across
the ANN, RF, and SVM models. Therefore, the three models were
accurate on average, and the prediction dispersion was low in all
cases according to the ranking scheme proposed by Phoon and Tang
(2019). Figure 8 shows plots of the measured versus predicted values
for the ANN, RF, and SVM models. Visually, the data points are
scattered around the line corresponding to Y=X for all three models.
Most of the data fall within the range of 0.5–2, except for a few data
points falling outside this range. This suggests that the performance
of the three models was satisfactory. The bias statistics based on the
aforementioned analyses for the three models were similar, with
almost no difference in their performance. Therefore, it is difficult to
judge the relative accuracy of the models based on the
aforementioned analyses.

Figure 9 shows the plots of λ versus the predicted values for each
model. Externally, no dependencies are observed between the biases
and predicted values. Spearman’s rank correlation tests showed that
the biases and predicted values were statistically uncorrelated at a
significance level of 0.05 in the case of the ANN and SVM models,
while a weak correlation was found in the case of the RF model. The
results of a further correlation check of λ against each input
parameter are summarized in Table 3. The λ values (λEs and λα)
for the RF model were statistically correlated with ρ, and the λ values
(λEs; λα) for the SVM model were statistically correlated with all
input parameters, which is not conducive to engineering practice.
Based on the above analyses, it can be concluded that the ANN can
be considered to be the best model in this study.

5 Characterization of bias distributions

Aside from mean bias and bias COV, characterization of the
probability distributions of variables is also common in geotechnical
analysis (Guo et al., 2021). In this study, the probability distribution of
the bias is an important input parameter in reliability-based
geotechnical design; thus, this also required characterization.
Figure 10 shows the cumulative distributions of all model biases.
The Kolmogorov–Smirnov (K–S) normality test was applied to the
logarithms of each model bias, i.e., ln λEs and ln λα. The results showed
that no p-values exceeded 0.05 except in the case of ln λEs in the ANN
model (Figure 10). In other words, λEs for the ANN model can be
treated as a lognormal random variable, while this is not the case for the
remaining λ distributions (five cases) across the three models.

Additional goodness-of-fit tests, such as the K–S modified test and
A-D test, were conducted to further examine the bias distributions;
however, the results showed that none of the remaining model biases
followed Weibull, gamma, or exponential distributions.

For the five cases that did not follow any common distribution, a
fit-to-tail technique was used to linearly approximate the tail
distribution of λ. Figure 11 plots the fit-to-tail fitted for the five
sets of λ. These tail distributions of λ can be treated as normal
random variables. The mathematical expressions and bias statistics
of the linear approximation curves and the corresponding
coefficients of determination R2 are summarized in Table 4. The
overall probability distributions of λ for all three models are also
shown in Table 2.

6 Conclusion

In this study, three machine learning techniques (i.e., an artificial
neural network (ANN), a random forest (RF) model, and a support
vector machine (SVM) model) were developed for mapping of the
compression parameters of soft soils in the Greater Bay Area of
China. The inputs were water content, soil density, and void ratio.
The outputs were the modulus of compression and the coefficient of
compressibility, which are usually obtained from laboratory
consolidation tests. The accuracies of the three machine learning
models developed were evaluated and compared using model bias
statistics. The models were accurate on average, with low dispersion
in prediction accuracy. The bias mean was essentially 1.00 in all
cases, and the bias COVs were around 15%. The biases of each of the
three models followed multi-order Gaussian distributions, with the
exception of λEs in the ANN model, which followed a lognormal
distribution. The ANN model was considered the best, as it was the
only model in which the accuracies were not statistically correlated with
the model inputs and output. Themachine learningmodels developed in
this study have practical value, as they can be easily used to efficiently
predict the compressibility indices of soft soils in the Greater Bay Area of
China. Moreover, these results demonstrate the value of applying ML-
based mapping techniques to address geotechnical challenges.
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