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Deserts are among the most important terrestrial sedimentary environments and
have existed in all periods throughout Earth’s history. In contrast to modern deserts,
the ability to quantitatively evaluate the area and desertification degrees of ancient
deserts is limited due to the lack of unambiguous proxies. Dune morphology and
their spatial arrangements directly reflect the degree of desertification of deserts.
Recently, a methodology for obtaining the morphological parameters of dunes was
established, although it has not been applied to ancient dunes and deserts in deep
time. In theOrdos Basin, both the Early Cretaceous desert andmodern deserts (Hobq
Desert andMuUs Desert) were well developed and exposed, whichmakes theOrdos
Basin an ideal place to quantitatively evaluate the paleo-desert based on the
proposed methodology. In this study, a total of 698 and 1,490 morphological
parameters reflecting the Early Cretaceous desert and modern deserts in the
Ordos Basin were obtained, respectively. For the Ordos paleo-desert, our results
show that its area was larger and its degree of desertification was more severe than
those of modern mid-latitude deserts, including the modern desert in the Ordos
Basin, but were similar to those of the modern low-latitude deserts. Our results,
therefore, suggest that theOrdos paleo-desert was a non-negligible and large desert
during an interval of Earth’s history. Since the other controlling factors, such as
regional geography and sources of both the ancient and modern deserts in the
Ordos Basin, have remained nearly unchanged, we speculate that it may have been
the relatively high temperature, high levels of atmospheric carbon dioxide and
relatively low precipitation during the greenhouse period (i.e., Early Cretaceous)
that led to the large area and severe degree of desertification of the Ordos paleo-
desert.
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1 Introduction

Deserts are among the most important terrestrial sedimentary environments, and their
sedimentary records extend throughout Earth’s history (Mountney, 2006; Rodríguez-López
et al., 2014). Modern deserts are compared and evaluated mainly by their area and degree of
desertification (degree of sand cover) (Laity, 2009; Pye, 2009). However, due to the lack of
unambiguous proxies, the ability to quantitatively evaluate ancient deserts in geological history
and explore their formation mechanisms is limited (Cosgrove et al., 2021a; Cosgrove et al.,
2021b; Cosgrove et al., 2021c; Rodríguez-López et al., 2014).
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Dunes are the primary landforms in deserts (Mountney, 2006;
Laity, 2009). Their morphology and spatial arrangement directly
reflect the degree of desertification and serve as an ideal proxy to
quantitatively evaluate deserts (Dong et al., 2009; Al-Masrahy and
Mountney, 2013). Recently, a methodology was established by Ma
et al. (2021) to measure and calculate the morphological parameters of
ancient dunes, which further enables the quantitative descriptions of
dune morphology in deep time. However, its applicability has not been
verified.

Previous sedimentological studies proved that an Early
Cretaceous desert (paleo-desert for short) was well developed and
exposed across the entire Ordos Basin, northern China (Qi and Li,
1996; Jiang et al., 2004; Qiao et al., 2021). In this study, we measure
and calculate 698 morphological parameters of 241 ancient dunes in
the Ordos paleo-desert. After comparing the dune morphological
parameters of modern deserts (Hobq Desert and Mu Us Desert) in
the Ordos Basin and other typical modern deserts all over the world,
our results suggest that the area was larger and the degree of
desertification was more severe in the Ordos paleo-desert than in
the modern mid-latitude deserts, including the modern desert in the
Ordos Basin, but similar to those of the modern low-latitude deserts.
We speculate that the typical greenhouse climate led to the large area
and severe desertification that occurred within the Ordos paleo-
desert during the Early Cretaceous.

2 Geological setting

The Ordos Basin, also known as the Ordos Plateau, is a highland
sedimentary basin in Northwest China with an elevation of
1,000–1,600 m. It is the second largest sedimentary basin in China
and has a total area of 370,000 km2 (Liu and Yang, 2018; Zhang et al.,
2020). The basin is bounded to the east by the Lvliang and Taihang
Mountains, to the north by the Yin Mountains, to the west by the
Helan Mountains, and to the south by the Qinling Orogen (Shi et al.,
2020; Figure 1). Since the Early Cretaceous, the location of the Ordos
Basin has basically remained unchanged (at 34°N–41°N, 104°E–112°E)
(Jiang et al., 2001). Two modern deserts (Yang et al., 2012) and a
paleo-desert (Qiao et al., 2021) developed in the Ordos Basin.

The modern deserts are confined to the northern part of the Ordos
Basin. It comprises two deserts: the Hobq Desert in the north and the
Mu Us Desert in the south (Liu and Yang, 2018). The Hobq Desert
(107°08′–111°30′ E, 39°40′–40°48′ N), formed in the Early Holocene,
extends ~300 km from west to east, and its width decreases from
~100 km in the west to 20–30 km in the east, covering an area of
16,000 km2 (Sun et al., 2006; Yang et al., 2016). Most of the area is
covered by desert landscapes, characterized by crescentic dunes (Fan
et al., 2013; Xu et al., 2018). The Mu Us Desert (106°11′–110°54′ E,
36°49′–40°12′ N), which formed in the Late Pleistocene, has an area of
~39,000 km2 and a dune field area of 34,033 km2 (He et al., 2010). The

FIGURE 1
(A) Geological map of the Ordos Basin. (B) Digital Elevation Model (DEM) of the modern deserts (Hobq Desert and Mu Us Desert) in the Ordos Basin.
Dashed box: study area; circle: data measurement outcrop locations.
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inner Mu Us Desert is mainly composed of semistabilized barchanoid-
ridge dunes (Wang et al., 2017). However, in the southern marginal
Mu Us Desert, the sand-loess transitional zone, i.e., the main
geomorphic units, are discontinuous sand sheets (Sun, 2000;
Huang et al., 2009).

In contrast to modern deserts, the paleo-desert covered almost the
entire Ordos Basin during the Early Cretaceous (~142–136 Ma,
Berriasian-Valanginian) (Deng et al., 2008; Huang, 2010; Qiao
et al., 2021). The aeolian strata in the Ordos Basin are mainly
developed in the Luohe and Luohandong Formations (Jiang et al.,
2001; Xing et al., 2018). Here, our study is focused on the typical paleo-
desert deposits in the Luohe Formation, which has an area of
370,000 km2 (Jiang et al., 2004). The aeolian sequences in this
formation have an average thickness of 110–430 m and are mainly
exposed in the middle and western parts of the basin (Deng et al., 2008;
Zhu et al., 2018). The dune deposits are well developed and preserved
(Qiao et al., 2021).

3 Methods

3.1 Morphological parameter of dunes

Asmentioned above, the dunemorphology could be quantitatively
described by morphological parameters, including height (H), spacing
(SP), wavelength (DW), wave width (WA), average thickness of
grainflow strata (t), preserved set thickness (λ), climbing angle (Փ),
horizontal length of slipface (L), and angle of repose (α) (Table 1; Al-
Masrahy and Mountney, 2013; Mountney and Howell, 2000; Romain
and Mountney, 2014; Yang H et al., 2019). Among these parameters,
DW,WA, andH (similar to the length, width, and height) together can
directly reflect the size of a dune and are used for comparison. For
modern dunes, SP, DW, WA, and L can be directly obtained by field
measurement or remote sensing images (Al-Masrahy and Mountney,

2013). For ancient dunes, SP, DW, WA, t, λ, and Փ can be directly
obtained by field measurement if the outcrops are well exposed and
well preserved (Mountney, 2012; Romain and Mountney, 2014). The
other parameters can be indirectly calculated based on the above
parameters (Yang J et al., 2019; Ma et al., 2021; Junhuai).

3.2 Measurement of morphological
parameters

A total of 434 data points were measured from 241 dunes from the
paleo-desert, and a total of 653 and 484 data points were measured
from 215 to 160 dunes from the Hobq andMu us Deserts, respectively.
Dunes can be divided into many types, for example, crescentic,
transverse, linear, and star (Mountney, 2006). Among them,
crescentic dunes are simple in structure and widely distributed.
During the process of long-distance migration, the size and shape
of sediment in crescentic dunes do not significantly change (Ma et al.,
2021). Therefore, to ensure the accuracy of our measurements, only
simple and compound crescentic dunes were measured in this study
(Xiao, 2017).

3.2.1 Ancient dunes in the Luohe Formation
The outcrops of the Luohe Formation are well preserved and

fully exposed, which facilitates measurement. The outcrops at
Dongsheng, Zhidan, and Xunyi (Figure 1) are accessible, well
exposed, and laterally extensive, and their planar cliff faces are
oriented either parallel or perpendicular to the paleowinds (Jiang
et al., 2001; Qiao et al., 2021). According to the accumulation
mechanism of climbing aeolian systems, all the morphological
parameters should be measured in the section as close to
parallel or perpendicular to the paleowinds as possible since
oblique sections make the measurements larger or smaller
(Mountney, 2012; Romain and Mountney, 2014; Figure 2).

TABLE 1 Summary of morphological parameters of aeolian dunes (Al-Masrahy and Mountney, 2013; Romain and Mountney, 2014).

Type Morphological parameter
(Code)

Description Equation

Macro-
parameter

Dune height (H) The difference in relief between the crest of a bedform and the general level of the desert surface
where interdune flats are present

Dune spacing (SP) The crest-to-crest (or toe-to-toe) distance between adjacent bedforms in an orientation
perpendicular to the trend of elongate bedform crestlines

H = 0.12Sp

Dune wavelength (DW) The distance from the leeward toe to the rearward (stoss) toe of the bedform in an orientation
parallel to the direction of downwind migration

SP=DW
(central-desert)

Dune wave width (WA) The wavelength of along-crest sinuosity of dune WA=11.29H

Micro-parameter Grain-flow thickness (t) The thickness of grain-flow strata arising from individual lee slope sand avalanches, a function of
the length of the lee slope of the original bedform down which avalanching grains of sand
cascaded to generate the deposit. It represents single grain flow events

H = 988.78t1.4796

Indirect-
parameter

Preserved set thickness (λ) Originated via bedform climbing and records the thickness of one period of accumulation, a
function of both original bedform wavelength and the angle at which the bedforms climbed over
one another as accumulation proceeded

DW = λ/tan Փ

Angle of set climb (Փ) The dip angle of the interdune migration plane relative to the underlying surpersurface

Slipface horizontal length (L) Horizontal component of the distance projected from the top of the dune to the bottom of the
leeward slope

H = L*tanα

Angle of repose (α) The minimum angle to the horizontal surface at which slipface causes sand to be in the critical
state of sliding along the inclined surface
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(1)DW. DW is the distance between two successive interdune
deposits in the sections that were (nearly) parallel to the
paleowinds (Mountney and Howell, 2000; Figure 2B,
Figure 3A). If the interdune deposits are absent, then the
superimposed surfaces instead of the interdune surfaces can
be used, but this will lead to a smaller value than the actual value
(Figure 2B, Figure 3B). In the desert center, SP is approximately
equal to DW, as interdunes are not developed (Ma et al., 2021).
(2)WA. WA is the distance between the wings of trough cross-
bedding in the sections that were (nearly) perpendicular to the
paleowinds (Ma et al., 2021; Figure 2C, Figures 3C, E).
(3)ϕ, λ. ϕ and λ need to be measured together from compound
crescentic dune deposits (Mountney and Howell, 2000). ϕ is the
angle between the climbing surface of dunes and the supersurface
(Mountney, 2012; Figure 2D). The generally horizontal strata of the
Luohe Formation indicate that the supersurface is also horizontal
(Xue et al., 2010). In this case, ϕ is the dip of the superimposed
surfaces in the section (nearly) parallel to the paleowinds
(Figure 3F). λ is the vertical distance of two adjacent
superimposed surfaces in sections parallel or perpendicular to
the paleowinds (Figure 2D, Figure 3F).
(4)t. For sections either perpendicular or parallel to the paleowinds,
a t series consists of the measurements of the grain flow unit lamina
by lamina in one cross-bedded dune set (Howell and Mountney,
2001; Romain and Mountney, 2014; Figure 3D).

In total, for ancient dunes in the Luohe Formation, 144 DW,
74 WA, 23 sets of ϕ and λ, and 170 t (7 sets) are measured
(Supplementary Table S1).

3.2.2 Modern dunes in the Hobq and Mu Us Deserts
The measurement of modern dune morphological parameters is

much easier (Al-Masrahy and Mountney, 2013). Based on the satellite
imagery provided by Google Earth Pro software and datasets of the
Hobq and Mu Us Deserts, DW, WA, and L can be measured directly
for dunes without vegetation cover (Figure 4). For a dune, DW is
measured from its leeward toe to its rearward toe in an orientation
parallel to the migration direction,WA is measured from one wing to
the other, and L is measured as the horizontal length of its lee slope. In
addition, the dune morphological parameters of the Hobq and Mu Us
Deserts reported by previous studies are also compiled (Du et al., 2011;
Du et al., 2013; Wang et al., 2013; Zhang, 2019; Xu et al., 2020).

In total, for modern dunes in the Hobq Desert, 215 DW, 206WA,
and 214 L were obtained. For modern dunes in the Mu Us Desert,
160DW, 160WA, and 160 Lwere obtained (Supplementary Table S2).

3.3 Calculation of the unmeasurable
morphological parameters

As we have mentioned above, we use DW, WA, and H to make
comparisons. In contrast to WA, H for both ancient and modern
dunes and DW for part of ancient dunes cannot be directly measured
due to the relatively bad outcrop conditions (Mountney, 2006).
Fortunately, according to previous studies, there are mathematical
relationships between H and SP, H and t, and H and WA for simple
and compound crescentic dunes (Hesp and Hastings, 1998; Howell
andMountney, 2001; Dong et al., 2009; Romain andMountney, 2014).
Ma et al. (2021) summarized these empirical equations as follows.

FIGURE 2
Geometric models of aeolian architecture of ancient dunes. (A)Depositional model for aeolian dune and interdune deposits (modified from Romain and
Mountney, 2014). (B)Cross section parallel to the primary transport direction. (C)Cross section perpendicular to the primary transport direction. (D) Simplified
model for the accumulation of aeolian succession (modified from Mountney, 2012). SS-Supersurface; I-interdune surface; S-superimposed surface;
R-reactivation surface; DW-dune wavelength; WA-dune wave width; λ-preserved set thickness; ϕ-angle of set climb.
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FIGURE 3
Outcrops of morphological parameters of ancient dunes. (A) Dune deposit bounded on both sides by interdune deposits in the section nearly parallel to
the paleowind. (B) Dune deposit bounded on one side by interdune deposit in the section nearly parallel to the paleowind. (C) Large-scale aeolian though
cross-bedding with interdune deposits in the section nearly perpendicular to the paleowind. (D) Detail of aeolian cross-bedding showing grainflow and
grainfall lamination. (E) A series of cross-beddings in the section perpendicular to the paleowind. (F) Large-scale compound aeolian dunes in the paleo-
desert center. SS-Supersurface; I-interdune surface; S-superimposed surface; DW-dune wavelength; WA-dune wave width; t-grain flow thickness; λ-
preserved set thickness; ϕ-angle of set climb.
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H � a1 Sp
b1 (1)

H � a2 t
b2 (2)

WA � a3 H + c1 (3)
In these equations, a1, a2, and a3 are coefficients, b1 and b2 are

the numbers of occurrences, and c1 is a constant. The values of a1,
a2, b1, b2, and c1 mainly depend on the internal and external
features of deserts, such as sand properties, surface morphology,
wind field, and terrestrial vegetation (Ma et al., 2021). In addition,
based on the geometry of dune deposits (Figure 2D, Figure 4), the
conversion equations forH, L and α, and DW, λ and ϕ are as follows
(Mountney and Howell, 2000; Yang H et al., 2019).

H � L tan α (4)
DW � λ/ tan ϕ (5)

By analyzing the properties of mid-latitude modern and ancient
desert deposits, previous studies have suggested that the paleo-desert
shares similar characteristics with the Badain Jaran Desert, the Kumtag
Desert and the Permian Cedar Mesa Sandstone deposits (Dong et al.,
2009; Rodríguez-López et al., 2014; Romain andMountney, 2014; Liu and
Yang, 2018). Therefore, based on Eqs 1–3, the following empirical
equations derived from the Badain Jaran Desert and the Kumtag
Desert and Eq. 5 are used to calculate the unmeasurable DW and H
for the ancient dunes of the paleo-desert (Dong et al., 2009; Ren et al.,
2010; Romain and Mountney, 2014).

H � 0.12Sp (6)
H � 0.12DW (7)
WA � 11.29H (8)
H � 988.78t1.4796 (9)

As SP approximately equals DW in the desert center, Eq. 7 can
only be applied in the desert center. By using Eqs 5–9, 23 DW and
241H are calculated for the paleo-desert. To validate our calculations,
we measure DW and t and WA and t of the same dune and then
calculate H by both Eqs 7, 8 and Eqs 7, 9. The results for H of the
different equations are consistent.

In Eq. 4, α is a dynamic equilibrium state shaped by the
interaction of regional terrain, wind, and sand sources (Yang J
et al., 2019). Wang et al. (2017) measured an α of 32° in the Hobq
Desert and the Mu Us Desert. Based on L obtained from the
remote sensing images, 197 and 156 H are calculated in the Hobq
Desert and the Mu Us Desert, respectively (Supplementary
Table S2).

4 Results

Table 2 summarizes the results of the statistical analysis of DW,
WA, and H of both ancient dunes in the paleo-desert and modern
dunes in the Hobq Desert and the Mu Us Desert in the Ordos Basin.

FIGURE 4
Remote-sensing image of dune and interdune of the Hobq Desert, including definitions of the terminology used in this study to quantitatively describe
their morphology and geometry. Sketch map in top view and cross section of a dune is at the top right. H-original dune height; L-horizontal length of dune
slipface; α-angle of repose.
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The evolution of DW,WA, and H from the desert center to the desert
margin is shown in Figure 5.

4.1 The Hobq Desert

The Hobq Desert covers an area of 16,000 km2 (Sun et al., 2006;
Yang et al., 2016). A total of 215 dunes have been analyzed in the Hobq
Desert. Most of the Hobq Desert is covered by active crescentic dunes
and sandsheets (Figure 5A). In the Hobq Desert, DW ranges from
27 m to 262 m with an average value of 90 m.WA ranges from 38 m to
315 m with an average value of 119 m.H ranges from 1 m to 23 mwith
an average value of 9 m (Table 2).

According to the fitting curves in Figure 5B, DW,WA andH are
distributed discretely with high standard deviation in the Hobq
Desert. From the desert center to the desert margin, there is no
obvious variation in dune size across the desert (Figure 5A).

4.2 The Mu Us Desert

The Mu Us Desert covers an area of ~39,000 km2 (He et al.,
2010). A total of 160 dunes have been analyzed in the Mu Us
Desert. Active and stabilized dune fields within the Mu Us Desert
developed on the Mesozoic bedrock in the eastern and southern
regions of the desert (Figure 5B). The Mu Us Desert is a steppe
desert characterized by mobile, semimobile, and semifixed dunes
with a mosaic structure similar to loess grasslands. In the Mu Us
Desert, DW ranges from 38 m to 233 m with an average value of
90 m. WA ranges from 40 m to 373 m with an average value of
149 m. H ranges from 1 m to 26 m with an average value of 10 m
(Table 2).

Figure 5B shows that DW,WA, and H decrease gradually moving
away from the desert center to the desert margin, but the decreasing
trend is not significant. The ranges in the variability of DW,WA, and
H are relatively limited, and most of the dunes in the Mu Us Desert are
relatively small.

4.3 Paleo-desert in the Ordos Basin

The paleo-desert covers the entire basin with an area of
370,000 km2 (Qiao et al., 2021) (Figure 5C). It consists of typical
desert center and margin subenvironments. For the paleo-desert
margin, DW ranges from 36 m to 270 m with an average value of
98 m.WA ranges from 52 m to 201 m with an average value of 100 m.
H ranges from 4 m to 32 m with an average value of 11 m (Table 2).
For the paleo-desert center,DW ranges from 105 m to 2,252 mwith an
average value of 562 m. WA ranges from 135 m to 523 m with an
average of 308 m. H ranges from 12 m to 270 m with an average of
58 m (Table 2). In the desert center (0–60 km), DW, WA, and H
increase dramatically and gradually decrease to the paleo-desert
margin. Notably, a series of mega-dunes that are 2,252 m long,
523 m wide, and 270 m high were formed in the paleo-desert
center (Figure 5C).

The maximumDW andH of the paleo-desert are up to 9–12 times
those of the Hobq Desert andMu Us Desert (Table 2; Figure 6A). Even
the mean DW and H of the paleo-desert are approximately 4 times
those of the Hobq Desert and Mu Us Desert (Table 2; Figure 6A).
However, the maximum and mean WA values of the paleo-desert are
no more than twice those of the Hobq andMu Us Deserts, respectively
(Table 2; Figure 6A). We speculate that the WA of the paleo-desert
may have been underestimated due to the limited preservation
conditions.

TABLE 2 Results of statistical analysis of wavelength (DW), wave width (WA) and height (H) of both the ancient and modern dunes in the Ordos Basin.

Location Morphological
parameter

Statistical analysis

Number Maximum
(m)

Minimum
(m)

Mean
(m)

Standard
deviation

Coefficient of
variance

paleo-desert DW 83 2,252 105 562 493 88

center WA 25 523 135 308 115 37

H 108 270 12 58 55 94

paleo-desert DW 84 270 36 98 45 46

margin WA 49 201 52 100 38 38

H 133 32 4 11 5 59

Hobq Desert DW 215 262 27 90 39 43

WA 206 315 38 119 50 42

H 215 23 1 9 5 51

Mu Us Desert DW 160 233 38 90 38 42

WA 160 373 40 149 61 41

H 160 26 1 10 5 48

*All the statistical dunes are simple and compound crescentic dunes.
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FIGURE 5
Outline map and graph of dune wavelength (DW), dune wave width (WA) and dune height (H) against distance from the desert center in the Hobq Desert
(A), Mu Us Desert (B), and paleo-desert (C) in the Ordos Basin. The dotted circle (from the center to the boundary) corresponds to the center of the desert to
themargin; black circles show locations where data was collected andmeasurements were taken; blue lines are the fitting curves with the equation of the line
and R2 value also shown. The line segments in the graphs represent the range of values. All the statistical dunes consist of simple and compound
crescentic dunes.
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5 Discussion and implications

5.1 Quantitative evaluation of the large paleo-
desert in the Ordos Basin

During the Early Cretaceous, aeolian deposits covered the
entire Ordos Basin and are considered to represent a typical
desert environment (Qi and Li, 1996; Li et al., 1999; Qiao et al.,
2021). Many sedimentological studies have already been
conducted to investigate the paleo-desert, including analyses of
desert-related sedimentary facies (Qi and Li, 1996) and
reconstruction of aeolian architecture and evolution models
(Qiao et al., 2021). These studies indicated that the paleo-desert
in the Ordos Basin was a large sandy desert, but no quantitative
constraints have been made.

In general, deserts can be quantified and evaluated in different
aspects, and the two representative and comparable aspects are the
area and degree of desertification (Laity, 2009). As deserts are usually
covered by sand and vegetation, the term “desertification” can be
defined as a land degradation process and can be reflected by the ratio
between the sand cover area and desert area (Pye, 2009; Mirzabaev
et al., 2019; Yu et al., 2020). Unlike desert areas, which can be obtained
directly, desertification is difficult to quantify, especially in ancient
deserts (Laity, 2009). In most cases, desertification is positively
correlated with the range of the sizes of the dunes as well as the
maximum dune size (Al-Masrahy and Mountney, 2013; Cosgrove
et al., 2021a, b). For example, for each desert, the sizes of its dunes
commonly lie within a specific range, although the dune size tends to
be smaller in the desert margin and larger in the desert center
(Lancaster, 1994; Rubin and Carter, 2006; Ewing and Kocurek,
2010). Therefore, evaluating the dune morphology and dune size

may help to quantify the degree of desertification of each desert. In this
study, based on DW, WA, and H (Al-Masrahy and Mountney, 2013),
we quantitatively evaluate the degree of desertification of the Ordos
paleo-desert.

Here, the area and degree of desertification of the Ordos paleo-
desert are compared with those of the modern deserts (Hobq and Mu
Us Deserts) in the Ordos Basin and other typical modern deserts all
over the world. First, the area of the Ordos paleo-desert is nearly ten
times the total area of the Hobq and Mu Us Deserts (He et al., 2010;
Yang et al., 2016; Qiao et al., 2021). The range and maximum size of
the dunes of the Hobq and Mu Us Deserts are similar to those of the
Ordos paleo-desert margin but are much smaller than those of the
Ordos paleo-desert center (Figure 6A). Therefore, our results suggest
that both the area and degree of desertification of the Ordos paleo-
desert exceed those of the modern deserts in the Ordos Basin. Second,
the area of the Ordos paleo-desert is slightly larger than that of the
mid-latitude Taklimakan Desert (largest desert in China) and
Karakum Desert (largest desert in Central Asia) (Qiao et al., 2021;
Rittner et al., 2016; Zonn and Esenov, 2012; Figure 6B). The dune size
(i.e., the range and maximum value of DW) of the Ordos paleo-desert
is larger (Breed and Grow, 1979; Figure 6B), which indicates a more
severe degree of desertification in the Ordos paleo-desert than in the
Taklimakan Desert and Karakum Desert. Third, although the areas of
the low-latitude Sahara Desert in Africa and the Rub ’al Khali Desert in
the Arabian Peninsula, by far the largest hot deserts on Earth (Pastore
et al., 2021; Xiao et al., 2021), are larger than that of the Ordos paleo-
desert, the Ordos paleo-desert has a larger dune size (Al-Masrahy and
Mountney, 2013; Breed and Grow, 1979; Figure 6B). This indicates
that the degree of desertification in the Ordos paleo-desert was similar
to or even more severe than that in the Sahara and Rub’ al Khali
Deserts.

FIGURE 6
(A) Comparison graph of dune wavelength (DW), dune wave width (WA) and dune height (H) among the paleo-desert, Hobq and Mu Us Deserts in the
Ordos Basin. (B) Comparison graph of area, DW and WA between the paleo-desert in the Ordos Basin and the global modern typical dune fields. All the
statistical dunes are simple and compound crescentic dunes.
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In summary, the comparisons demonstrate that the Ordos paleo-
desert was a large and non-negligible desert at one point in Earth’s history.
The area and degree of desertification of the Ordos paleo-desert exceeded
those of themodern deserts in the Ordos Basin and themodern Karakum
andTaklimakanDeserts atmiddle latitudes andwas similar to those of the
great Sahara and Rub’ al Khali Deserts at low latitudes. We suggest that
quantitative assessments of dune morphological parameters are useful for
evaluating ancient deserts in deep time.

5.2 The controlling factors on the formation,
development, and evolution of deserts

Deserts developed both in the modern era and the Early
Cretaceous in the Ordos Basin (Liu and Yang, 2018; Qiao et al.,

2021). According to the quantitative data of the desert area and the
dune morphology, the paleo-desert is much larger than the modern
deserts in the Ordos Basin (Figure 5, Figure 6A). The formation of
deserts is generally controlled by internal factors (e.g., basin
properties) and external factors (e.g., geomorphic and geographic
conditions, potential source area and sediment features, the
evolution of terrestrial plants, and climate conditions) (Mountney,
2006; Lu et al., 2019; Cosgrove et al., 2021b; Zhu et al., 2021). These
controlling factors are discussed below.

The Ordos Basin is a large intracratonic depression in the western
part of the North China Block, and it underwent multistage
modification during the Mesozoic (Zhao et al., 2020). By
identifying the deposits of the marginal alluvial fan facies, since the
Late Jurassic, the eastern, western, southern, and northern boundaries
of the Ordos Basin have been roughly confined by the Taihang (Li

FIGURE 7
(A) U‒Pb age spectra of detrital zircons from the Early Cretaceous paleo-desert, Hobq Desert and Mu Us Desert in the Ordos Basin. Data sources: Ordos
paleo-desert (Cheng et al., 2020); Hobq Desert (Yang et al., 2017); Mu Us Desert (Stevens et al., 2010). (B) Log-probability cumulative curves of grain-size
distribution for aeolian sediments in the Ordos paleo-desert, Hobq and Mu Us Deserts. Data sources: Ordos paleo-desert and Mu Us Desert (Li et al., 1999);
Hobq Desert (Zhang et al., 2018). (C) Climate, vegetation, basin subsidence and supercontinental setting governing aeolian construction, accumulation,
and preservation from the Cretaceous to the present. Adapted from Cosgrove et al. (2021c). (D) Past carbon dioxide concentrations (left) compared to
possible future emissions scenarios (right). Adapted from Tierney et al. (2020) and Meinhausen et al. (2020).
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et al., 2015) and HelanMountains (Yang and Dong, 2018) and Qinling
Orogen (Dong et al., 2011) and Yin Mountains (Xiao et al., 2018),
respectively. Therefore, the paleogeographic configuration of the
mountains surrounding the Ordos Basin has been consistent since
the Late Jurassic, forming a rain shadow area in the basin and
promoting the development of ancient and modern deserts (Laity,
2009; Zhao et al., 2020). However, the subsidence rates of the Ordos
Basin were relatively higher during the Cretaceous, which allowed
aeolian bedforms to climb at steeper angles and led to thicker aeolian
sequences, but had no effect on the desert area and degree of
desertification (Cosgrove et al., 2021b, 2022; Figure 7C).

With respect to the provenance of the Ordos paleo-desert and
modern deserts, previous studies have suggested that detrital zircon
U‒Pb ages show the same peaks at ~280 Ma, ~450 Ma, ~960 Ma,
~1,900 Ma, and ~2,500 Ma (Cheng et al., 2020; Stevens et al., 2010;
Yang et al., 2017; Figure 7A). The detrital zircon age spectra indicate
that the ancient and modern deserts in the Ordos Basin have abundant
sand supplies and that their source areas are similar, consisting of the
surrounding mountains and some distant sediments (Stevens et al.,
2010; Yang et al., 2017; Cheng et al., 2020). In addition, the aeolian
sands in the Ordos paleo-desert and the modern deserts also share
similar sediment features, such as similar composition, particle size,
and roundness (Li et al., 1999; Zhang et al., 2018; Figure 7B). However,
the vegetation of the ancient and modern deserts in the Ordos Basin is
slightly different. During the Early Cretaceous, most of the vegetation
in the Ordos Basin consisted of vascular land plants, as grasses did not
evolve until ca. 66 Ma (Boyce and Lee, 2017; Figure 7C). At present,
grasses have become the major vegetation type in the region, play a
crucial role in dune construction and stabilization (Cosgrove et al.,
2021b), and decrease desertification to some extent.

Climate commonly refers to the long-term regional or global
average of temperature, precipitation, wind, and atmospheric
carbon dioxide (Pörtner et al., 2022). The modern deserts in the
Ordos Basin are in the subtropical high-pressure belt and affected by
both the East Asian winter monsoon and westerly circulation patterns
(Lü et al., 2020; Yang et al., 2021). At present, in the Ordos Basin, the
mean annual temperature is 6°C–8.5°C, the mean annual precipitation
is 250–500 mm/year (Liu et al., 2018; Yang J et al., 2019), and the
atmospheric carbon dioxide is ~400 ppm (Meinshausen et al., 2020;
Figure 7D). However, the Ordos paleo-desert was in the subtropical
high-pressure belt and mainly affected by westerlies (Jiang et al., 2001;
Qiao et al., 2021). During the Early Cretaceous, the sea-surface
temperature was 20°C–25°C (O’Brien et al., 2017), the mean annual
precipitation was 190–320 mm/year (Pan and Huang, 2014), and the
atmospheric carbon dioxide was ~1,000 ppm (Tierney et al., 2020;
Figure 7D). According to the climate parameters, the ancient and
modern deserts in the Ordos Basin both had sufficient and similar
wind supplies. Based on the location of the Ordos Basin in the
subtropical arid belt, the temperature, precipitation and
atmospheric carbon dioxide in the Early Cretaceous and modern
era are all suitable for the formation of deserts as well (Laity, 2009;
Mirzabaev et al., 2019). However, the paleotemperature and the paleo-
CO2 were much higher and the paleo-precipitation was relatively
lower when the paleo-desert was formed. The greenhouse climate in
the Early Cretaceous may have enlarged the desert area and intensified
desertification (Mirzabaev et al., 2019).

In summary, the region was surrounded by mountains, had
sufficient sediment source and wind supply, and the suitable
climatic conditions promoted the formation of the ancient and

modern deserts in the Ordos Basin. Since all the factors controlling
the development of the paleo-desert and modern deserts have basically
remained unchanged, with the exception of the climatic conditions, we
speculate that the greenhouse paleoclimate during the Early
Cretaceous may be the main reason for the relatively large area
and relatively severe degree of desertification identified in the
Ordos paleo-desert. Though further works are needed to obtain
more quantitative dune morphological parameters in deserts with
different ages and paleoclimate conditions.

6 Conclusion

Dune morphological parameters provide a new way to
quantitatively describe dunes and deserts and provide a basis to
evaluate the desertification degrees of deserts. Here, we present the
first quantitative assessment of dune morphology and dune size in
ancient deserts.

For the Ordos paleo-desert during the Early Cretaceous, the dune
size increases dramatically toward the desert center and decreases
gradually toward the desert margin. By comparing the desert area and
dune morphological data, we statistically demonstrate that the area
and degree of desertification of the Ordos paleo-desert exceeded those
of the mid-latitude Karakum and Taklimakan Deserts and are similar
to those of the low-latitude great Sahara and Rub’ al Khali Deserts. The
comparison demonstrates that the Ordos paleo-desert was a large and
non-negligible desert during an interval of Earth’s history. In addition,
for the development of the paleo-desert and modern deserts in the
Ordos Basin, since all the controlling factors have remained
unchanged, with the exception of the climatic conditions, we
speculate that the greenhouse paleoclimate during the Early
Cretaceous, characterized by high temperatures, high levels of
atmospheric carbon dioxide and low precipitation may be the main
reason that the Ordos paleo-desert occupied such a relatively large
area and had a relatively severe degree of desertification.
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