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Landslides have frequently occurred in deeply incised valleys in the upper

reaches of the Minjiang River. Long-term interactions between rock uplift

and river undercutting developed widely distributed landslides in this

catchment, which recorded the typical tectonic geomorphology in the

eastern margin of the Tibetan Plateau. In this study, we examined the

landslides in the Minjiang catchment and aimed to compare the prediction

ability of the statistical and machine learning (ML) models in landslide

susceptibility assessment. We adopted the statistical models of the

frequency ratio (FR) and information value (IV) models, and the ML models

represented by a logistic model tree (LMT) and radial basis function classifier

(RBFC) for landslide prediction. An inventory map of 668 landslides was

compiled, and the landslides were randomly divided into training (80%) and

validation (20%) datasets. Furthermore, 11 control factors of landslides based on

topography, geology, hydrology, and other environments were applied for the

analysis. The comprehensive performance of the fourmodels was validated and

compared using accuracy and area under the receiver operating characteristic

curve (AUC). The results indicated that both sides of the valley along the

Mingjiang and Heishuihe Rivers are in the high and very high susceptibility

zones; in particular, the river segment from Wenchuan to Maoxian County has

the highest susceptibility. The AUC values of the FR, IV, LMT, and RBFC models

with the training data were 0.842, 0.862, 0.898, and 0.894, respectively, while

the validation dataset illustrated the highest AUC value of 0.879 in the LMT

model, followed by the RBFC (0.871), IV (0.869), and FR (0.839) models.

Moreover, the LMT and RBFC models had higher accuracy values than the

FR and IVmodels. This suggests that theMLmodels are superior to the statistical

models in generating adequate landslide susceptibility maps, and the LMT

model is the most efficient one for landslide prediction in the study region.

This study provides a typical case in a landslide-prone region in the plateau

margin to advance the understanding of landslide susceptibility assessment.
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1 Introduction

Landslides commonly occur in mountainous terrains and

pose a serious threat to the safety of local residents and ecological

environments (Hungr et al., 2014; Huang et al., 2020). The

southeastern and eastern margins of the Tibetan Plateau are

characterized by intense tectonic activity and strong landscape

evolution, where landslides frequently occur (Ouimet et al., 2007;

Zhao et al., 2019; Ling et al., 2021; Cui et al., 2022; Zhao et al.,

2022). In particular, the upstream area of the Minjiang River in

the eastern plateau is a transition zone between the Sichuan Basin

and Tibetan Plateau, and an increasing number of landslides

have been induced in recent years (Dai et al., 2011; Fan et al.,

2012; Hong et al., 2017; Fan et al., 2018; Zhao et al., 2018; Ling

and Chigira, 2020; Cui et al., 2021). Therefore, it is essential to

produce a reliable landslide susceptibility map for predicting and

managing disasters in such a landslide-prone region (Saha et al.,

2021).

With the technical advances in geographic information

systems (GIS) and remote sensing, the statistical and machine

learning (ML) models for landslide prediction are widely used to

reveal the correlations between landslide development and

causative factors (Pham et al., 2017; Pourghasemi and

Rahmati 2018; Hong et al., 2019; Tanyu et al., 2021).

Different models have their particular qualities and

drawbacks, and the performance of each model varies

according to the input data, model structure, and accuracy

(Nachappa et al., 2020). The statistical models basically

require a large amount of basic data to produce reliable

results (Chen et al., 2018), while the ML models handle

complex nonlinear data; however, the black-box property

quantitatively enables us to reveal the statistical regularity

among variables, which is helpful for analyzing the impact of

the external environment on landslides (Tang et al., 2020). It has

been proposed that ML techniques have a higher predictive

capacity than conventional statistical models (Yilmaz 2009;

Chen et al., 2016; Aditian et al., 2018; Jiao et al., 2019).

Huang et al. (2020) studied the prediction performances of

eight models on landslide susceptibility, which demonstrated

that the ML models have a higher accuracy of the area under the

receiver operating characteristic curve (AUC) than the general

statistical and heuristic models. Yilmaz (2009) illustrated

comparison of the frequency ratio (FR), logistic regression

(LR), and artificial neural network (ANN) methods applied to

landslide susceptibility in northern Turkey, reporting that the

ANN models perform with better prediction accuracy. Poudyal

et al. (2010) suggested that the FR model outperformed the ANN

model in regard to landslide susceptibility assessment in the

Nepal Himalayas. It is necessary to note that no consensus has

been reached on the most suitable and efficient technique for

every single region, and the prediction ability of the model largely

depends on the available data and local geo-environmental

conditions (Huang et al., 2022). Thus, it is crucial to compare

different models to achieve reliable landslide susceptibility results

in a specific region for local disaster prevention.

Landslides developed in the upper reaches of the Minjiang

River have caused serious threats to local residents. In these

regions, previous studies applied the ML or statistical methods to

study the susceptibility of the landslides that occurred during and

after theWenchuan earthquake (Xu et al., 2013a; Xu et al., 2013b;

Li H et al., 2022). Few studies have been carried out on the

comparative analysis of two major model types focusing on

landslides in the Minjiang catchment, which can offer more

slope failure samples to improve the performance of landslide

susceptibility prediction. Moreover, two representative statistical

models, FR and IV, and two representative ML models, logistic

model tree (LMT) and radial basis function classifier (RBFC),

have not been comparatively studied in regard to landslide

susceptibility in this high-relief region. Hence, this study

aimed to 1) identify and interpret landslides and compile a

landslide inventory for the upstream of the Minjiang River, 2)

compare the performance of the statistical and ML methods to

choose the most appropriate model for landslide susceptibility,

and 3) generate accurate and reliable landslide susceptibility

maps and validate the results using the AUC and statistical

indicators. This study offers a good case for exploring the

high efficiency and accuracy of landslide susceptibility

assessment in high-relief mountainous terrains.

2 Data sources

2.1 Study area
The upper reaches of the Minjiang River are situated in

Sichuan Province, China, within 31°21′–33°90′ N latitude and

102°35′–103°57′ E longitude (Figure 1A), covering a total area of

14,210.64 km2. The elevations in the study area range from

1,336 to 5,474 m asl from southeast to northwest (Figure 1B).

The Minjiang River is located on the eastern margin of the

Tibetan Plateau with active tectonics. The main active faults in

the area include the Xueshan fault (F1), Minjiang fault (F2),

Songpinggou fault (F3), and Longmenshan fault

(Yingxiu–Beichuan (F4) and Maoxian–Wenchuan faults (F5)),

all of which are seismogenic faults. The region has diverse

lithologies, and sedimentary, metamorphic, and volcanic rocks

are distributed in the study area. The rock strata are mainly

composed of Mesoproterozoic to Cenozoic strata, while

Cretaceous, Jurassic, and Ordovician strata are absent in the
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study area. The catchment has a plateau monsoon climate with

an average temperature of ~9.7°C and annual rainfall of

~609 mm/year.

2.2 Landslide inventory

Landslide inventory is an essential input data for landslide

modeling because accurate landslide locations can obtain rich

environmental conditions, which is conducive to clarifying the

relationships between the conditioning factors and landslide

occurrences (Dou et al., 2020). A landslide inventory map was

prepared using historical records and interpretations of satellite

images. Landslides can be detected from high-resolution

satellite imagery (e.g., postdisaster aerial photographs)

according to geomorphological features (e.g., rock exposure

and vegetation damage). Afterward, field investigations were

carried out to verify the interpreted results. The landslides were

identified as the headscarf, tension cracks, grab ends, undrained

depressions, bulges, and lobes (e.g., Van Den Eeckhaut et al.,

2011; Pánek et al., 2019). The small landslides less than

0.001 km2 were not included in the landslide inventory.

Landslides in the study area were categorized as shallow

landslides, deep-seated landslides, and rock avalanches based

on the classification proposed by Hungr et al. (2014) (Figure 2).

Finally, a total of 668 landslides were identified in the study

area. The total landslide area was 303.73 km2, and the sizes of

landslides varied from 1853 m2 to 8.49 km2. The selection of

landslide pixels can affect the effectiveness of landslide

susceptibility modeling, and the centroid method is a

common landslide-positioning technique used to convert a

polygon into a single point (Pourghasemi et al., 2020). In

this study, the centroid of the landslide source area was

pointed to represent the entire landslide body. The same

number of nonlandslide points (n = 668) was randomly

selected in the landslide-free areas. From the training and

validation datasets ratio, previous research studies considered

that the higher training data would increase the accuracy of the

FIGURE 1
Geography map of the study area. (A) The location of the study area. (B) Topography and landslide inventory of the Minjiang catchment. F1:
Xueshan faults, F2: Minjiang faults, F3: Songpinggou faults, F4: Yingxiu-Beichuan faults, F5: Maoxian-Wenchuan faults.
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training model and test data (Tsangaratos and Ilia, 2016;

Shirzadi et al., 2019; Huang et al., 2021; Li et al., 2021),

indicating that the optimum ratios of training and validation

datasets ranged from 70:30 to 80:20. Given that the increase in

training data can improve the testing accuracy, both landslide

and nonlandslide points were randomly divided into training

and validation datasets at a ratio of 80:20 in the upper reaches of

the Minjing River.

FIGURE 2
Typical landslides in the upper reaches of the Minjiang River catchment. (A) Shallow landslide occurred near the Nanxin Town (31°33′N,
103°43′E). (B) Deep-seated landslide occurred at the Seergu Town (31°55′N, 103°26′E). (C) Rock avalanche occurred near the Diexi Town (32°03′N,
103°40′E). (D) High-relief rock avalanche occurred at Muer Village (32°05′N, 103°42′E).
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FIGURE 3
Landslide conditioning factors: (A) elevation, (B) slope angle, (C) slope aspect, (D) curvature, (E) relative relief, (F) lithology, (G) distance to faults,
(H) distance to rivers, (I) topographic wetness index (TWI), (J) NDVI, and (K) rainfall.
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2.3 Landslide conditioning factors

LCFs were identified based on a review of the previous

literature, the general features of the geo-environment, and

the availability of data. In total, 11 LCFs are based on

topography (elevation, slope angle, slope aspect, curvature,

and relative relief), geology (lithology and distance to faults),

hydrology (distance to rivers and topographic wetness index

(TWI)), and environment (normalized difference vegetation

index (NDVI) and rainfall) were selected for analysis in this

study, as shown in Figure 3 and Table 1. All thematic layers were

converted into a 30 m spatial resolution using QGIS software.

2.3.1 Topographic factors

The 30-m digital surface model data named Advanced Land

Observing Satellite (ALOS) World 3D (AW3D30) was applied to

generate the topographic factors. Elevation is an important factor

controlling hillslope stability, which determines the potential

energy of the slope. The elevations were categorized into

9 classes with an interval of 400 m (Figure 3A). Slope angles

determine the stress distribution of the hillslope, which were

divided into 7 classes with an interval of 10° (Figure 3B). The

slope aspects indicate the direction of the hillslope, which is

relevant to weathering and wetness determined by solar

exposure, rainfall, and vegetation cover (Chen and Chen

2021). A slope aspect map was made by 9 categories of

directions: flat, north, northeast, east, southeast, south,

southwest, west, and northwest (Figure 3C). Curvature

denotes the ground surface shape, which influences the flow

speed, sediment, and erosion (Ali et al., 2021). The curvature map

was arranged into 6 classes (Figure 3D). Relative relief is defined

as the difference between the maximum and minimum elevation

values in a circle area with a radius of 300 m, which can reflect the

relative height in a local terrain (Chauhan et al., 2010). The

relative relief ranges from 2 to 881 m, which was divided into

8 classes with an interval of 100 m (Figure 3E).

2.3.2 Geological factors

A 1:200,000 geological map provided by the China

Geological Survey was adopted to obtain lithology and fault

information. According to the geological age and lithofacies of

the lithological units, the study area was classified into 14 groups

(Figure 3F): Quaternary clay, silt, and gravelly soil (Q), Tertiary

siltstone and sandstone (R); Upper Triassic sandstone, limestone,

and phyllite (T3); Middle Triassic metamorphic sandstone, slate,

and phyllite (T2); Lower Triassic limestone and siltstone (T1);

Lower Paleozoic phyllite (Pz1); Permian melaphyre, phyllite, and

limestone (P); Carboniferous limestone (C); Devonian quartzite,

phyllite, and limestone (D); Silurian phyllite, crystalline

limestone, and sandstone (S); Cambrian metamorphic

tuffaceous sandy conglomerate and phyllite (Є); Sinian

dolomite and sand shale (Z); Mesoproterozoic quartz schist

and anorthosite (Pt2); and granite and diorite (γ). The

distances to faults were generated using the Euclidean distance

tool in GIS software (Figure 3G) and then classified into 8 buffer

zones at an interval of 1,500 m.

TABLE 1 The spatial database used for modeling and analyses.

Factors Classes (j) Classified method/
number of
classes (m)

Source Resolution
(Scale)

Elevation/m 1,336–1700; 1700–2,100; 2,100–2,500; 2,500–2,900; 2,900–3,300;
3,300–3,700; 3,700–4,100; 4,100–4,500; 4,500–5,474

Equal interval/9 AW3D30 30 × 30 m

Slope angle/° 0–10; 10–20; 20–30; 30–40; 40–50; 50–60; 60–81.23 Equal interval/7 AW3D30 30 × 30 m

Slope aspect Flat; north; northeast; east; southeast; south; southwest; west;
northwest

Equal interval/9 AW3D30 30 × 30 m

Curvature [(-36.22)–(-1)]; [(-1)–(-0.5)]; [(-0.5)–0]; [0–0.5]; [0.5–1]; [1–35.78] Equal interval/6 AW3D30 30 × 30 m

Relative relief/m 2–100; 100–200; 200–300; 300–400; 400–500; 500–600; 600–700;
700–881

Equal interval/8 AW3D30 30 × 30 m

Lithology Q; R; T3; T2; T1; Pz1; P; C; D; S; Є; Z; Pt2; γ Lithofacies/14 China Geological Survey 1:200,000

Distance from
faults/m

0–1,500; 1,500–3,000; 3,000–4,500; 4,500–6,000; 6,000–7,500;
7,500–9,000; 9,000–10500; >10,500

Equal interval/8 China Geological Survey 1:200,000

Distance from
rivers/m

0–200; 200–400; 400–600; 600–800; 800–1,000; >1,000 Equal interval/6 AW3D30 30 × 30 m

TWI 1.54–3.54; 3.54–5.54; 5.54–7.54; 7.54–9.54; 9.54–11.54; 11.54–26.86 Equal interval/6 AW3D30 30 × 30 m

NDVI (−0.98)–0; 0–0.1; 0.1–0.2; 0.2–0.3; 0.3–0.4; 0.4–0.5; 0.5–0.6; 0.6–0.91 Equal interval/8 Landsat4-5TM 30 × 30 m

Rainfall/mm 462–512; 512–562; 562–612; 612–662; 662–712; 712–762; 762–817 Equal interval/7 China Meteorological
Administration

30 × 30 m
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2.3.3 Hydrological factors

The distance to rivers and the TWI were also obtained

from DEM data. It has been proven that rivers can erode the

slope toe and reduce the stability of the hillslope (Chen and

Zhang 2021). In this study, the distance to rivers was

classified into 6 classes with an equal interval of 200 m

(Figure 3H). The TWI was used to study the spatial scale

effect of hydrological processes, which can quantitatively

describe soil wetness in watersheds. TWI can be computed

using Eq. 1:

TWI � ln
α

tan β
(1)

where α and β represent the contributing area and slope angle,

respectively. TWI values in the study area were rearranged into

6 groups (Figure 3I).

2.3.4 Environmental factors

The NDVI can quantitatively reflect the relationships

between vegetation coverage and slope stabilities (Abraham

et al., 2021). The NDVI values were derived from Landsat4-

5TM images with a 30-m spatial resolution acquired on

11 August 2011 (http://www.gscloud.cn). They can be

calculated as follows:

FIGURE 4
Study flowchart for landslide susceptibility for the upper reaches of the Minjiang River.
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NDVI � (NIR − R)/(NIR + R) (2)

where NIR and R denote the near-infrared band and red band,

respectively. In the study area, NDVI values varied from −0.98 to

0.91, which were divided into 8 classes (Figure 3J).

Rainfall is an important external dynamic factor in inducing

landslides. The annual rainfall data (1981–2010) were collected

from the China Meteorological Administration, and the kriging

spatial interpolation method was adopted to create a mean

annual rainfall contour map in the GIS environment. Rainfall

in the study area varied from 462 to 817 mm, which was classified

into 7 classes with an interval of 50 mm (Figure 3K).

3 Methodologies

Landslide susceptibility assessment in this study mainly

consisted of the following steps (Figure 4): 1) preparation of

the landslide inventory map and LCFs; 2) feature selection using

a multicollinearity test and correlation attribute evaluation

(CAE); 3) modeling process using the FR, IV, LMT, and

RBFC models; 4) generation of landslide susceptibility maps;

and 5) model validation and comparison.

3.1 Multicollinearity test for landslide
conditioning factors

The multicollinearity test of conditional factors is vital for

landslide susceptibility mapping, as multicollinearity may

interfere with the prediction ability of the model. In this

study, tolerance (TOL) and variance inflation factor (VIF)

were applied to judge multicollinearity, which can be

calculated as follows (e.g., Di Napoli et al., 2020):

TOL � 1 − R2
j (3)

VIF � 1/TOL (4)

where Rj
2 is the coefficient of determination for the regression

analysis of all other factors. In general, a value of VIF<5 or

TOL>0.1 indicates that there is no multicollinearity (Chen and

Chen, 2021).

3.2 Selection of significant landslide
conditioning factors

In landslide susceptibility evaluation, it is essential to evaluate

the contributions of all LCFs to landslide occurrence (Pham and

Prakash 2019). Some factors that are not important to the

occurrence of landslides should be removed to reduce noise

and transition fitting problems to improve the prediction

accuracy of the model. The significant LCFs are often selected

using the CAE method, which estimates the contribution of

factors by measuring Pearson’s correlation between factors and

classes (Chen et al., 2016).

3.3 Statistical models

3.3.1 Frequency ratio model
The FR model is one of the most widely adopted models for

landslide susceptibility mapping. FR is the ratio of the area where

landslides occurred in the whole study area and is also the ratio of

a landslide occurrence probability to a nonoccurrence probability

for each factor (Regmi et al., 2014). First, FRij is calculated for

class j of Factor i, and then all frequency ratios are spatially

overlaid to calculate the landslide susceptibility index (LSI) in the

GIS environment.

FRij �
Nij/∑m

j�1Nij

Aij/∑m
j�1Aij

(5)

LSI � ∑n

i�1FRij (6)

whereNij is the number of landslide points within class j of Factor

i, Aij is the area for class j of Factor i, andm is the total number of

classes in the corresponding variable.

3.3.2 Information value model
The IV model is a bivariate statistical method for landslide

spatial prediction developed from information theory (Yin and

Yan 1988). Through the statistics of historical landslide data, the

information value for each class was calculated to characterize

the relationship between conditioning factors and landslides

(Ghobadi et al., 2017). Finally, all IVs were summed for LSI.

Therefore, the IV model can be calculated as follows (e.g., Yin

and Yan 1988; Sharma et al., 2015):

Iij � ln
Nij/N
Aij/A

(7)

LSI � ∑
n

i�1
Iij (8)

where Iij is the information value of class j in Factor i, N is the

total number of landslides, and A is the total area.

3.4 Machine learning models

3.4.1 Logistic model tree
As a new classification algorithm, LMT is the integration of

LR and C4.5 DT (Quinlan 1993). In LMT, the information gain is

applied to splitting nodes and leaves, whereas the logit boost

algorithm is employed for fitting the LR functions at a tree node

(Landwehr et al., 2005). The classification and regression tree
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(Breiman et al., 1984) in the LMT model could be used to prune

to prevent the overfitting problem (Bui et al., 2016).

3.4.2 Radial basis function classifier
RBFC is a supervised neural network for function

approximation using minimizing squared error with the

Broyden–Fletcher–Goldfarb–Shanno (BFGS) method. This

algorithm is composed of three layers: the input layer, masked

layer, and output layer (Haykin 1994). The elements of each layer

are linked to transmit information (Pham et al., 2020). The

masked layer is usually represented by the Gaussian function.

The initial centers for the Gaussian radial basis functions are

found using simple KMeans. The initial sigma values are set to

the maximum distance between any center and its nearest

neighbor in the set of centers.

3.5 Model comparison and validation

To validate and compare the models, various popular

statistical indicators, including susceptibility, specificity,

accuracy, and the area under the curve (AUC) of the

receiver operating characteristic (ROC), was applied in this

study. The ROC curve is a graph based on the “sensitivity” as

the y-axis and “1−specificity” as the x-axis (Panahi et al., 2022).

Generally, the higher the values of susceptibility, specificity,

accuracy, and AUC, the better the model is. These statistical

metrics can be calculated using the following formulae (Sahana

et al., 2020):

Sensitivity � TP

TP + FN
(9)

Speicificity � TN

FP + TN
(10)

Accuracey � TP + TN

TP + FP + TN + PN
(11)

AUC � ∑TP +∑TN

P +N
(12)

where TP (true positive) and TN (true negative) are the numbers

of landslide and nonlandslide pixels correctly classified,

respectively; FP (false positive) and FN (false negative)

represent the number of landslide and nonlandslide pixels

incorrectly classified, respectively (Ali et al., 2021); and P and

N are the total numerals of landslide and nonlandslide pixels,

respectively.

4 Results

4.1 Multicollinearity assessment

The results of all factors under the multicollinearity test are

shown in Table 2, indicating that VIF values were below 2.982,

and TOL values were above 0.335. Therefore, there was no

collinearity problem among all factors in this study.

4.2 Landslide conditioning factors’
assessment

The relative importance of the 11 LCFs was based on the CAE

method using training data. The average merit (AM) values

signified the predictive capability of LCFs, and the results are

shown in Figure 5. According to these results, elevation was the

most important factor, with an AM value of 0.2066, which was

followed by relative relief (0.1862), distance to rivers (0.1727),

lithology (0.1660), slope angle (0.1296), rainfall (0.1271), distance

to faults (0.1185), TWI (0.0916), NDVI (0.0902), curvature

(0.0657), and slope aspect (0.0318). Therefore, all factors were

applied to landslide susceptibility modeling in this study.

4.3 Landslide susceptibility mapping

4.3.1 Landslide susceptibility mapping using the
frequency ratio model

The results of LSM using the FR, IV, LMT, and RBFCmodels

are presented in Figures 6, 7. The FR values for different classes of

LCFs were calculated using the training dataset, and the results

are shown in Table 3. Among the 88 classes of the 11 factors,

42 classes have positive relations with landslide occurrences. The

LSI values in the study area were calculated based on Eq. 6 in the

GIS environment, which varied from 3.63 to 34.16. Low LSI

values indicate lower susceptibility to landslides, while higher LSI

values indicate higher susceptibility to landslides (Wang et al.,

2019). Then, the LSI values were normalized and classified into

five susceptibility classes (very low, low, moderate, high, and very

high) using the natural break method (Figure 6A). The area

TABLE 2 Multicollinearity analysis.

LCFs TOL VIF

Elevation 0.458 2.182

Slope angle 0.717 1.395

Slope aspect 0.982 1.018

Curvature 0.976 1.024

Relative relief 0.762 1.313

Lithology 0.392 2.550

Distance to faults 0.803 1.245

Distance to rivers 0.844 1.185

TWI 0.987 1.013

NDVI 0.928 1.077

Rainfall 0.335 2.982
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proportion and landslide proportion in each landslide

susceptibility class are shown in Figure 7. The low class had

the largest coverage area (45.19%), followed by moderate

(22.01%), very low (20.69%), high (8.93%), and moderate

(3.18%) classes. In addition, 24.40% of landslides fell in the

very high susceptibility zones.

4.3.2 Landslide susceptibility mapping using the
information value model

The spatial relationship between training landslides and

conditioning factors using the IV model is shown in Table 3.

It is notable that the higher the IV value, the greater the

possibility of landslides. The LSI value was calculated by

summing the IV values of all factors, and the values vary

from -13.47 to 10.23. The LSI is also grouped into five

landslide susceptibility classes of very low (7.05%), low

(28.05%), moderate (32.08%), high (22.60%), and very

high (10.21%) (Figures 6, 7). The very high, high,

moderate, and low landslide susceptibility zones occupied

50.75, 38.32, 7.93, and 2.99% of the total landslides,

respectively.

4.3.3 Landslide susceptibility mapping using the
logistic model tree model

The LMT model can be implemented using the training

dataset by the Waikato Environment for Knowledge Analysis

(WEKA) software, and then the validation dataset was used to

test the prediction ability of the training model. Finally, the LSI of

each pixel in the study area was calculated using the trained LMT

model. In this case, the LSI values derived from the LMT model

are between 0 and 1, which were divided into 5 categories by the

natural break method: very high, high, moderate, low, and very

FIGURE 5
Predictive capabilities of LCFs using the CAE method.
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low (Figure 6C). These zones accounted for 11.53, 11.09, 13.56,

21.81, and 42.01% of the total study area, respectively. The very

high and high landslide-prone areas contained 63.47 and 18.26%

of the total landslides, respectively. However, 10.63, 5.69, and

1.95% of the total landslides fell in the moderate, low, and very

low landslide susceptibility categories, respectively (Figure 7).

FIGURE 6
Landslide susceptibility map produced using (A) the FR model, (B) the IV model, (C) the LMT model, and (D) the RBFC model.
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4.3.4 Landslide susceptibility mapping using the
radial basis function classifier model

The RBFC model was also constructed by the training

dataset, and the LSI values derived from the RBFC model

ranged from 0 to 0.99. According to Figure 6D, the area

percentages for the very high, high, moderate, low, and very

low zones were 10.43, 11.99, 15.88, 25.02, and 36.68%,

respectively. Additionally, 60.93% of the landslides were

distributed in the very high landslide zones, while the

landslide proportions of the low and very low zones were

5.69 and 1.65%, respectively (Figure 7).

4.4 Validation of the models

To evaluate the performance of the four models, the

statistical indices were used by the training and validation

datasets (Table 3). Concerning the training dataset, the IV

model had the highest value of sensitivity (94.76%), followed

by LMT (82.96%), RBFC (82.40%), and FR (39.33%). In the case

of specificity, FR ranked first, with specificity = 93.82%, followed

by RBFC (82.58%), LMT (82.21%), and IV (50.75%). In terms of

ACC, LMTwas the best method, with a value of 82.58%, followed

by RBFC (82.49%), IV (72.75%), and FR (66.57%). For the

validation dataset, the results also demonstrated that the LMT

model (sensitivity=79.10%, specificity=78.36%, and

ACC=78.73%) performed best, followed by RBFC

(sensitivity=79.10%, specificity=76.87%, and ACC=77.99%), IV

(sensitivity=97.01%, specificity=58.21%, and ACC=77.61%), and

FR (sensitivity=35.82%, specificity=92.54%, and ACC=64.18%).

The AUC of the ROC curve was also used for the overall

performance of the applied models (Figure 8). For the training

dataset, all models had acceptable performances. Specifically,

the LMT model (AUC= 0.898) was more efficient than other

three models, RBFC (0.894), IV (0.862), and FR (0.842)

(Figure 8A). For the validation dataset, the results were also

the same as those for training. The LMT model achieved the

highest predictive accuracy, with an AUC value of 0.879,

followed by RBFC (0.871), IV (0.869), and FR (0.839)

(Figure 8B).

5 Discussion

The spatial relations between LCFs and landslides using

the training dataset suggested that all the factors have a

positive impact on the occurrence of landslides in some

classes (Table 3, Figure 5). The elevations of 1,300–3,300 m

for each interval had FR values >1 and IV values >0, indicating
a vertical zonation feature owing to the various microclimate

and geological environments at different elevations (Table 3;

Chen and Zhang 2021). The FR and IV values increased with

the increase of slope angle, and slope aspects in the southwest

(FR=1.31, IV=0.27), west (FR=1.30, IV=0.26), and south

(FR=1.03, IV=0.03) exhibited a higher probability of

landsliding on account of the impacts of rainfall and

sunshine (He and Kusiak., 2017; Bui et al., 2020; Huang

et al., 2022). For curvature, the negative correlation

between FR and IV values suggested that concave hillslopes

had a higher probability of landslide occurrence due to the

water enrichment, which could greatly reduce the shear

strengths of hillslopes (Xu et al., 2016; Zhou et al., 2021; Li

S et al., 2022). The relative reliefs with classes of 100–300 m

had the highest FR and IV values, as a result of the control of

river undercutting on the landslides. Regarding lithology, rock

formations of Q, Pz1, C, D, S, Z, and Pt2 had the larger FR and

IV values, which were mainly composed of stratified and

laminated rock types. The distances to rivers had a positive

influence on landslide formations, further supporting the

notion that landslides are controlled by river incision. For

the TWI, the areas in the classes of 1.54–3.54 and

5.54–7.54 were most prone to sliding. For the NDVI, the

maximum FR and IV values had a class of 0.1–0.2. For rainfall,

the class of 462–512 mm had the largest FR and IV values

(Table 3). In summary, the factors of elevation, relative relief,

FIGURE 7
Quantitative analysis of the landslide susceptibility maps. (A)
Area proportion of domain in each susceptibility class. (B) Amount
proportion of landslide in each susceptibility class.
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TABLE 3 Spatial relationship between landslide conditioning factors and landslides from the FR and IV models.

Factors Classes Area of
domain/km2

Area
proportion of
domain/%

Amount of
landslides

Amount proportion
of
landslide/%

FR IV

Elevation/m 0–1700 78.7 0.55 14 2.62 4.73 1.55

1700–2,100 280.87 1.98 85 15.92 8.05 2.09

2,100–2,500 610.51 4.3 86 16.1 3.75 1.32

2,500–2,900 1,131.6 7.96 103 19.29 2.42 0.88

2,900–3,300 2,200.51 15.48 149 27.9 1.8 0.59

3,300–3,700 3,979.41 28 69 12.92 0.46 −0.77

3,700–4,100 3,782.57 26.62 20 3.75 0.14 −1.96

4,100–4,500 1844.25 12.98 8 1.5 0.12 −2.16

4,500–5,474 302.23 2.13 0 0 0 0

Slope angle/° 0–10 690.17 4.86 2 0.37 0.08 −2.56

10–20 2029.04 14.28 15 2.81 0.2 −1.63

20–30 4,335.36 30.51 89 16.67 0.55 −0.6

30–40 5,024.82 35.36 241 45.13 1.28 0.24

40–50 1776.11 12.5 146 27.34 2.19 0.78

50–60 313.74 2.21 33 6.18 2.8 1.03

60–81.23 41.41 0.29 8 1.5 5.14 1.64

Slope aspect Flat 1.02 0.01 0 0 0 0

North 1,601.14 11.27 58 10.86 0.96 −0.04

Northeast 1717.7 12.09 54 10.11 0.84 −0.18

East 1957.44 13.77 71 13.3 0.97 −0.04

Southeast 1856.16 13.06 51 9.55 0.73 −0.31

South 1,699.05 11.96 66 12.36 1.03 0.03

Southwest 1712.72 12.05 84 15.73 1.31 0.27

West 1860.37 13.09 91 17.04 1.3 0.26

Northwest 1805.04 12.7 59 11.05 0.87 −0.14

Curvature (-36.22)−(-
1)

2,406.76 16.94 133 24.91 1.47 0.39

(-1)−(-0.5) 1789.73 12.59 89 16.67 1.32 0.28

(-0.5)−0 3,449.09 24.27 122 22.85 0.94 −0.06

0–0.5 2,528.44 17.79 90 16.85 0.95 −0.05

0.5–1 1909.34 13.44 59 11.05 0.82 −0.2

1–35.78 2,127.28 14.97 41 7.68 0.51 −0.67

Relative relief/m 2–100 135.61 0.95 1 0.19 0.2 −1.63

100–200 789.54 5.56 103 19.29 3.47 1.24

200–300 2,537.1 17.85 272 50.94 2.85 1.05

300–400 3,886.28 27.35 134 25.09 0.92 −0.09

400–500 3,351.99 23.59 16 3 0.13 −2.06

500–600 2079.32 14.63 6 1.12 0.08 −2.57

600–700 927.81 6.53 1 0.19 0.03 −3.55

700–881 169.07 1.19 1 0.19 0.16 −1.85

Lithology Q 39.21 0.28 6 1.12 4.07 1.4

R 106.02 0.75 0 0 0 0

T3 7,430.97 52.29 148 27.72 0.53 −0.63

T2 2,327.36 16.38 82 15.36 0.94 −0.06

(Continued on following page)
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TABLE 3 (Continued) Spatial relationship between landslide conditioning factors and landslides from the FR and IV models.

Factors Classes Area of
domain/km2

Area
proportion of
domain/%

Amount of
landslides

Amount proportion
of
landslide/%

FR IV

T1 224.28 1.58 3 0.56 0.36 −1.03

Pz1 373.31 2.63 35 6.55 2.49 0.91

P 589.46 4.15 12 2.25 0.54 −0.61

C 169.87 1.2 13 2.43 2.04 0.71

D 579.22 4.08 74 13.86 3.4 1.22

S 603.58 4.25 89 16.67 3.92 1.37

Є 8.69 0.06 0 0 0 0

Z 276.29 1.94 49 9.18 4.72 1.55

Pt2 13.01 0.09 4 0.75 8.18 2.1

γ 1,469.37 10.34 19 3.56 0.34 −1.07

Distance to faults/m 0–1,500 2,374.64 16.71 180 33.71 2.02 0.7

1,500–3,000 1707.37 12.01 113 21.16 1.76 0.57

3,000–4,500 1,316 9.26 53 9.93 1.07 0.07

4,500–6,000 1,195.97 8.42 43 8.05 0.96 −0.04

6,000–7,500 1,119.9 7.88 36 6.74 0.86 −0.16

7,500–9,000 1,019.07 7.17 27 5.06 0.71 −0.35

9,000–10,500 965.18 6.79 17 3.18 0.47 −0.76

>10,500 4,512.51 31.75 65 12.17 0.38 −0.96

Distance to
rivers/m

0–200 1,286.59 9.05 27 5.06 0.56 −0.58

200–400 1,210.28 8.52 82 15.36 1.8 0.59

400–600 1,190 8.37 112 20.97 2.5 0.92

600–800 1,109.42 7.81 78 14.61 1.87 0.63

800–1,000 1,101.87 7.75 58 10.86 1.4 0.34

>1,000 8,312.47 58.49 177 33.15 0.57 −0.57

TWI 1.54–3.54 298.82 2.1 17 3.18 1.51 0.41

3.54–5.54 7,664.07 53.93 254 47.57 0.88 −0.13

5.54–7.54 4,626.52 32.56 226 42.32 1.3 0.26

7.54–9.54 1,052.76 7.41 36 6.74 0.91 −0.09

9.54–11.54 311.38 2.19 1 0.19 0.09 −2.46

11.54–26.86 257.09 1.81 0 0 0 0

NDVI (-0.98)−0 528.64 3.72 26 4.87 1.31 0.27

0–0.1 805.81 5.67 53 9.93 1.75 0.56

0.1–0.2 691.7 4.87 49 9.18 1.89 0.63

0.2–0.3 753.67 5.3 50 9.36 1.77 0.57

0.3–0.4 923.3 6.5 54 10.11 1.56 0.44

0.4–0.5 1841.37 12.96 77 14.42 1.11 0.11

0.5–0.6 3,673.79 25.85 93 17.42 0.67 −0.4

0.6–0.91 4,992.37 35.13 132 24.72 0.7 −0.35

Rainfall/mm 462–512 621.44 4.37 95 17.79 4.07 1.4

512–562 603.82 4.25 78 14.61 3.44 1.23

562–612 526.23 3.7 50 9.36 2.53 0.93

612–662 2,118.45 14.91 75 14.04 0.94 −0.06

662–712 3,736.63 26.29 151 28.28 1.08 0.07

712–762 3,488.9 24.55 48 8.99 0.37 −1

762–817 3,115.17 21.92 37 6.93 0.32 −1.15
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and distance to rivers played the most significant roles in the

evolution of landslides, which was consistent with previous

studies (Chen et al., 2017; Zhao et al., 2019; Bui et al., 2020).

The comparisons of the four models using the AUC showed

that all the models had good performance (AUC=0.8–0.9). In

general, the ML models were better than the traditional

statistical models in this study. The LMT model with the

largest AUC (=0.879) outperformed other models in terms

of predictive capacity. However, the prediction abilities of

RBFC, IV, and FR with the AUC of 0.008, 0.01, and

0.04 were lower than that of LMT. Similarly, the LMT model

with an ACC of 78.73% was 0.74% higher than that of RBFC.

However, the ACC values obtained by the two statistical models

were relatively low. This was because the ML techniques could

use algorithms to learn the relationship between landslide

occurrence and related predictors, and avoid starting with an

assumed structural model (Pourghasemi and Rahmati 2018).

Furthermore, the MLmodels have advantages in that it does not

require statistical assumptions and consider the nonlinear

characteristics of landslides. In contrast, the FR and IV

models examine the relationship between landslide

occurrence and factors, yet they do not comparatively

consider the differences among the factors. It is

unreasonable to regard each conditioning factor layer with

the same weight (Guo et al., 2021).

The landslide susceptibility maps generated by the RBFC

and LMT models were well coincident with each other, while

they were different from the results created by the FR and IV

models. From the area ratios of the corresponding landslide

susceptibility classes of these models, the proportion and

distribution obtained by the ML and statistical models were

quite different among the five susceptibility classes. For the

very low class, the coverage areas from the FR and IV models

were 20.69 and 7.05%, respectively. On the other hand, the

proportions of LMT and RBFC in the very low classes were

36.68–42.01%. For the very high susceptibility classes, the

area proportions obtained by LMT and RBFC were 11.53 and

10.43%, respectively, which were mainly distributed nearby

the stem of the Minjiang River and its tributary, the Heishui

River. However, only 3.18% of the overall area obtained by

the FR model fell in the very high susceptibility zone. It is

notable that the statistical model performed well for the

southern portion of the study area (such as Wenchuan

County and Mao County), but the ML model fulfilled the

prediction well for the whole region (Figure 6). According to

the proportion of landslides at different levels, the ML model

illustrated a larger area of a very high susceptibility class than

the statistical model. Based on a comprehensive comparison

of the sensitivity, specificity, accuracy, AUC, and

susceptibility class distribution, the LMT map was

determined to be a more efficient model for predicting

landslides in this region. Thus, LMT is recommended as a

robust model for landslide susceptibility assessment in

similar environmental settings.

Landslide susceptibility mapping is considered to be an

important step in landslide risk assessment, which is of great

significance for disaster prevention and mitigation (e.g., Tang

et al., 2020). From the susceptibility maps, we found that the

areas of very high and high proneness to landslides were

mainly distributed on both banks of the river. Many towns,

FIGURE 8
ROC curves and AUC for the FR, IV, LMT, and RBFC models: (A) training dataset and (B) validation dataset.
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villages, and highways are located along the river valley,

where humans, communities, transportation, and tourists

are threatened by landslides. These landslide susceptibility

maps are helpful for decision-makers, engineers, and

authorities to formulate systematic measures to reduce

disaster risks along the Minjiang and Heishui Rivers.

6 Conclusion

This study compared the performances of the popular

statistical models (FR and IV) and the ML models (LMT and

RBFC) for landslide susceptibility mapping. The upper reaches of

the Minjiang River in the eastern margin of the Tibetan Plateau

served as a typical case for disaster assessment in plateau

margins. Multiple factors of elevation, slope angle, slope

aspect, curvature, relative relief, lithology, distance to faults,

distance to rivers, TWI, NDVI, and rainfall were selected for

landslide susceptibility analysis. The major findings are as

follows:

1) A multicollinearity test revealed that there was no collinearity

issue among the 11 LCFs. The relative contribution of LCFs

using the CAE method indicated that elevation, relative relief,

and distance to rivers were themajor influential factors for the

landslide occurrences in the study area.

2) The comparative analysis of all the models using the AUC and

statistical indices showed that the LMT model had the largest

AUC of 0.879 and a high ACC of 78.73%, followed by RBFC

(AUC=0.871, ACC=77.99%), IV (AUC=0.869,

ACC=77.61%), and FR (AUC=0.839, ACC=64.18%). It can

be inferred that the ML models have better prediction

performances than the statistical models. LMT is the most

robust model to predict the landslide-prone areas in this

region. The LMT model is recommended to be adopted in

similar geo-environmental regimes for landslide susceptibility

mapping.

3) The susceptibility maps produced via the four models showed

that very high landslide susceptibility zones are mainly

distributed nearby the mainstream of the Minjiang River

and its tributary, the Heishui River. These findings could

be applied to mitigate landslide hazards and provide

references for land-use planning.
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