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The area of the cells of Voronoi tessellations has been modelled through

different probability distributions among which the most promising are the

generalized gamma and tapered Pareto distributions. In particular the latter has

been used to model times and distances between successive earthquakes

besides area and perimeter of cells generated by earthquake epicenters. In

the framework of nonextensive statistical mechanics applied in geophysics,

variables like seismic moment, inter-event time or Euclidean distance between

successive earthquakes or length of faults in a given region have been studied

through the so-called q-exponential distributions obtained by maximizing the

Tsallis entropy under suitable conditions. These distributions take also the name

of generalized Pareto distributions in the context of the limit distributions of

excesses. In this workwe consider the spatial distribution of a set of earthquakes

and its temporal variations by modelling the area of Voronoi cells generated by

the epicenters through a generalized Pareto distribution. Following the

Bayesian paradigm we analyze the recent seismicity of the central Italy and

we compare the posterior marginal likelihood of the aforementioned

distributions in shifting time windows. We point out that the best fitting

distribution varies over time and the trend of all three distributions

converges to that of the exponential distribution in the preparatory phase

for the mainshock.
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Introduction

Tessellations of space for a given set of points into non-overlapping cells play an

important role in the study of spatial point patterns generated by natural and social

phenomena. Among many possibilities of partitions, the Voronoi tessellation is probably

the most popular; it has been applied in a wide variety of disciplines such as biology,

astronomy, forestry, geology and ecology (Okabe et al. (2000)). Some of the statistical

properties of spatial point patterns are related to the properties of the geometrical
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characteristics of the corresponding tessellation; in the case of the

homogeneous Poisson point process the resulting Voronoi cells

are called Poisson Voronoi (PV) cells. Even though the

importance of this process has motivated many studies so far

most of the results has not been obtained theoretically but

through computer simulations; apart from the probability

distribution of the cell length in R, which is a Gamma (2,2)

distribution, only a few moments of some characteristics of PV

cells - such as the number of edges, the area, the perimeter - are

known (Hinde and Miles (1980)), not their probability

distributions. Fitting the histograms obtained by the

simulation of some millions of PV cells Tanemura (2003)

showed that the three-parameter (or generalized) gamma

distribution fits quite well a wide range of probability

densities of their geometrical characteristics in two- and three-

dimensional spaces. With the aim to find a simpler functional

form Ferenc and Neda (2007) obtained that the gamma

distribution with parameters a = b = (3 d + 1)/2 gives an

acceptable, even if less accurate, approximation of the size

distribution of PV cells in d-dimensional spaces (d = 1, 2, 3).

Zaninetti (2009) instead investigated non-Poissonian Voronoi

diagrams associated with correlated seeds; he generated seeds in

polar coordinates ρ and θ in the following way: the distance ρ

from the center of the region is generated according to a

probability distribution chosen between the product and the

ratio of two Gamma (2,2), and the polar angle θ in degrees is

given by θ = 360 Y with Y ~ Unif (0, 1). Computer simulations

provided evidence in favor of the conjecture according to which,

in these cases, the area of the Voronoi cells follows the same

distribution of the seeds.

In recent years some authors have begun to investigate how

the properties of the cells change when boundaries are imposed

to the study region. In particular Koufos and Dettmann (2019)

considered PV cells located close to the boundaries of the

quadrant R+ and obtained that the gamma distribution, with

location-dependent parameters, provides a reasonably good

approximation to the distribution of cell area. Gezer et al.

(2021) compared the statistical properties of the area of PV

cells in the infinite plane and of clipped cells in two bounded

regions: the unit square and the convex hull of the points; they

found that the generalized gamma distribution provides a good

fit with parameters varying according to the location of the cell

seed in the bounded region. It should be noted that, as the

number of the points increases, the vast majority of cells are not

affected by the imposition of boundaries; indeed Devroye et al.

(2017) have shown that the asymptotic distribution of the

Voronoi cell area is independent of the location of the seed

and of the intensity measure underlying the Poisson point

process.

In seismology Schoenberg et al. (2009) studied the point

pattern of the earthquakes that occurred from 1984 to 2007 in

Southern California through the Voronoi tessellation generated

by their epicenters; they obtained that the tapered Pareto

distribution, already used to describe the seismic moment

(Jackson and Kagan (1999)), approximates the distribution of

area and perimeter of the cells not intersecting with the boundary

of the region better than the pure Pareto, log-normal and gamma

distributions. This result can be explained by the spatial

clustering of these events which implies many cells with a

small area and some with a larger area than would be

expected from a stationary point process. This behaviour is

typical of heavy right-tailed distributions.

In the framework of the statistical physics a new distribution

of the moment magnitude was derived from the q-exponential

distribution (1 < q < 2) obtained by maximizing, under suitable

constraints, a nonextensive generalization of the Boltzmann-

Gibbs entropy given by the Tsallis entropy (Tsallis (2009);

Vallianatos et al. (2015)). Following the example of

Schoenberg et al. (2009) we have thought that the q-

exponential distribution could describe, in addition to the

earthquake size (Rotondi et al. (2022)), also the spatial

properties of the seismic phenomenon such as the area of the

Voronoi cells generated by the epicentral locations. This

distribution also takes the name of generalized Pareto

distribution in the context of the limit distributions of

excesses (Bercher and Vignat (2008)); hence, hereafter, we use

these two terms interchangeably.

The main aims of this work are: 1) to evaluate the fitting of

the generalized Pareto distribution to the areas of Voronoi cells

generated by the seismicity recorded in bounded regions of

central Italy in recent years, b) to compare the performance of

this distribution with that of the most promising probability

distributions of the Voronoi cell area, that is, tapered Pareto and

generalized gamma distributions, in time-varying windows with

the same number of events. Parameter estimation is performed

according to the Bayesian paradigm by applying Markov chain

Monte Carlo (MCMC) methods, in particular the Metropolis-

Hastings algorithm, to sample from the posterior probability

distributions of the parameters (Roberts and Casella (2004));

hence the comparison is based on the ratio of the pairwise

posterior marginal likelihoods of the abovementioned

distributions. We will try to associate the probability

distribution with the best performance to time periods

characterized by a specific type of seismic activity; in

particular we will notice that the likelihood of the three

distributions generally assumes very different value from that

of the exponential distribution apart from in a few time windows

in the preparatory phase of the considered seismic crises in which

the values of the four likelihoods are not significantly different.

Voronoi tessellation

Let us consider a finite number of n points P = {pi ∈ S, i = 1, 2,

. . . , n} distributed within some finite region S ∈ R2. The Voronoi

tessellation partitions the region into a collection of disjoint
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subregions V = {Vi, i = 1, 2, . . . , n} called Voronoi cells, which

have the following properties: Vi ∩ Vj = ∅ for i ≠ j, ∪n
i�1Vi � S.

Each cellVi is defined as the set (polygon) of points of Swhich are

closer to the corresponding seed pi than any other point in P;

hence:

Vi � x ∈ S: ‖x − pi‖ ≤ ‖x − pj‖ for j � 1, 2, . . . , i − 1, i + 1, . . . , n{ }
where ‖ ·‖ denotes Euclidean distance. If we join the points pi and

pj associated with the cells Vi and Vj that share an edge, we obtain

an undirected graph called a Delaunay triangulation of the

convex hull of P. Figure 1 shows an example of Voronoi

tessellation of n = 100 uniformly distributed points in the unit

square. In this work we have constructed Voronoi tessellations

using the deldir library (Turner (2018)) available within R (R

Core Team (2018)).

Probability distributions and Bayesian
inference

We briefly present the three probability models adopted to

describe the area of the Voronoi cells in a bounded region and we

give the basic concepts on the Bayesian set-up we have followed

in estimation and comparison of the three models. In general, let

us assume that the data x = (x1, x2, . . . , xn) are realizations of a

random variable X whose density function belongs to the

parametric family F � {f(x; θ) : θ ∈ Θ}. In the Bayesian

setting the parameter θ is considered as a random variable

and we express our initial beliefs about it by specifying a

distribution p0(θ), termed prior distribution, which

supplements the information provided by data and expressed

by the likelihood L(f(x | θ)) � ∏n
i�1f(xi; θ). By applying the

Bayes’ theorem we can combine the two sources of information

into the posterior distribution:

p θ | x( ) � p0 θ( )L f x | θ( )( )∫Θp0 θ( )L f x | θ( )( ) dθ, (1)

which enables us to get not only the parameter estimate, typically

as the posterior mean Ep(θ), but also a measure of its accuracy by

the posterior variance. These advantages however have a

computational cost due to the evaluation of the integral, often

high-dimensional, in (1); in fact when the prior distribution is

not conjugate for the likelihood function, that integral does not

have a closed-form expression and requires sophisticated

numerical integration techniques. This difficulty has been

tackled by the development of Markov chain Monte Carlo

(MCMC) methods which produce simulated values from the

posterior distribution (Roberts and Casella (2004)). In particular

we apply the Metropolis-Hastings (MH) algorithm consisting of

the following steps: a) generate an initial value θ0 from p0(θ) and

set i = 0, b) draw a candidate ~θ from a proposal distribution

q (θ|θi), c) compute the acceptance probability

αi � min 1,
L f x | ~θ( )( )p0

~θ( ) q θi | ~θ( )
L f x | θi( )( )p0 θi( ) q ~θ | θi( )⎛⎝ ⎞⎠,

and accept ~θ as θi+1 with probability αi, or set θi+1 = θi with

probability (1 − αi). It can be shown that the generated sequence

is a Markov chain having the posterior distribution (1) as

equilibrium distribution. Since the first values of the chain are

highly dependent on the starting value, we will use the sequence

θi{ }M+k
i�k+1, for large enough values of k and M, to estimate the

posterior distribution p (θ|x) and to approximate the posterior

marginal log-likelihood:

logL f x( )( ) � ∫
Θ

logL f x | θ( )( )p θ | x( ) d θ ≈ 1/M

∑M+k

j�k+1
logL f x | θj( )( ) (2)

that enables us to check how well the fitted model makes sense to

explain the observed data. In general, given two statistical models

f1 (·|ϕ) and f2 (·|η) we can compare them by

Δ � logL (f1(x)) − logL (f2(x)), and then, similar to the

Bayes factor, we establish the degree of evidence in favor of

the first model according to the valueK of the Jeffreys scale (Kass

and Raftery (1995); Gelman et al. (2004)). In the next Sections we

FIGURE 1
Voronoi tessellation of n =100 uniformly distributed points
(black dots) bounded by the unit square and the convex hull of
points; edges of the PV cells (solid lines) and Delaunay
triangulation associated with the Voronoi diagram (dashed
lines).
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introduce the three probability distributions we have chosen to

model the Voronoi cell area and we give some elements on their

Bayesian inference.

Q-Exponential - or generalized Pareto -
distribution

The probability density function of the q-exponential

distribution is given by:

f1 x( ) � 1
β

1 − 1 − q( )
2 − q( ) x

β
( )1/ 1−q( )

for x≥ 0 β> 0 and 1< q< 2

(3)

where q is called the entropic index and β is the generalized

expectation value, that is, the mean with respect to the escort

probability distribution (Tsallis (2009)):

fq x( ) � fq x( )∫+∞
0

fq x( ) dx. (4)

Since the q-exponential density function (3), for large x, goes

to zero as a power x−1/(q−1) it is a fat-tailed distribution; moreover,

being always bounded below by the exponential density function

and having

lim
x→+∞

etx �F1 x( ) � lim
x→+∞

etx 1 + q − 1
2 − q

x

β
( )− 2−q( )/ q−1( )

� +∞ ∀t> 0 (5)

where �F1(x) � 1 − F1(x), the q-exponential distribution is also

heavy-tailed.

To improve the efficiency of the MH algorithm, we

reparameterize the model (3) by setting θ = (2 − q)/(q − 1)

with θ ∈ (0, +∞). As prior distributions we adopt two lognormal

distributions: θ ~Lognormal (meanθ, varθ) and β ~Lognormal

(meanβ, varβ). We emphasize that heremean and var indicate the

mean and variance of the random variable and not the mean and

variance of its logarithm, as in the common representation of the

lognormal distribution. We also choose lognormal distributions

as proposal distributions; in particular, at the (i + 1)-th iteration,

for θ we have Lognormal (θi, (θi/κ1)2), and for β we have

Lognormal (βi, (βi/κ2)2)), with θi and βi as the current value

of the respective Markov chain. The values of κ1 and κ2 are

calibrated through pilot runs on the data so that the acceptance

rate of the MH algorithm is about 25–40%.

Tapered Pareto distribution

The tapered Pareto distribution has cumulative distribution

function

F2 x( ) � 1 − a

x
( )β

exp −x − a

θ
( ) x≥ a (6)

and density

f2 x( ) � β

x
+ 1
θ

( ) a

x
( )β

exp −x − a

θ
( ) x≥ a (7)

where a > 0 is the minimum value of x, β is a shape parameter

governing the power-law decrease in frequency as x increases,

and θ is a parameter controlling the position of the

exponential taper to zero in the frequency of large events

(Vere-Jones et al. (2001)). It can be proved that the∫+∞
0

etx dF2(x) is finite for 0 < t < 1/θ (Vaičiulis and

Markovich (2021)); so the tapered Pareto distribution is

light-tailed.

Similarly to the q-exponential distribution we adopt the

lognormal distribution both as prior distribution and as

proposal distribution of the three parameters with suitable

values of κ1, κ2 and κ3.

Generalized gamma distribution

The generalized gamma distribution, introduced by Stacy

(1962), has the following three-parameter density function:

f3 x( ) � β

Γ k( )
xβ k−1

αβ k
exp − x/α( )β{ } β, α, k> 0 (8)

and it includes the exponential, Weibull and gamma

distributions as special cases. In this form the generalized

gamma distribution presented some difficulties in maximum

likelihood estimate of the parameters; to overcome these

problems Prentice (1974) proposed a different but

equivalent form obtained through the transformation of

variable w � �
k

√ [β (logx − log α) − log k]. In this way we

obtain the generalized gamma density function:

f3 x( ) � γ γ−2( )γ−2
Γ γ−2( ) exp

γ log x−μ
σ( ) − exp γ logx−μ

σ( ){ }
γ2

⎧⎨⎩ ⎫⎬⎭ 1
σ x

(9)

where μ = log α + (log k)/β ∈ (−∞, + ∞) is the location

parameter, σ � 1/(β �
k

√ ) ∈ (0,+∞) is the scale parameter and

γ � 1/
�
k

√
∈ (0,+∞) is the shape parameter. This

parameterisation is also adopted in the flexsurv and survival

libraries available within R (R Core Team (2018)) and which we

use to represent the generalized gamma distribution function in

the figures reported in next Sections.

As prior distributions we adopt three lognormal

distributions, while we choose the proposal distributions in

the MH algorithm so that, at the (i + 1)-th iteration, ~μ is

generated from Normal (μi, (μi/κ1)2), ~σ from

Lognormal (σ i, (σ i/κ2)2), and ~γ from Lognormal (γi, (γi/κ3)2).
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Data

The data sequences analysed in this study are drawn from the

Italian National Institute of Geophysics and Volcanology

(Istituto Nazionale di Geofisica e Vulcanologia; INGV) web

services: Italian Seismological Instrumental and Parametric

Database (ISIDe) working group (2016), version 1.0, accessible

at http://cnt.rm.ingv.it/en/iside (ISIDe Working Group (2007)).

The parameters that define each earthquake of this catalog are the

origin time, the hypocenter (i.e., geographic coordinates and

depth) and the size that is expressed in different units of

magnitude, as local magnitude ML, duration magnitude MD,

and moment magnitude Mw. We have applied the

orthogonal regression relationships: Mw = 1.066 ML − 0.164

and Mw = 1.718 MD − 1.897 (Gasperini et al. (2013)) to convert

ML and MD to Mw so as to construct homogenous data sets. The

coordinates of the epicenters are expressed in units of latitude

and longitude in theWGS84 reference system; we have converted

them to planar Universal Transverse Mercator (UTM)

coordinate system (in km) through the Generic Mapping

Tools (GMT) (Wessel and Smith (1998)) to be consistent with

the Euclidean distance used by the deldir library in the

construction of the Voronoi tessellations.

In recent decades central Italy was hit by strong seismic activity

related to L’Aquila earthquake in 2009 andAmatrice-Norcia shocks

in 2016. We analyze the seismicity recorded in the corresponding

seismogenic areas in the years that preceded the mainshock and in

part of the aftershock period to observe how the spatial distribution

of the events changes. To do that we estimate the q-exponential,

tapered Pareto, and generalized gamma distributions of the

Voronoi cell area for time windows of a fixed number of events

that shift at each new event. In the case of the exponential

probability density: f4(x) � λ exp −λ x{ }, we adopt the

conjugate Gamma (0.01, 1) distribution as prior distribution of

the λ parameter so that the expected area is about 100 km2. For the

three probability models under examination Table 1 reports the

parameters of the prior distributions and the κ coefficients used in

the proposal distributions of the MH algorithm to obtain suitable

acceptance rates.

L’Aquila case study

On 6 April 2009 (01:13:40 UTC, latitude 42.342, longitude

13.380), an Mw 6.1 earthquake struck central Italy, it was

preceded by a Mw 4 shock on 30 March. The main event has

been associated with the composite seismogenic source ITCS013

(Borbona-L’Aquila-Aremogna) of the Database of Individual

Seismogenic Sources (DISS, version 3.2.1) (DISS Working

Group (2018)), which is considered to have the potential for

earthquakes of up to Mw 6.5. Considering the empirical

relationships between magnitude and rupture length by Wells

and Coppersmith (1992), the maximum expected rupture length

in this area is about 18 km; moreover, since, according to

Bowman et al. (1998), the seismic activation which precedes

the major earthquakes should occur over a region with at most a

characteristic length of about one order of magnitude larger than

the maximum length, we consider a rectangular area centered on

the epicenter, of latitude size (41.8, 43.0) degrees and longitude

size (12.8, 13.8) degrees, which is included into the 33T zone of

the UTM coordinate system. The events of Mw ≥ 2 recorded by

ISIDe in this area during the temporal period from 7 April

2005 to the end of July 2009 are N = 2725. To analyze how the

spatial distribution of the events varies and to investigate if these

changes are linked to different phases of the seismic cycle we

consider time windows of a fixed number - n = 100 - of events

that shift at each new event. First, we fit the three probability

distributions to the D(k) dataset of each window, k = 1, 2, . . . ,

N − n + 1, and calculate their posterior marginal log-likelihood

logL (fi(D(k))) � 1/m∑m
j�1 logfi(D(k) |Ψ(j)

i ), i � 1, 2, 3,

with Ψ(j)
i{ }m

j�1 as the Markov chains of values of the parameter

vectors Ψ1 = (θ, β), Ψ2 = (θ, a, β), and Ψ3 = (μ, σ, γ), generated

through the MH algorithm. Moreover we also compute the

posterior marginal log-likelihood of the exponential

distribution; all these values are associated with the time of

the last event in the corresponding windows. Then, for each

kth time window, we compute

i* � argmaxi�1,...,4 logL (fi(D(k))), that is the Fi* probability

distribution that provide the best performance among those

under examination, and we evaluate the minimum

TABLE 1 Parameters of the prior distributions and κ coefficients used in the proposal distributions in MH algorithm.

L’Aquila case Amatrice-Norcia case

model parameters mean0 var0 κ mean0 var0 κ

q-exponential θ 5 4 1.25 0.5 0.4 2
β 1.5 × 102 2.25 × 104 2 1.5 2.25 1.5

tapered Pareto θ 2 × 102 104 2 102 6.25 × 104 0.5
a 0.2 0.04 2 0.2 0.04 7.5
β 0.1 0.01 1.25 0.1 0.01 2.5

generalized gamma μ 4 4 6 1 0.4 1
σ 2 1 4 2 1 4
γ 0.5 0.2 1.25 0.5 0.25 0.5
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discrepancy between the posterior marginal log-likelihoods of

the best and of the other models given by

Δ(k)
i* � logL (fi*(D(k)) −maxj≠i*, j�1,...,4 logL (fj(D(k))).

Comparing this discrepancy with the K values of the Jeffreys

scale (Kass and Raftery (1995)) we establish the degree of

evidence in favor of the Fip model; in particular, set

K � loge10 � 2.3026, Δ(k)
ip ≥K indicates strong strength of

the evidence. Figure 2 shows the value of the posterior

marginal log-likelihood of the best F(k)
ip model for this level

of evidence at each time window: red dots correspond to the q-

exponential probability distribution (ip = 1), blue dots to the

tapered Pareto distribution (ip = 2), and green dots to the

generalized gamma distribution (ip = 3). The legend in

Figure 2 reports the percentages of time windows in which

Δ(k)
ip >K, that is the specific best model outperforms the others

with strong evidence; this happens in about 78% of the

intervals. The dots with slighter color indicate time

windows in which 0<Δ(k)
ip <K, that is the evidence is less

strong; in particular, from mid-September 2007 to January

2008 it is substantial (1.1513<K< 2.3026), then it reduces and

it is worth no more than a bare mention (0<K< 1.1513) in
favor of the exponential distribution (magenta dots) between

December 2008 and January 2009, and finally it begins to

increase until it returns strong in favor of the tapered Pareto

distribution. In Figure 2 the red vertical lines indicate the time

windows including the mainshock (solid line) and the Mw 4

30 March shock (dashed line) respectively. All this can be seen

more clearly in Figure 3 which depicts magnification of the

first 500 time windows of Figure 2 around the mainshock,

precisely from April 2005 to 6 April 2009 (hr 8). The black

dots represent the first quartile of the set of cell areas at each

window. It can be noted that this quartile reaches the

maximum in mid-February 2009, then it begins to decrease

in correspondence to an increase of the number of small cells

due to the concentration of the epicenters as the main phase

approaches (De Santis et al. (2011)).

Let us examine in detail the dataset for which each probability

distribution performs best in order to understand which

characteristics distinguish it from the others and in which phase

of the seismic cycle it is more appropriate to use it. Statistical

summaries of the four sets of Voronoi cell areas are in Table 2. The

q-exponential distribution provides the best fit to the events

associated with the k̂-th time window which covers few hours

after the L’Aquila earthquake, that is k̂ � argmaxkΔ(k)
1p ; as

expectable the cells of the Voronoi tessellation (top left-hand

panel of Figure 4) are very small and concentrated around the

epicenter of L’Aquila quake (red square) and along the rupture line,

and the convex hull of the Delaunay triangulation (top right-hand

panel) occupies only about 300 km2. The bottom left histogram

highlights the large number of very small area cells along with a few

very large cells; the area varies in the range (0.151, 3336.13) (km2),

median is 1.89 km2, the sample mean is approximately 120 km2 and

the third quartile is less than 6 km2. This behaviour is well modelled

by a heavy-tailed density function such as the q-exponential as also

shown by the Q-Q plot in the bottom right-hand panel. The legend

reports the absolute difference between sampled and theoretical

quantiles for each distribution; in this case, the minimum value is

obtained by the q-exponential density function.

Figure 5 refers to the period from mid-June 2009 to early

July 2009 in which the tapered Pareto distribution is the best

model; the seismic activity is less concentrated, in fact the area

of the Voronoi cells varies in narrower range (0.0393, 1708.73)

(km2), the sample mean is still approximately 120 km2 but the

third quartile rises to 18 km2. After about 3 months since the

FIGURE 2
L’Aquila sequence - Posterior marginal log-likelihood of the
probability distribution of Voronoi cell area that fits better than the
other distributions to the dataset of each time window. The red
vertical lines indicate the mainshock (solid line) and the Mw 4
30 March earthquake (dashed line) respectively.

FIGURE 3
L’Aquila sequence - Magnification of Figure 2 in the period
from April 2005 to 6 April 2009 (hr 8); the black dots indicate the
first quartile of the set of cell areas in each time window.

Frontiers in Earth Science frontiersin.org06

Rotondi and Varini 10.3389/feart.2022.928348

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.928348


mainshock the secondary events begin to move away from its

epicenter area so that the area of the convex hull is almost equal

to 980 km2. Also the Q-Q plot and the absolute difference

between sampled and theoretical quantiles (bottom right-

hand panel) show clear evidence in support of the tapered

Pareto distribution as optimal model.

The dataset represented in Figure 6 consists of the events

recorded from the end of June to mid-July 2009; the best fitting to

the areas of the corresponding Voronoi tessellation is given

by the generalized gamma distribution. The third quartile of

the set of areas (−24 km2) is larger than that of the previous sets

but there are still many very small cells probably due to the

presence of localized clusters of secondary events. Also in this

case the Q-Q plot and the absolute difference between sampled

and theoretical quantiles support the generalized gamma

distribution as optimal model in agreement with the posterior

marginal log-likelihood.

A completely different situation is represented in Figure 7;

the top left-hand panel shows the Voronoi tessellation generated

by the rather scattered events that occurred in the period from

mid-June 2007 to the end of January 2009. In Table 2 it can be

seen that the range of variability of the cell areas is considerably

reduced; while maintaining roughly the same mean, the first and

third quartiles vary significantly. The four probability

TABLE 2 Statistical summaries of the sets of Voronoi cell areas (in km2) to which each probability model fits best.

model Min 1st Qu Median Mean 3rd Qu Max

q-exponential 0.151 1.139 1.886 120.045 5.841 3336.129

tapered Pareto 0.0393 0.1475 0.794 121.270 17.946 1708.728

generalized gamma 0.0183 0.370 5.819 120.045 23.978 2195.998

exponential 0.280 35.473 75.190 118.845 169.574 591.0038

FIGURE 4
Dataset of the time window in which the q-exponential distribution provides the best fit. Top: Voronoi tessellation (left-hand panel) and
Delaunay triangulation (right-hand panel). Bottom: histogram of the cell areas (left-hand panel) and Q-Q plot of the four probability distributions
(right-hand panel). Red square indicates the epicenter of L’Aquila shock.
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distributions behave similarly and fit well to the data but the

posterior marginal likelihood of the exponential distribution is

greater, although not substantially, than the likelihood of the

other distributions.

Observing Figures 2, 3 we can conclude that there is no single

optimal probability distribution of the Voronoi cell area; the

distribution that provides the best performance, as well as the

spatial distribution of the events, varies over time according to

the phases of the seismic cycle: (i) the exponential distribution

exceeds the other distributions only in the period December

2008 - January 2009 which could mark the beginning of the

preparatory phase, (ii) the q-exponential distribution

characterizes mainly the initial, most active part of the

aftershock sequence, (iii) the tapered Pareto distribution

provides the best performance in the period encompassing the

mainshock and covering the main phase up to approximately the

time window in which all events are aftershocks, a few hours after

the mainshock, (iv) the generalized gamma distribution

characterizes, together with the tapered Pareto distribution,

the quiescence period and the less active part of the

aftershock sequence when seismicity begins to slowly diffuse

at larger distances from the fault area.

Amatrice-Norcia case study

On 24 August 2016 (01:36:32 UTC, latitude 42.698, longitude

13.234), an Mw 6 earthquake hit central Italy with its epicenter

between the village of Accumoli and the town of Amatrice.

After a few years of relative quiescence that followed the

aftershocks of the Aquila earthquake, the Amatrice shock

marked the beginning of a more complex seismic crisis

than the one that had just ended; in fact, what was first

believed to be the mainshock, turned out to be later as a

foreshock of the strongest quake (Mw 6.5) that would have

occurred at the town of Norcia on 30 October 2016 (06:40:

17 UTC, latitude 42.830, longitude 13.109). The seismic

sequence lasted probably up to November 2018, and

included several shocks among which there were three

earthquakes with magnitudes greater than 5: on 24 August

2016, of Mw 5.3, and on 26 October 2016, of Mw 5.4 and Mw

5.9, and four earthquakes on 18 January 2017 of magnitude

greater than 5: at 09:25 UTC Mw 5.1, at 10:14 UTC Mw 5.5, at

10:25 UTC Mw 5.4, and at 13:33 UTC Mw 5.0.

Since the Amatrice and Norcia earthquakes have been

associated with the composite seismogenic source ITCS028

FIGURE 5
Dataset of the time window in which the tapered Pareto distribution provides the best fit. Top: Voronoi tessellation (left-hand panel) and
Delaunay triangulation (right-hand panel). Bottom: histogram of the cell areas (left-hand panel) and Q-Q plot of the four probability distributions
(right-hand panel). Red square indicates the epicenter of L’Aquila shock.
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(Colfiorito-Campotosto) of theDISS (DISSWorkingGroup (2018)),

following the same criteria adopted to select the study region in the

case of L’Aquila, we choose as study area a rectangular area of

latitude size (42.3, 43.2) degrees and longitude size (12.7, 13.5)

degrees centered around the Amatrice - Norcia earthquakes which

also includes the L’Aquila epicenter and part of its aftershocks. To

examine the spatial pattern of the events also in the period between

the two seismic crises we extend the period under study back to the

beginning of 2009 and up to June 2018. Moreover we raise the

magnitude threshold to the value m0 = 2.5 to reduce the effects of

possible partial incompleteness of the catalogue in the first hours

after theNorciamainshock. In this way we obtain a data set ofN = 5,

062 events drawn from ISIDe catalogue (ISIDe Working Group

(2007)). Also in this case, we consider time windows of 100 events

that shift at each new event. First we build the Voronoi tessellation

generated by the events of each window, we fit the four probability

models to each set of cell areas and then we compare the four

probability distributions through pairwise differences of the

respective posterior marginal log-likelihoods. Figure 8 shows, for

each time window, the value of the posterior marginal log-likelihood

of the model that behaves strongly better than the others; subdued

colors indicate less evidence in favor of the optimalmodel; the vertical

lines indicate the occurrence time of the Amatrice (dashed red),

Norcia (solid red) and Capignano (Mw 5.5, 18 January 2018) (blue)

earthquakes respectively. Figure 9 is a magnification of the same

values around the Amatrice earthquake (red dashed line) from

September 2010 to September 2016; black dots indicate the first

quartile of the set of cell areas at each window. We note that the

exponential distribution (magenta dots) outperforms the other

distributions with less than substantial degree of evidence and not

continuously in the period from late 2013 to February 2016, precisely

up to 10 windows before the Amatrice shock; around the same time

the first quartile of the sets of cell areas reaches its highest values.

The legend of Figure 8 reports the percentages of time

windows in which the specific best model outperforms the

others with strong evidence. Recalling that our dataset

contains two aftershock sequences, the large number of

windows in which the q-exponential distribution is the

optimal model supports the conclusion that this heavy-tailed

distribution is suitable for describing the spatial pattern of

highly clustered events; in particular it outperforms the other

distributions in the following time intervals: from the L’Aquila

(6 April 2009) shock up to September 2009, from a few hours after

the Amatrice earthquake to early November 2016, and for half a

FIGURE 6
Dataset of the time window in which the generalized gamma distribution provides the best fit. Top: Voronoi tessellation (left-hand panel) and
Delaunay triangulation (right-hand panel). Bottom: histogram of the cell areas (left-hand panel) and Q-Q plot of the four probability distributions
(right-hand panel). Red square indicates the epicenter of L’Aquila shock.
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FIGURE 7
Dataset of the time window in which the exponential distribution provides the best fit. Top: Voronoi tessellation (left-hand panel) and Delaunay
triangulation (right-hand panel). Bottom: histogram of the cell areas (left-hand panel) and Q-Q plot of the four probability distributions (right-hand
panel). Red square indicates the epicenter of L’Aquila shock.

FIGURE 8
Amatrice-Norcia sequence - Posterior marginal log-
likelihood of the probability distribution of Voronoi cell area that
fits better than the other distributions to the dataset of each time
window. The red vertical lines indicate the Amatrice (Mw 6.1)
shock (dashed line) and the Norcia (Mw 6.5) mainshock (solid line)
respectively; the blue vertical line indicates the Capignano (Mw 5.5)
shock that occurred on 18 January 2017.

FIGURE 9
Amatrice-Norcia sequence - Magnification of Figure 8 in the
period from mid-August 2009 to end of August 2016; the black
dots indicate the first quartile of the set of cell areas in each time
window. Red dashed vertical line indicates the Amatrice
shock.
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month after the Capignano (Mw 5.5, 18 January 2017) shock. The

tapered Pareto distribution instead characterizes the initial phase of

the activation following the Amatrice and Capignano earthquakes

until all the events in the time window are triggered events;

moreover, the tapered Pareto distribution, together with the

generalized gamma distribution, fit to the sets of cell areas in

periods of low seismic activity such as that recorded from late

October 2009 to mid-2013, and when the aftershocks begin to move

away from the fault area as from December 2016 to the end of the

period under study.

Final remarks

In this work we have a twofold objective: to propose a new

probabilistic model - the q-exponential distribution - for the

Voronoi cell area that is inspired by nonextensive statistical

mechanics and to compare it with the most promising

probability distributions in the literature to determine if there

is a single optimal distribution according to the ratio of their

posterior marginal likelihoods. We have therefore examined four

distributions on the whole: the q-exponential, the tapered Pareto,

the generalized gamma and the simple exponential distributions.

Considering two seismic sequences recorded in central Italy in

the last years and associated with the L’Aquila and Amatrice-

Norcia destructive earthquakes we have verified that the

probability distribution that best fits to the set of the areas of

Voronoi cells generated by the epicenters of a fixed number of

events included into shifting time windows varies over time

apparently in correspondence with the phases of a seismic

cycle (De Santis et al. (2011)).

The detailed examination of the results obtained for the four

probability distributions in the two case studies allows us to

discriminate different regimes:

• in a preparatory phase the exponential distribution exceeds

weakly the other probability distributions in a few tens of time

windows which cover some months before the foreshock

activity; in this period we could also say that the four

distributions are all basically suitable to describe a diffuse

seismicity.

• Thereafter the activity tends to concentrate around the

mainshock area with an increase in the variability range of

the cell areas; this implies the best performance of the

tapered Pareto distribution in what we can call the main

phase. This phase comprises an event, which may not be

the mainshock, but is strong enough to trigger a significant

sequence of secondary events.

• The period of maximum concentration of the seismicity is

characterized by the outperformance of the q-exponential

distribution as it has heavier tail than the other distributions;

we denote this period as primary clustering phase.

• The tapered Pareto and the generalized gamma distributions

instead characterize the less active part of the aftershock

sequence that we denote as secondary clustering phase, in

which the concentration of events diffuses to a larger area

surrounding the seismogenic area. A measure of this fact is

given by the area of the convex hull in the Delaunay

triangulation; in the top right-hand panel of Figures 4–7

we can note that this area is increasing as the best model

moves from the q-exponential distribution to the tapered

Pareto distribution, then to the generalized gamma

distribution and finally to the exponential one.

• The spatial pattern of events in periods of quiescence is best

modelled by the generalized gamma distribution but also

by the tapered Pareto distrubtion.

It will, of course, be interesting to test the results obtained

through further studies on different cases and in different

seismotectonic settings.
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