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Seismic waves produce anomalies when they pass through hydrocarbons;

these anomalies, which are commonly used to detect hydrocarbons, are

manifested differently in different domains. Here, we propose a novel

hydrocarbon detection method that combines Empirical Mode

Decomposition (EMD), the Teager-Kaiser energy operator (TKEO), and the

cepstrum. This method utilizes EMD’s ability to adaptively decompose

signals, benefits from the TKEO’s superior performance regarding the

focusing of instantaneous energy, and uses the sensitivity of cepstrum

domain parameters to hydrocarbons. Here, applying the developed EMD-

TKE-Cepstrum method to the Marmousi2 example revealed that it could

describe the position and extent of hydrocarbons more clearly than the

synchronous compression wavelet transform (SCWT) method. Applying the

EMD-TKE-Cepstrum algorithm to field data further confirmed its potential

regarding the identification of anomalies associated with hydrocarbon

reservoirs.
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Introduction

Hydrocarbon detection has always been the most critical step in reservoir prediction;

it is the key condition that directly determines whether or not drilling is conducted at a

given site. Seismic attenuation is an important indicator for the identification of gas-

bearing hydrocarbons. The conventional method in gas-bearing prediction is to extract

information on gas-sensitive seismic attributes from seismic data (Wang et al., 2020), for

example, seismic attenuation attributes (Wang et al., 2016). Therefore, methods such as

Fourier transform, wavelet transform, S transform, and synchronous compression wavelet

transform (SCWT) are commonly used to conduct time-frequency analysis when locating

gas in abnormal positions (Fawad et al., 2020). Furthermore, empirical mode

decomposition (EMD) (Xue et al., 2014), variational mode decomposition (VMD)
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(Dragomiretskiy and Zosso (2014); Xue et al. (2018)), and other

signal decomposition methods are often used to decompose the

signal into different scale modes during gas detection. Data-

driven deep learning gas prediction methods are also used,

through attributes, to directly establish the relationship

between gas and seismic data (Gao et al. (2020); Zhang and

Alkhalifah (2020); Yang et al. (2021)). However, the ‘seismic

attenuation’ method, which contains a physical meaning, has

always been key to predicting the gas content. Thus, conducting

conversion analysis for data with different frequencies is key to

improving the prediction accuracy of this method for gas.

Since it was first proposed, the EMDmethod has occupied an

important position in the field of time-frequency analysis (Chen

and Fomel, 2018). EMD can adapt to time-frequency localization

analysis, and can effectively extract the original information of a

signal feature. This method decomposes the target signal based

on the time scale characteristics of the data themselves, without

the need for any basis function to be set in advance. Compared

with Fourier decomposition and wavelet decomposition

methods, which are based on a priori harmonic basis

functions and wavelet basis functions, EDM has essential

differences and advantages. EMD is used to decompose the

bearing signal, and can diagnose faults (Li and He, 2012),

decompose seismic signals, and then process a certain

component to identify gas-bearing carbonate rocks (Hu et al.,

2008). When combined with the Hilbert transform, EMD can

determine the gas bearing nature of hydrocarbons from the

energy distributions of different frequencies (Xue et al., 2013).

The Teager–Kaiser energy operator (TKEO), meanwhile, is a

nonlinear operator that can quickly focus signal energy density

(Boudraa and Salzenstein, 2018). It is widely used in the field of

oil and gas exploration. The TKEO directly locates a reservoir’s

strong amplitude and high frequency energy, and then identifies

the energy of the seismic facies (de Matos et al., 2009). The TKE

calculation of the signal is processed by VMD to improve the

instantaneous energy focus and realize high resolution oil and gas

identification (Liu et al., 2017). The TKEO is used to optimize the

pre-stack gather, which directly improves the sensitivity of the

data to the gas content (Jiang X. et al., 2020). Combining EMD

with the TKEO can also identify the location of gas-bearing

characteristics; good results have been achieved using this

approach (Xue et al., 2014), demonstrating the advantages and

potential of combining the EMD and TKE operators. The

cepstrum operator is a new operator that is derived from

convolution signals; it is widely used in speech processing,

geophysics, and medical field, among other fields (Tian and

Cao (2012); Zayrit et al. (2020); Patil et al. (2022)). Its

advantage lies in its signal unwinding ability; it can process

signal homomorphism. Volcanic seismic signals have been

converted to the cepstrum domain to achieve better data

classification and feature recognition (Tong et al., 2016); by

converting a thin layer signal to the cepstrum domain, the

difference of said signal can be improved, allowing for thin

reservoirs to be classified (Xie et al., 2016). The cepstrum,

when combined with the wavelet transform, can effectively

improve the geophysical response positioning of specific

frequency bands, thus characterizing the gas content of a

given target (Xue et al., 2016). These methods lay the

foundation for using the cepstrum method to realize signal

domain changes, while providing more information.

Inspired by the seismic attenuation through gas, and by the

abovementioned recently developed methods, here we proposea

novel hydrocarbon detection method based on the effective

combination of EMD, TKEO, and the cepstrum. This method

was developed with the aim of utilizing the adaptive

decomposition capability of the EMD operator, the ability of

the TKEO to focus the instantaneous energy, and the ability of

the cepstrum to detect the spectral coefficient as a gas

identification parameter, thereby allowing favorable gas-

bearing zones to be delineated by the differences between high

and low frequency cepstrum parameters. The effectiveness of the

developed EMD-TKEO-Cepstrum method regarding reservoir

characterization was then tested using Marmousi2 and field

examples.

Theory

The difference between high- and low-frequency seismic data is

often the key factor in gas detection. Most gas detection methods will

use a specific high frequency, such as 50Hz, and a specific low

frequency, such as 20Hz, to find the differences in oil and gas data

at different frequencies. With the increase in exploration difficulty and

the decrease in data signal-to-noise ratio, the gas-bearing characteristics

become more and more insignificant. This paper proposes the EMD-

TKE-Cepstrum method for the diversity of frequency changes. EMD

algorithm is mainly used for adaptive frequency division of seismic

data to obtain high-frequency and low-frequency components. The

TKEO is mainly used to improve the instantaneous characteristics of

data; the Cepstrum operator is used to divide the wavelet and the

reflection coefficient, and the change rate is used to calibrate the

variation characteristics of gas content in high and low-frequency data.

Empirical mode decomposition

Empirical Mode Decomposition (EMD) is suitable for

nonlinear, non-stationary signals such as seismic signals; it

can obtain intrinsic mode functions at different frequency

component scales (Chen and Fomel, 2018). Considering a

single channel seismic signal, defined as x(t), the main

algorithms are as follows:

1) Find the extreme point. The maximum and minimum points

of the seismic data are obtained by structural morphology

algorithm (Jiang X.-d. et al., 2020).
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2) Fit the envelope curve. The envelope u(t), v(t) of the signal is

formed by cubic-spline interpolating the maximum and

minimum points.

ui t( ) � ai + bi t − ti( ) + ci t − ti( )2 + di t − ti( )3 (1)

3) Mean envelope. The envelope mean is calculated as the first

modal component,

h t( ) � u t( ) + v t( )
2

(2)

4) Intermediate signal. Subtracting the mean envelope from the

original signal to obtain the intermediate signal:

r t( ) � x t( ) − h t( ) (3)

5) Determine the intrinsic mode function (IMF). IMF needs to

meet two conditions: a) In the whole data segment, the

number of extreme points and the number of zero

crossings must be equal or the difference cannot exceed

one. b) At any time, the average value of the upper

envelope formed by the local maximum point and the

lower envelope formed by the local minimum point is

zero, that is, the upper and lower envelopes are locally

symmetric with respect to the time axis.

The conventional EMD algorithm can generate the intrinsic

mode values of different scales through the cycle of 1)-5); the

frequency component is determined from high to low (Chen and

Fomel, 2018). After EMD decomposition, the signal is arranged

according to the frequency. Usually, the first component is the

small-scale high-frequency component, and the subsequent

component is the relatively low-frequency component. This

paper aims to adaptively decompose the signal into relative

high-frequency and relative low-frequency, so only one

decomposition is carried out. The first component is the high-

frequency component, and the remaining amount is the relative

low-frequency component. This approach provided a basis for

subsequent calculations based on the frequency domain.

Teager kaiser energy operator

The instantaneous feature is also one of the effective means

for oil and gas detection. Because the seismic wavelet has a

certain length and the influence across the geological body is

continuous, the resolution of seismic data can be improved by

enhancing the instantaneity of seismic data. The TKEO is a

nonlinear filter that can effectively extract instantaneous

features and improve signal recognition in scenarios that are

affected by noise. It has good applicability in many fields. The

TKEO, which is denoted as Ψc when operating on the x(t)

signal, is given by:

Ψc x t( )[ ] ≜ dx t( )
dt

( )2

− x t( ) d2x t( )
dt2

( )
� _x2 t( ) − x t( )€x t( )

(4)

where _x(t) and €x(t) are the first and the second derivatives of

x(t) with respect to time, t, respectively. For time discretization,

the discrete-time counterpart of Ψc becomes:

Ψd x n( )[ ] � x2 n − 1( ) − x n( )x n − 2( )
Δt( )2 (5)

where x(n) = x (nΔt) with Δt = 1/fs and n ∈ N, and fs is the

sampling frequency. Eq. 1 can then be written as follows:

Ψd x n( )[ ] � x2 n( ) − x n − 1( )x n + 1( ) (6)

It can be seen from this algorithm that the biggest advantage of

the TKEO is its instantaneity, because each point only needs

three samples to calculate the energy. This efficient and simple

algorithm can thus effectively capture the signal of instantaneous

energy changes. The TKEO calculation of the high and low-

frequency components separated by the EMD operator can

enhance the temporality of the data to a certain extent and

improve the resolution of the data.

Cepstrum coefficient

The cepstrum is widely used in speech signal processing for

speech signal separation and localization (Patil et al., 2022). Its

main function is to linearly separate two or more separate signals

after convolution. In this regard, seismic data can be considered

to represent the convolution of seismic wavelets and reflection

coefficients. Therefore, here seismic signals were transformed

from the time-frequency domain to the cepstrum domain, and

the cepstrum coefficient was used to identify fluid.

Traditionally, the cepstrum of a time-series signal, x(t), can

be obtained with the following equation:

C q( ) � DFT log |FFT x t( )( )|( )( ) (7)

where FFT represents the Fourier transform and IFT represents

the inverse Fourier transform. The cepstrum can be understood

as a logarithmic compression of autocorrelation sequences

because it carries information similar to autocorrelation

sequences.

The cepstral coefficient solution method was developed

based on this method. For a seismic signal, x(n), 0, < ,n ≤ M

(M stands for the length of the seismic signal. ) first divides said

signal into frames. Supposing that the frame length is N, and that

the step size k = 1, this method can be calculated as follows:

F x n( )( ) �

x1 . . . xN

x2 . . . xN+1
x3 . . . xN+2
. . . . . . . . .

xM−N . . . xM

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (8)
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where F (•) stands for the framing processing. Usually, the signal

is flipped at both ends and extended to a length of N/2, according

to the step length, before processing. This is done to ensure the

timeliness of the signal. At the same time, in order to reduce the

marginal effect of framing on each signal, we usually use the

Hamming window of the corresponding length to multiply and

retain the key information of the signal. The cepstrum calculation

can then be performed as follows:

C Q( ) � DFT log |FFT x1 . . .xN( )|( )( ) (9)

where C(Q) represents the result of the cepstrum of the frame

data and C(Q) = q1, q2, q3, . . .. Finally, the gas content can be

determined by selecting the previous q, or by using all of the data

to obtain the corresponding slope. The cepstrum results of the

whole curve and the section can then be obtained through cyclic

calculations.

Empirical mode decomposition-TKE-
cepstrum algorithm

This paper presents a new gas detection method. The EMD is

used to decompose the seismic data once, and the seismic data is

adaptively decomposed into high-frequency and low-frequency

components. Then the TKEO is used to enhance the

instantaneous characteristics of the signal. The most

important thing is to introduce the cepstrum algorithm. The

cepstrum conversion highlights the change characteristics of the

reflection coefficient, which can highlight the oil and gas change

characteristics in the high-frequency and low-frequency domains

to improve gas prediction accuracy. The detailed workflow can be

summarized as follows:

1. Decompose the seismic signal into the IMF1 component

(high frequency) and the residual component (low

frequency) using EMD;

2. Perform TKEO on the different components to focus the

spectral energy;

3. Frame processing, which involves sliding the time domain

signal to the cepstrum domain;

4. Extraction of cepstrum coefficients of high and low

frequency components, which can be employed to reveal

anomalies associated with hydrocarbon reservoirs.

The algorithm flow chart is shown in Figure 1, its worth

mentioning that during the calculation of the cepstrum

coefficient, the choice of signal frame length is important. If

the length is too long, then the instantaneous signal will be lost,

whereas if it is too short, then the effective information of the

waveform change will be lost. The number of cepstrum values

that are used to calculate the cepstrum coefficient is also

important; the use of too many values will prevent

instantaneous characteristics from being reflected, whereas too

few will cause signal distortion. Therefore, the framing length

and the number of cepstrum values are generally both selected

through experiments to balance the relationship between data

and results. In general, the time window length is at least a

quarter of the wavelet length, because it contains at least the

response characteristic information of the wavelet passing

through the geological body. One or two wavelet lengths can

also be used as the time window length. The number of cepstrum

values is usually 3–5. Since the internal characteristics of the

signal can be quickly obtained by cepstrum calculation, the

effective signals are often distributed in the first few sequences

of the cepstrum results, so it is not necessary to select too many

cepstrum values.

Examples

Marmousi2 model

Low-frequency shadowing technology can effectively

indicate the gas content of sandstone, that is, the difference

between high and low frequencies. This phenomenon lays the

foundation for the method proposed in this paper. Here, the

FIGURE 1
The algorithm flow chart.
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Marmouis2 model was used as an example to verify the feasibility

of the proposed EMD-TKE-Cepstrum method. The gas zone

indicated by the arrow in Figure 2 exhibits a Class III gas-filled

sand reservoir, which is brighter than the nearby events.

In order to explain the principle and process of the algorithm

step by step, we select the 180th seismic data as an example. As

shown in Figure 3A, there was a strong gas-bearing response

feature at 1.1 s. The IMF1 component shown in Figure 3B and the

residual component shown in Figure 3C were decomposed by

EMD. Spectral analysis was carried out for these three data sets,

as shown in Figures 3D–F, respectively. The IMF1 component

obviously contained the most high-frequency information, while

the residual contained low-frequency information.

The TKEO calculation was then performed. Figure 4A shows

the IMF1 component calculated by TKEO, which was more

instantaneous than the original data and was more focused to

the target area. Figure 4B shows the result of the TKEO

calculation. It is worth noting that the TKEO is sensitive to

the instantaneous signal, so here it showed low-frequency noise

in the quantity.

The cepstrum coefficient was calculated for the data after the

TKEO calculation. First, we use the time window length of

8 sampling points; the data points are framed to obtain

multiple signals. Each signal corresponds to a time point; we

selected three different characteristics of the time point for

experimental analysis. In Figures 4A,B, for ①②③ points, ①

is the time point without gas,② is the time point of the gas edge,

and ③ is the time point of gas region; the frame length is eight.

Figure 5A shows the single frame signal schematic of the IMF1-

corresponding time point, while Figure 5C shows the single

frame signal schematic of the residual-corresponding time

FIGURE 2
Seismic section.

FIGURE 3
(A): Original seismic data, (B): IMF1 component, (C): residual,
(D): spectrum diagram of a, (E): spectrum diagram of b, and (F):
spectrum diagram of c.

FIGURE 4
(A): Calculation results of IMF1 component TKEO, (B):
calculation results of residual component TKEO, (C): calculation
results of cepstrum coefficient of a, and (D): calculation results of
cepstrum coefficient of c.
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point. The cepstrum calculation was then carried out, where

Figure 5B shows the IMF1 component single-frame cepstrum

result. It can be seen that the cepstrum domain transformation

was slower without gas, and that the change with gas was faster

than that without gas. Figure 5D shows the result of the residual

component single frame cepstrum domain; the gas-free region

showed the same result, whereas the gas content changed faster

than the gas-free region, opposite to the result shown in

Figure 5B. The first and second points in the cepstrum

domain were selected for slope extraction to characterize the

cepstrum coefficient. The cepstrum coefficient calculated by the

IMF1 component is shown in Figure 4C; it exhibited relatively

low results in the gas-bearing area, with relatively high results at

the gas-bearing edge. The residual results are shown in Figure 4D,

revealing that the cepstrum coefficient was relatively high in the

gas region and relatively low in the non-gas region. This result is

consistent with the currently accepted fluid theory of “pass low

frequency, block high frequency,” which provides a basis for gas-

bearing interpretations.

FIGURE 5
(A): Single frame of IMF1 after TKEO, (B). cepstrum coefficient
of a, (C): single frame of residual after TKEO, and (D). cepstrum
coefficient of c.

FIGURE 6
(A): IMF1 component cepstrum coefficient result profile and
(B): residual component cepstrum coefficient result profile.

FIGURE 7
(A): 45 Hz common frequency sections obtained using SCWT
method and (B): 15 Hz common frequency sections obtained
using SCWT method.
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On the basis of themethod presented above, the whole profile was

calculated. Figure 6A shows the result of the IMF1 cepstrumcoefficient,

while Figure 6B shows the result of the cepstrum calculation of the

residual profile. These results further confirm the phenomenon that the

high frequency cepstrum coefficient was low and the low frequency

cepstrum coefficient was high in the gas bearing area. At the same time,

the high and low frequency sections of the model were extracted using

the SCWT algorithm. Figure 7A shows the high frequency (45 Hz)

result, while Figure 7B shows the low frequency (15Hz) result. These

calculation results also indicated the gas-bearing area, but the accuracy

of this method was relatively low, and the edge and internal

information of the gas-bearing reservoir were not marked.

Field data example

To further assess the ability of the proposed method to detect

hydrocarbons, applied our approach to field data, as shown in

Figure 8. These field data consisted of 1,400 traces, with

250 samples per trace and a time sampling interval of 2 ms. The

profile data included well A and well B, and target layers T1 to T2.

Well B contained gas wells, which were drilled into the gas layer as

shown by the location of red ring (Figure 8.); well A was not drilled

into the gas layer. The structural difference between these two wells

was small, with similar seismic characteristics; these conditions

greatly complicate the prediction of gas-bearing strata.

Test and calculate the actual seismic data profile. The EMD

algorithm separates the relatively high-frequency data from the

relatively low-frequency data. Figure 9A shows the high-frequency

components. It can be seen that the data phase axis is relatively fine,

and the signal scale is small; Figure 9B shows the relatively low-

frequency components. It can be seen that the signal scale is relatively

large, mainly including the low-frequency components of the signal.

TKEO calculation is carried out to improve the instantaneity of the

signal. The high-frequency results are shown in Figure 9C, and the

low-frequency results are shown in Figure 9D. It shows that the

instantaneity of the signal is enhanced after TKEO calculation, and

the difference between high and low frequencies is obvious, which is

the subsequent cepstrum coefficient.

Based on the above calculation, the cepstral coefficients of the

actual data are calculated. The frame time window is selected as

16, and the number of coefficients is chosen as 3 to obtain the

corresponding results. Figure 10A shows the calculation result of

the high frequency component, while Figure 10B shows the

calculation result of the section. These results show that in

target layer T1, without gas well A, the high frequency

cepstrum coefficient was strong. The low frequency cepstrum

coefficient showed weak characteristics, meanwhile, and target

layer T1 showed a weak response. Well B showed a strong high

FIGURE 8
Seismic section.

FIGURE 9
(A):IMF1 component, (B): Residual component, (C): TKEO of
a, (D): TKEO of b.
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frequency cepstrum coefficient and a weak low frequency

cepstrum coefficient at both the T1 and T2 target layers. The

gas-bearing indication showed a strong high frequency cepstrum

coefficient and a weak low frequency cepstrum coefficient,

consistent with the overall gas-bearing distribution; this

further confirms the effectiveness of the proposed method.

At the same time, the SCWT method was used to extract

high frequency sections (45 Hz), such as Figure 11A, and low

frequency (15 Hz) sections, such as Figure 11B. The high and

low frequency profiles show similar features to the results

obtained using the proposed method, but the accuracy was

relatively low. Especially in target layer T2, the gas content of

well b was not shown, and the comparison showed the

rationality and accuracy of the proposed method.

Conclusion

We proposed a novel hydrocarbon detection approach using

EMD-TKEO and cepstrum, termed EMD-TKE-Cepstrum. In this

method, EMD adaptively decomposes the signal into the first

component and the residual, representing the high and low

frequency components, respectively. The TKEO, meanwhile,

can directly enhance the instantaneousness of the component

signal by focusing on its instantaneous characteristics. The

cepstrum calculation then converts the signal into the cepstrum

domain to improve the sensitivity of the signal-to-gas content. The

cepstral coefficient transformation rate (slope) was here

innovatively used as the cepstral coefficient to characterize the

different characteristics of the gas content in high and low

frequency components. This method is based on low-frequency

shadow technology, which has higher focusing and clarity; it can

highlight differences between high and low frequencies in gas-

bearing areas while also improving the prediction accuracy. Here,

model and field examples were used to validate the proposed

method, with these results showing EMD-TKE-Cepstrum’s

potential as a reservoir depiction tool for highlighting

anomalies associated with hydrocarbons.
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