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The Eocene is the initial stage of the Cenozoic global cooling. Compared with the abundant
marine records, the continental records of Eocene are scarce. Throughout the Eocene, a
series of continuous deposition of gypsum and volcanic tuff-bearing red clastic sediments
have developed in the Nangqian Basin (NB). In this work, representative sediments were
collected from the NB, and lipid biomarkers and compound-specific carbon isotopes of
n-alkanes were analyzed. Based on the robust paleomagnetic age–depth model, from the
early to the late Eocene, the compound-specific carbon isotopic compositions (δ13C23 and
δ13C25) increased with the sedimentary facies changed. At the same time, the relative
proportion of mid-chain length to the long-chain length homologs (Paq) decreased, and
the peak carbon number (Cmax) shifted from nC21, nC22 or nC23 to nC16, nC25, nC27, or
nC31. We ascribed these variations to the climate drying and water level turning high as
indicated by the lithology change from fluvial to lacustrine facies and the terrestrial inputs
from neighboring mountain belts in the middle–late Eocene. Moreover, we compared our
n-alkane results with other records from the TP and the global sea level and marine benthic
δ18O. We found that a nearly synchronous deformation and drying of the eastern TP
caused by the India–Asia collision in the early Eocene was closely related to the arid
conditions and topographically changed in the northern TP. The climate variations in the
Eocene in the NB were mainly controlled by the global climate change and the uplift of the
TP and affected by the Paratethys Sea on a long scale.
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INTRODUCTION

The Eocene, which is the initial stage of the Cenozoic global climate from a “greenhouse” state to an
Oligocene “icehouse” state, is considered as a “doubthouse” of global climate conditions (Zachos
et al., 2008; Westerhold et al., 2020). Most of the continuous long-scale records for the Eocene
paleoclimate are from ocean boreholes (Ogg and Bardot, 2001; Florindo and Roberts, 2005;
Suganuma and Ogg, 2006; Edgar et al., 2010) and marine outcrops (Dallanave et al., 2009;
Hollis et al., 2013; Agnini et al., 2016). In comparison with various marine records, the climate
change from the evidence of lacustrine records during the Eocene, especially in the Tibetan Plateau
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(TP), is little known. Recently, various geochemical records from
the TP have been reported. In the northeastern TP, the Eocene
strata and related paleoclimate of the Xining (Dai et al., 2006;
Fang et al., 2019), Linxia (Feng et al., 2021; Feng et al., 2022), and
Qaidam basins (Fang et al., 2019; Wu et al., 2021) have been
reported. Based on these paleoenvironmental records, several
mechanisms were formulated to interpret the environmental
changes (Bosboom et al., 2011; Bosboom et al., 2014; Ding
et al., 2014; Kaya et al., 2018; Westerhold et al., 2020).
Furthermore, the Cenozoic sedimentary basins, especially the
basin in the eastern Qiangtang Terrane, can provide an excellent
record of the early India–Asia collision history during the
Paleogene (Tang et al., 2017; Li et al., 2019; Li et al., 2020a;
Xiong et al., 2020).

The Nangqian Basin (NB) (~32–33oN, ~96oE), in the
eastern TP currently, contains a long and continuous
sequence of the Eocene sediments (Horton et al., 2002; Li
et al., 2019; Zhang et al., 2020). Most importantly, the NB is the
intersection of the East Asian Monsoon (EAM), the Indian
Monsoon (IM), and the westerlies but also the junction of the
humid monsoon region in Eastern China, the arid inland
region in Northwest China, and the alpine region of the TP,
which is very sensitive to the changes of the environment and
climate (Horton et al., 2002; Li et al., 2019). The early Cenozoic
successions of gypsum and volcanic tuff-bearing red clastic
sediments in the NB provide precious climatic and
environmental archives (QBGMR, 1991; Horton et al., 2002;
Zhang et al., 2020). Many works on the Cenozoic
paleoenvironment and paleoclimate of the TP have been
carried out in the NB, including the lithofacies, evaporate
minerals, magnetostratigraphy, pollen-spores, clay minerals,
major and trace elements, clumped isotope, carbonate oxygen,
and carbon isotopes, which suggest that, with the rising
altitude, the climate gradually became arid and cold in the
eastern TP during the Eocene (Du et al., 2017; Yuan et al., 2017;
Li et al., 2019; Fang et al., 2020; Yuan et al., 2020a; Zhang et al.,
2020; Zhao et al., 2020). However, due to the lack of long
sedimentary sequence and robust age constraints, the driving
mechanism of the climate change is not clear.

In addition to the proxies mentioned before, lipid
biomarkers originate from organisms directly, which can
respond to the environment rapidly, and can be preserved
in sediments stably, indicating that they preserved reliable
climate records (Moldowan et al., 2005; Peters et al., 2007; Liu
et al., 2015; He et al., 2020, Wang et al., 2021a, Wang et al.,
2021b). n-Alkanes have high abundance in organisms, which
can be preserved in lacustrine sediments for millions of years,
and their original isotopic signals can also be well preserved
(Chikaraishi and Naraoka, 2003; Aichner et al., 2010;
Castañeda and Schouten, 2011; Sachse et al., 2012; Ouyang
et al., 2015). For example, Liu et al. (2018) used Paq, ACL, and
δD to determine the source of sedimentary n-alkanes and
study the degree of water mass restriction (open or closed) of
an ancient lake basin. Rao et al. (2016) demonstrated a
complex relationship between the isotopic composition of
precipitation and the precipitation amount or East Asian
summer monsoon intensity by applying the compound-

specific carbon and hydrogen isotopes of terrestrial long-
chain n-alkanes. Lin et al. (2020) applied detrital zircon
U–Pb geochronology and leaf wax n-alkane δD to analyze
the surface uplift history of the Hoh Xil Basin. The n-alkanes
and the corresponding compound-specific isotopic
compositions display the application of reconstructing the
paleoclimate and paleotopography in lacustrine sediments in
the TP.

In the present study, the age–depth framework of the NB has
been constrained by high-resolution palaeogeomagnetic records
with absolute ages (Horton et al., 2002; Spurlin et al., 2005; Zhang
et al., 2020). We applied the lipid biomarker (n-alkanes) and the
corresponding compound-specific carbon isotopic compositions
to reflect the variations of organic matter sources and their
corresponding paleoclimate conditions. Moreover, we
compared our results with other records from the TP during
the Eocene to discuss the possible driving mechanisms from the
perspective of biological variations.

GEOGRAPHIC AND STRATIGRAPHIC
SETTING

Geological Setting
The current NB, located on the border between the Qinghai
Province and the Tibet Autonomous Region, is about
4,500–5,000 m (Figure 1A). The India–Asia collision formed
north-eastward extrusion, which facilitated a series of
contraction deformation and strike-slip faults in the eastern
Tibet, including the Yushu–Nangqian thrust belt and the
Jinshajiang strike-slip fault system (Hou et al., 2003; Yin and
Harrison, 2003; Spurlin et al., 2005). The NB is one of the series of
narrow, elongated Paleogene basins in the Yushu–Nangqian
region between the Songpan–Ganzi and Qiangtang terranes
(Figures 1B,C). It is ~80 km long in the south–north direction
and ~15 km wide in the east–west direction (QBGMR, 1991;
Horton et al., 2002; Yuan et al., 2020).

The NB is characterized by a continental seasonal monsoon
climate today and impacted by the Asian Monsoon (mainly the
Indian Monsoon) (Li et al., 2019). The average annual
temperature is 4.1°C, and the average annual precipitation is
538.1 mm, based on the observation from the nearest
meteorological station from 1961 to 2013 (Hou et al., 2003;
Wang et al., 2012; Wei and Han, 2015). The modern soils of
the surrounding mountains and the basin surface are dark brown
soils and steppe soils, respectively (CAS-TPET, 1985; Xiong and
Li, 1990).

The Paleogene strata in the NB are characterized by prominent
red beds, which contain limestone/marlite, gypsum, volcanic
rock, and tuff (Horton et al., 2002; Li et al., 2019). The
Neogene—Quaternary only appears sporadically in or near
Paleogene basins along the Jinshajiang suture belt and is
dominated by light-colored (yellow–green–gray) fluvial-
dominated sediments with coals (QBGMR, 1991; Horton et al.,
2002; Yuan et al., 2020a). A clear regional unconformity exists
between the Paleogene and the Neogene—Quaternary (QBGMR,
1991; Horton et al., 2002; Zhang et al., 2020).
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Chronology
The NB contains three parts of the Paleogene deposits
(QBGMR, 1991; Horton et al., 2002). Zhang et al. (2020)
provided well-dated palaeogeomagnetic age of the section
and the absolute age was tested using the method of zircon
U–Pb dating. The lower section is dominated by brownish-red
fine conglomerates, sandstones, and siltstones–mudstones, with
a depth of 1,050–690 m and age of 52.5–48.0 Ma. Reddish luvic
paleosols cover fine sandstone and siltstone–mudstone, with
thin limestones occasionally observed (QBGMR, 1991; Horton
et al., 2002; Zhang et al., 2020). A 20 m-thick andesite with an
Ar–Ar age of 51.2 ± 0.2 Ma appears near the basement (Horton
et al., 2002; Spurlin et al., 2005). The middle part is mainly
composed of marl and limestones intercalated with reddish
siltstone–mudstone, with a depth of 690–400 m and age of
48.0–43.3 Ma (Horton et al., 2002; Spurlin et al., 2005; Zhang
et al., 2020). The upper part is mainly purplish-red gypsum
mudstone, intercalated with a large number of thin siltstone and
gypsum layers and occasionally with thin dolomite layers
(QBGMR, 1991; Horton et al., 2002). The depth of the upper
part is 400–0 m and the age of that is 43.3–35 Ma (Zhang et al.,
2020). Volcanic tuff rocks were found in this part, with an
Ar–Ar age of 38.2 ± 0.1 Ma (Horton et al., 2002; Spurlin et al.,
2005) and a zircon U–Pb age of 37.3 ± 0.56 Ma (Zhang et al.,
2020). The lithological change is interpreted as a gradual
transition drought from a braided river, alluvial fan, and
ephemeral shallow pond/lake environment to a semi-brackish
lake in a distal floodplain and finally to playa mudflat and saline
lake environments (Figure 2B).

SAMPLING AND METHODS

The Nangqian section is located along the Zhaqu River with a
total thickness of 1050 m (Figure 1). According to lithology, a
total of 67 bulk samples were selected. The 67 sediment samples
were collected from 52.5 to 35 Ma in a depth interval from 0 to
1,050 m. Before collecting samples, the weathering denudation
surface was knocked out with a geological hammer. Then, fresh
samples were obtained and put into degreasing cloth bags for
storage.

Biomarker Analyses
In this study, 22 samples were tested for biomarker analyses
(Supplementary Table S1). The 22 samples are divided into
two sections. There are 12 samples in the lower section (age
51.8–46.4 Ma) and 10 samples in the upper section (age
42.3–35.5 Ma).

The extraction process of biomarkers is as follows: the bulk
samples were extensively cleaned to remove any possible
contamination from recent organic material and crushed to
fine powder larger than 100 mesh. Powdered samples (~400 g)
were weighed into pre-extracted filter paper thimbles (the filter
paper was extracted using a Soxhlet extractor with DCM for 72 h
previously) and Soxhlet extracted at 50°C continuously for 72 h
using a Soxhlet extractor (DCM:MeOH = 9:1, v:v). The glassware
used in this experiment, such as injection bottle, weighing bottle,
and conical bottle, had been washed with acetone, rinsed with
clean water and ultrapure water, dried in an oven, sealed with
clean tinfoil, and then, burned (400°C for 5 h) in a muffle furnace

FIGURE 1 | (A) Location and (C) geological map of the Nangqian Basin and (B) neighboring basins in the eastern Tibetan Plateau. Both (B,C) are modified from the
work of Horton et al. (2002).
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previously. Tweezers and other tools were washed with DCM
2–3 times before used.

Total lipid extracts were loaded onto a solid phase extraction
column (ANPEL, silica gel 500 mg). The n-alkanes were eluted
with n-hexane (5–10 ml). After drying n-alkanes, 1 μL of the
sample in hexane was injected into a GC–MS-QP2020NX
(Shimadzus, Japan). This instrument was equipped with an
Rtx-5 MS gas chromatograph which was fitted with a 30 m ×
0.25 mm i. d. fused silica capillary column, coated with a film
(0.25 μm) of 5% phenyl-methyl-DB-5. The carrier gas was
99.995% high purity helium, and the control mode was linear
velocity. The heating program was set as follows: initially at 80°C
for 2 min, rapidly increased to 210°C at a rate of 4°C/min, then
increased from 210 to 295°C at a rate of 3°C/min, and held at
295°C for 20 min. The column flow rate was 1.0 ml/min, and the
injection volume was 1 μL. The diversion mode showed no
diversion. The MS was operated with ionization energy of
70 eV, and the temperature of ion source was 250°C. The

GC–MS was tuned using perfluorotributylamine (PFTBA) and
blank samples were analyzed to check the background. The
interface temperature of GC–MS was 300°C. The solvent delay
was set to 2 min. Both GC–MS scan and GC–MS single ion
monitoring mode (SIM) were used for acquisition.

Compound-Specific δ13C Analyses
According to the preliminary results of 22 biomarkers, 23 samples
were selected for the test of compound-specific carbon isotopic
compositions (Supplementary Table S1). There were 12 samples
in the lower section and 11 samples in the upper section. The
extraction process of n-alkanes for compound-specific carbon
isotopic compositions was the same as that described in
Biomarker Analyses.

The test of carbon isotopic values of individual n-alkanes was
finished on a GC (Agilent 6,890) coupled to an isotope ratio mass
spectrometer (IRMS, Thermo Scientific MAT 253) via a
combustion interface (GC Combustion Ⅲ) (Key Laboratory of
Petroleum Resources Research, Chinese Academy of Sciences).
High-purity helium was used as a carrier gas at 2 ml min−1. The
gas chromatograph was fitted with a 30 m × 0.32 mm i. d. fused
silica capillary column, coated with a film (0.25 μm). The oven
temperature was programmed to be initially held at 80°C for
3 min, increased to 300°C at a rate of 3°C/min, and held for
another 30 min. Individual compounds were oxidized at 940°C
when flowing through an oxidation ceramic micro-reactor filled
with twisted wires (NiO/CuO/Pt). Three pulses of standard pure
CO2 gas, pre-calibrated against a commercial reference CO2, were
injected via the GC-C III interface to the IRMS for the
computation of δ13C values of sample compounds. A set of
n-alkanes (n-alkane mixture type A7) with known δ13C values
acquired from Indiana University were measured daily to ensure
the accuracy of the machine. The standard deviation for duplicate
analyses of this standard was <± 0.3‰. The δ13C values were
reported with reference to the PDB standard. The resolution of
hydrocarbon peaks obtained during GC–IRMSwas similar to that
obtained in GC–MS analysis.

Calculation of Biomarker Proxies
As for the biomarker proxies, the index of proportion of aquatic
plants (Paq, Ficken et al., 2000) values was calculated as follows:

Paq � (nC23 + nC25)/(nC23 + nC25 + nC29 + nC31).
The carbon preference index (CPI) values of the extracted

long-chain n-alkanes (nC26 to nC34) were calculated using a
modified formula of Cranwell (1984) and Ratnayake et al.
(2006) as follows:

CPI � 1/2[ (nC27 + nC29 + nC31 + nC33)/(nC26 + nC28 + nC30 + nC32)
+(nC27 + nC29 + nC31 + nC33)/(nC28 + nC30 + nC32 + nC34)].

The average chain length (ACL) values were calculated using a
modified formula of Poynter et al. (1989) as follows:

ACL27−33 � (27 × nC27 + 29 × nC29 + 31 × nC31 + 33 × nC33)/
× (nC27 + nC29 + nC31 + nC33).

FIGURE 2 | Lithofacies (A) and sedimentary facies (B) of the Paleogene
sedimentary sequence in the NB. The magnetostratigraphy (C–E) is modified
from the work of Zhang et al. (2020). The Ar–Ar and U–Pb ages are from the
work of Horton et al. (2002), Spurlin et al. (2005), and Zhang et al. (2020).
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RESULTS

The distribution patterns of n-alkanes in the NB sediments are
shown in Figure 3. The distribution of n-alkanes in the 12
samples of the lower section is mainly unimodal and
maximized at nC21, nC22, or nC23. The distribution of

n-alkanes in the other 10 samples of the upper section is
mainly bimodal and mainly maximized at nC16, nC25, nC27,
or nC31.

The Paq and CPI values of the two sections changed
significantly (Figures 4B,D). In the lower section, the Paq
values were between 0.72 and 0.92, with an average of 0.82. In

FIGURE 3 | Distribution patterns of n-alkanes in the NB.

FIGURE 4 |Climate and environmental proxy records of ACL (A), Paq (B), Cmax (C), CPI (D) proxies, and compound-specific carbon isotopic compositions of nC23

and nC25 (E,F) in the NB. LOESS Fit (0.5 span for a, b, and d, 0.4 span for e and 0.55 span for (F). The green and yellow shaded areas mark the lower section and the
upper section.
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the upper section, the Paq values were between 0.26 and 0.68, and
the average value was 0.47. Meanwhile, the average value of CPI
increased from the lower section to the upper section, with an
average of 1.90 to an average of 2.90.

In Figures 4E,F, compound-specific carbon isotopic
compositions (δ13C23 and δ13C25) were heavier in the upper
section than those in the lower section. From the lower to the
upper section, the average of δ13C23 changed from −34.69‰ to
−30.79‰, and δ13C25 showed a similar increase from an average
of −33.26‰ to an average of −28.16‰.

DISCUSSION

Degradation Degree of n-Alkanes in the
Nangqian Basin
For n-alkanes, their typical odd-to-even preference in the long-
chain part suggests a low degree of degradation (Luo et al., 2012;
Duan et al., 2020). In sediments, CPI >1 means a predominance
of odd over even chain lengths (Eglinton and Hamilton, 1967).
Sediments from the upper section of the NB are characterized
with CPI >1, except for the top three samples (age of 35.5, 35.9,
and 37.0 Ma), indicating a low degree of degradation. In the lower
section, although the CPI >1 was not remarkable, the odd-to-even
preference is still observed in the low proportion of the long-
chain n-alkanes (according to the distribution patterns in
Figure 3). Combined with the analysis of organic sources
reflected by the distribution patterns of n-alkanes, the low CPI
values in the lower section was the result of the small input of
terrestrial plants, which made the odd-to-even preference in the
long-chain n-alkanes difficult to observe. Therefore, it can be
concluded that the degradation of n-alkanes in this study would
not affect the restoration of paleoenvironment.

Variations in Biomarker Proxies and δ13Calk
Previous studies have shown that the mid-chain length n-alkanes
are mainly from aquatic plants, such as submerged and floating
plants (Meyers and Ishiwatari, 1993; Ficken et al., 2000; Yu et al.,
2021). However, the contribution of terrestrial plants to the mid-
chain n-alkanes is inevitable, especially in the upper section
(Figure 3). Nevertheless, the carbon source of terrestrial plants
is atmospheric CO2 and that of aquatic organisms is HCO3

−

(Meyers and Ishiwatari, 1993; Meyers, 2003; Wang et al., 2013),
possibly resulting in the different composition of δ13C values. The
δ13C value of HCO3

− is heavier than that of atmospheric CO2,
leading to more negative δ13C values of terrestrial plants,
indicating that if the δ13C value of mid-chain n-alkanes (nC23

and nC25) was seriously influenced by terrestrial plants, more
negative δ13C values were likely to be observed in the upper
section. However, the δ13C value of mid-chain n-alkanes (nC23

and nC25) increased in the upper section, displaying an opposite
trend, which indicates that the influence of terrestrial plants on
the compound-specific carbon isotopic compositions of the mid-
chain n-alkanes was limited. Therefore, in this study, we proposed
that the nC23 and nC25 were contributed by the aquatic plants.

Jiang et al. (2021) investigated the δ13Corg values of surface
sediment samples from 55 lakes in the mid-latitude Asia to

establish the relationship between the δ13C value of aquatic
organisms and water depth in lacustrine settings. In freshwater
and brackish lakes, δ13Corg variation resembles an arched pattern
with depth, with relatively positive δ13Corg values corresponding
to the depth of ~1–10 m. According to the sedimentary facies in
the NB (Figure 2B), it transited from the braided river, alluvial
fan, and ephemeral shallow pond/lake environment to a semi-
brackish lake in a distal floodplain predominates, suggesting that
the lake level in the NB in the mid–late Eocene was higher than
that in the early Eocene. The lake water level recorded by δ13C23

and δ13C25 is consistent with the variations of sedimentary facies
(Figures 4E,F), showing a relative higher water level in the
mid–late Eocene.

In addition, n-alkanes can truly reflect the input
characteristics of parent material sources (Meyers, 2003).
Ficken et al. (2000) proposed the Paq index to indicate the
non-emergent (submerged and floating-leaved) aquatic plants
input to lake sediments relative to that from the emergent
aquatic and terrestrial plants, which expresses the relative
proportion of mid-chain length (nC23, nC25) n-alkanes to
long-chain length (nC29, nC31) homologs. Further studies
have indicated that the Paq value can be used to represent
the effective moisture and water level, and basically, the larger
the Paq, the more hydrocarbon input from aquatic organisms,
the more precipitation and the wetter climate (Nichols et al.,
2006; Pu et al., 2011; Zheng et al., 2007). In the Linggo Lake, the
high Paq with the heavy δDalk implied abundant precipitation
brought by the westerlies, indicating that the Linggo Lake was at
a high water level under a humid environment (Hou et al.,
2003). In the present study, the average value of Paq decreased
from 0.82 (ranging from 0.72 to 0.92) to 0.47 (ranging from 0.26
to 0.68) (Figure 4B). The decrease of Paq in the NB is contrary
to the high water level as recorded by sedimentary facies and
compound-specific carbon isotopic compositions, which
implied that the Paq values were affected by other factors
(Liu et al., 2015).

Judging from the provenance analysis of sediments in the NB
(Zhang et al., 2019), the initially accumulated sediments of the NB
has changed from relatively small internal drainage networks and
short main-stem rivers in this region in the Paleocene to the
nearby thrust belts in the Eocene (Horton et al., 2002; Spurlin
et al., 2005). Based on the stable and clumped isotopic evidence of
carbonates, the NB was 2.7 (+0.6/−0.4) km in elevation while the
hypsometric mean elevation of surrounding mountains was 3.0 ±
1.1 km above sea level during the late Eocene (Li et al., 2020b). In
addition, palynology records indicated that the high-elevation
genus Tsugaepollenites presented in the Ria Zhong section in the
NB in the late Eocene (Yuan et al., 2020a; Yuan et al., 2020b). In
addition, the crustal deformation and thickening induced by
intracontinental subduction between the Lhasa and Qiangtang
terranes caused a rapid uplift of the CentralWatershedMountain,
associated with the regional climate change transforming the
landscape from desert to forest in the Gonjo Basin (Xiong et al.,
2020). In view of the previous studies, the specific tectonic settings
can further explain this topographic difference in the NB. Spurlin
et al. (2005) proposed that a nearly 40% upper-crustal shortening,
occurring in the early Cenozoic, was observed over the area,
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which accounted for most of the surface uplift of the Nangqian
region. Horton et al. (2002) proposed that the fold-thrust belts
were the consequence of contraction triggered by the India–Asia
collision. Based on the previous studies, in the mid—late Eocene,
the Nangqian region appeared as small intermontane sub-basins
and received plentiful terrestrial sediments from the neighboring
mountain belts. The Paq, ACL, and Cmax contain the common
information of terrestrial plants from nearby mountains and
aquatic plants from the playa lake/mudflat, so the water level
was no longer the sole factor affecting Paq. This explained why
Paq values showed the opposite result of sedimentary facies when
interpreting the water level.

Evaporite minerals are also sensitive to environmental and
climatic changes (Warren, 2000, 2006; Meister et al., 2011; Zhu
et al., 2021; Zhang et al., 2021; Zhang et al., 2022). In the
mid—late Eocene, gypsum, a typical evaporite mineral,
indicated a dry climate in the NB, which was absent in the
early Eocene (Yuan et al., 2020b; Zhang et al., 2020). The adjacent
areas, such as the Gonjo Basin, Qaidam Basin, and Tarim Basin,
showed a succession of gypsiferous red beds with an upward
increase in evaporites (Wang et al., 2008; Wang et al., 2016; Tang
et al., 2017; Li et al., 2020a; Xiong et al., 2020), further suggesting
an increasingly arid climate.

To sum up, the climate in the early and mid—late Eocene was
completely different. In the early Eocene, the terrain was generally
low and flat, with a humid climate and low water level. After the
tectonic movements caused by the India–Asia collision, the NB

and surrounding areas appeared as small intermontane sub-
basins, characterized by an arid climate.

Driving Mechanisms of Eocene Climate
Variations in the Eastern Tibetan Plateau
From the early to the late Eocene, the sedimentary facies and the
water level recorded by compound-specific δ13C in the present
study implied a notable climate transition from humid to arid
conditions and a topographical change in the eastern TP.

Previous studies have indicated that three main forcing
mechanisms, including the uplift of the Tibetan Plateau, the
retreat or incursion of the Paratethys Sea, and global cooling,
may be responsible for the change (Bosboom et al., 2011;
Bosboom et al., 2014; Ding et al., 2014; Kaya et al., 2018;
Westerhold et al., 2020).

The global cooling could be a first-order control in the NB
beyond the impact of the India–Asia collision and the retreat or
incursion of the Paratethys Sea. The global cooling reduced
evaporation from the sea and thus the water vapor flux to the
air (Fang et al., 2019; Westerhold et al., 2020). The rapid global
sea level fall accompanied by the shrinking of the sea area
increased the distance from the study area to the sea, which
reduced the marine-derived water vapor supply (Miller et al.,
2020). Via the modulation of the water vapor supply by the
westerlies, the long-term global cooling in the Eocene reduced the
water vapor supply to the continental and, thus, caused further

FIGURE 5 | Summarized paleoclimatic records of the Eocene in the Tibetan Plateau. (A) sedimentary facies in the Nangqian Basin (this study); (B) red and blue dots
and corresponding fitted curve (0.4 span for nC23 and 0.55 span for nC25) indicating the δ13C of mid-chain alkanes nC23 and nC25 from the Nangqian Basin (this study),
and the δ13C values averaged over the three long-chain alkanes nC27, nC29 and nC31 from the Qaidam Basin (Sun et al., 2020); (C) Tectonic rotational history of the
northeastern central TP, based on mean declination of every 1 Ma stratigraphic interval of the NB (Zhang et al., 2020); (D) the sediment accumulation rates of the
Gonjo Basin (Li et al., 2020); (E) Clay mineral assemblages in the Qaidam Basin and Xining Basin, respectively (Ye et al., 2018; Fang et al., 2019) (3-point running
averages for kaolinite and chlorite); (F) S-ratio for the DHJ section in the Linxia Basin (Feng et al., 2021); (G) the sediment accumulation rates of the Linxia Basin (Feng
et al., 2022); (H) (Smectite + I/S)/illite ratios in the Hongliugou and Xiejia sections in the Qaidam and Xining Basins, respectively (Fang et al., 2019).
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drying in the NB. Furthermore, the good correlation between the
water level and climate in the NB, the northeastern TP, and the
global climate proxies implied that the global climate system
served as the main driver of climate variations in the study area
(Westerhold et al., 2020; Figure 5H, Figure 6A–D).

Exploring the past topography is essential for disentangling
the complex interactions between orography and climate (Fang
et al., 2019; Xiong at el., 2020; Wu et al., 2021). Our records
reflected a significant early Eocene deformation and climate
change in response to the India–Asia collision. From the
paleomagnetic evidence, a counterclockwise rotation of 25.9 ±
7.2° during 52–46 Ma supported the basin deposition, rotation,
and volcanism by northward compression and eastward
extrusion of the eastern Lhasa and Qiangtang Blocks as early
response to the India–Asia collision (Figure 5C). During
~52–48 Ma, a relatively high sedimentation rate in the Gonjo
Basin suggested an active tectonic setting in the eastern TP, which
coincided with the clockwise rotation (Figure 5D, Li et al.,
2020b). Interestingly, a relatively low sedimentation rate
appeared in the Gonjo Basin at ~48–41 Ma, which coexisted
with a rapid sedimentation rate decrease in the Linxia Basin at
~47–40 Ma (Figure 5G). The paleomagnetic results in the Xining
Basin revealed a stable tectonic setting with no significant rotation
at ~48–41 Ma (Dupont-Nivet et al., 2008). In addition, an arid
environment appeared at ~49.5–47 Ma in the Qaidam Basin and
Xining Basin recorded by palygorskite, kaolinite, and chlorite
(Figure 5E, Ye et al., 2018; Fang et al., 2019) and at 47.6 Ma in the
Linxia Basin recorded by the S-ratio (Figure 5F, Feng et al., 2021),

which coincided with arid climate conditions recorded by
transitions of sedimentary facies in the NB (Figure 5A),
suggesting a nearly synchronous deformation and climate
change across the eastern and northern Tibetan Plateau in the
early Eocene. These analyses show that the India–Asia collision
could be the most direct factor of climate change in the NB, and
the eastern TP.

A vast shallow epicontinental sea extended across Eurasia and
was well-connected to the Western Tethys before it retreated
westward and became isolated as the Paratethys Sea during the
Paleogene (Bosboom et al., 2014). It regulated the hydrological
cycle in Central Asia by the westerlies, so the westward retreat of
this sea was as important as the Tibetan Plateau uplift in forcing
aridification in the Asian continental interior (Dupont-Nivet
et al., 2007). Previous studies on the Tarim and Tajik basins
indicate that there were three sea-level cycles during 52–35 Ma
(Figure 6E) (Bosboom et al., 2014; Kaya et al., 2018). However,
due to the lack of data in our section between 46 and 43 Ma, it is
difficult to assess the impact of Paratethys Sea on the aridity of the
eastern TP. For all that, the influence of Paratethys Sea would be
long-term and gradual, and the stepwise sea retreat from Central
Asia amplified the aridification of the Asian interior (Bosboom
et al., 2014; Carrapa et al., 2015; Sun et al., 2016; Kaya et al., 2018).
From Figure 2A, the trend of gradual drought in the NB has been
well recorded by the lithology change. Although the retreat or
incursion of the Paratethys Sea failed to compare with the organic
records in NB, it is still an important factor worthy of further
research.

FIGURE 6 | (A) Sedimentary facies in the Nangqian Basin (this study); (B) red and blue dots and the corresponding fitted curve indicating the δ13C of mid-chain
alkanes nC23 and nC25 from the Nangqian Basin (this study); (C) global sea level curve (Miller et al., 2020); (D)marine benthic oxygen isotopic compositions (Westerhold
et al., 2020); (E) sea level of the Paratethys Sea (Bosboom et al., 2014).
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In general, our observations recorded a significant change in
sedimentary facies from braided river facies to brackish lake facies
in the early-mid Eocene in the eastern TP. At the same time, the
compound-specific carbon isotopic compositions of n-alkane
(δ13C23 and δ13C25) recorded the rise of the lake level. In the
mid–late Eocene in the NB, the terrestrial input in the sediments
increased, which corresponded to the climate drying and
topographic change at this time. In comparison with three
main driving mechanisms, our records were consistent with
global climate changes, related closely with the India–Asia
collision in the early Eocene, and the relevance with
Paratethys Sea needs further study. We claim that the climate
variations in the Eocene in the study area were mainly controlled
by the global climate change and the uplift of the Tibetan Plateau,
but the impact of the Tethys Sea cannot be ignored.

CONCLUSION

We applied the n-alkanes and the compound-specific carbon
isotopic compositions in the NB to reflect the paleoclimate
conditions in the eastern Tibet Plateau. From our multi-proxy
records, we came to the conclusion that the NB underwent
rapid drying from the early to the mid–late Eocene. The
compound-specific carbon isotopic compositions (δ13C23

and δ13C25) were affected by the water level deepening and
showed a rapid positive. From the n-alkene records in the NB,
the type of aquatic organism in the Eocene lacustrine sequence
had an evident change from submerged and floating plants to
emergent and terrestrial plants, responding to climate drying
and orographic uplifting. Meanwhile, the lithofacies changed
from the braided river, alluvial fan, and ephemeral shallow
pond/lake environment to a semi-brackish lake in a distal
floodplain and finally to playa mudflat and saline lake
environments. We regard the change of multi-proxy records
by n-alkenes consistent with the sedimentary facies change and
aridity in the NB and responded synchronously in the
northern TP, which was mainly controlled by the global

cooling and the uplift of the Tibetan Plateau and affected
by the Paratethys Sea on a long scale.
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