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The Huayuan orefield in the SW Yangtze Block (SW China) is a world-class Pb-Zn
orefield, with over 20 million tonnes (Mt) metal reserve. However, the Pb-Zn ore fluid
source and evolution in Huayuan remain controversial. This study determined the
major and trace element compositions of the newly-identified apatite from the Pb-
Zn ores, using electron microprobe analysis (EMPA) and laser ablation inductively
coupled plasma mass spectrometry (LA-ICP-MS). The apatite samples are of
hydrothermal origin, and have high CaO (52.57–57.15 wt%), P2O5 (39.26–42.88 wt
%) and F (1.82–3.90 wt%) but low Cl (< 0.42 wt%) contents. The samples have total
rare Earth element content (ΣREE) of 74.07–1,255.34 ppm, and they all show
negative Eu and weakly positive Ce anomalies. The result suggests that the
apatite was formed in an environment with decreasing oxygen fugacity, and in
relatively F-rich, Cl-poor, and REE-poor ore-forming fluid. We geochemically
compared the apatite from Huayuan with those from different geneses by Fisher
discriminant. The result suggests that the Huayuan apatite is distinct from typical
magmatic and purely hydrothermal apatite, and that the ore-forming fluidsmay have
had multiple sources. The mixing of fluids with different origins may have triggered
significant metal ore deposition.

KEYWORDS

apatite, major elements, trace elements, fluid evolution, Fisher discriminant

1 Introduction

The Huayuan orefield, containing approximately 300 Pb-Zn deposits with over 20 million
tonnes (Mt) of Pb-Zn reserve (Zhao et al., 2016; Li, 2018), is a world-class carbonate-hosted Pb-
Zn orefield (Shu, 1983; Xie, 1983; Zhou et al., 1983; Sun et al., 1985; Peng, 1986;Wei et al., 2017).
The Huayuan Pb-Zn deposits have simple ore mineralogy, and are characterized by large
tonnage low-grade ores (avg. 4% Pb + Zn) (Wei et al., 2020). The ores are hosted by the Lower
Cambrian Qingxudong Fm. (LCQF) carbonate rocks, and the ore-forming fluids have low-
medium temperature (140°C–220°C) and medium-high salinity (11.0–19.0 wt% NaCleqv) (Liu
and Zheng, 1999; Cai et al., 2014; Duan et al., 2014; Wei et al., 2017). Bitumen and methane are
found in fluid inclusions (Liu et al., 1999; Zhou et al., 2014), and the dominant mineralization is
interpreted to be thermochemical sulfate reduction (TSR) related (Zhou et al., 2014; Wei et al.,
2017). The basement clastic rocks are considered as the primary metal source (Yang et al., 2022;
Zhang et al., 2022).
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In terms of the ore-fluid origin, some authors proposed a
formation water source (Zhou et al., 2014; 2017), whereas some
others preferred a deeper origin (Wei et al., 2017; Wu et al., 2021).
Hydrothermal apatite, a resistate accessory mineral suitable for
geochemical and geochronological analyses (Hassan et al., 1977;
Kordian et al., 2020; Wang et al., 2022), could provide new clues
for the fluid source(s) and evolution (McClellan and Van
Kauwenbergh, 1990; Ayers and Watson, 1993; Prokopyev et al.,
2017; Hu et al., 2019). In recent years, in situ microanalysis on
accessory minerals (incl. apatite) is increasingly used to determine
the evolution of magmatic-hydrothermal activity and the
mineralization age (Barfod et al., 2005; Edfelt et al., 2005; Deng
et al., 2015; Kusebauch et al., 2015; Pan et al., 2016; Xu et al.,
2019). In this study, we have newly discovered apatite from the
Huayuan Pb-Zn orefield, and have analyzed their geochemical

compositions (via EMPA and LA-ICP-MS) to trace the ore-
material source(s) and the hydrothermal evolution. We also
compared our data with an apatite database. The Fisher
discrimination analysis was also conducted to classify the genetic
type of apatite from Huayuan.

2 Regional geology

The Yangtze Block is bounded by the Qinling, Sanjiang,
Songpan–Ganze, and Cathaysia terranes/fold-belts to the north,
west, northwest, and southwest, respectively (Figures 1A, B). It
comprises a late Paleoproterozoic-early Neoproterozoic crystalline
basement of meta-sandstone/-siltstone and silty slate, covered by
Upper Ediacaran to Quaternary sedimentary sequences (Metcalfe,

FIGURE 1
(A) Regional tectonic map of the western Hunan-eastern Guizhou Pb-Zn metallogenic belt (modified after Zhou et al., 2013; Wu et al., 2021); (B)
Geotectonic map of the Huayuan Pb-Zn orefield in the Upper Yangtze Block (modified after Wu et al., 2021). (C) Geologic map of the Western Hunan Pb-Zn
metallogenic belt in South China (modified after Wu et al., 2021; Yang and Lao, 2007) showing the distribution of Pb-Zn deposits, structures, and strata.
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2006; Hu et al., 2022). Regional magmatismwasminor and largely ore-
unrelated (Yang and Lao, 2007; Duan et al., 2014). The Yangtze Block
has undergone multiple tectonic events (Metcalfe, 2006; Charvet,
2013): 1) 850 to 820 Ma: the Yangtze Block and Cathaysia Block
were amalgamated along the Jiangnan suture (e.g., Zhao et al., 2011);
2) after ~820 Ma, Neoproterozoic to Ordovician deep-water
sedimentary rocks were deposited in central South China along a
failed Neoproterozoic intracontinental rift (i.e., the Nanhua rift) (e.g.,
Wang and Li, 2003). During the intracontinental Wuyi-Yunkai
orogeny (490–410 Ma), the Nanhua rift had evolved into a foreland
basin (Yao and Li, 2016). In the Early Triassic, the South China-North
China collision occurred along the Qingling-Dabie Orogen, and the
Cimmerian continental ribbons (incl. Indochina and Sibumasu) were
accreted onto the southwestern South China margin (e.g., Metcalfe,

2006). The NE-trending Huangyuan–Zhangjiajie regional fault zone
controlled the distribution of Pb-Zn deposits in the
Xiangxi–Qiandong metallogenic belt (XQMB) (Figures 1C;
Figure 2) (Li et al., 2010).

3 Orefield geology

3.1 Stratigraphy

Exposed strata in Huayuan comprises the metamorphosed
basement made of the Banxi Group meta-sandstone/-siltstone and
silty slate, the Upper Ediacaran Dengying Formation (Fm.) cherty
dolostone, and the Lower-Middle Cambrian to Ordovician clastic and

FIGURE 2
(A) Geological map of the Huayuan Pb-Zn orefield (modified after Duan, 2014). (B) Geological profile of the Danaopo Exploration Line No. 53.
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carbonate rocks (Figure 2). The Pb-Zn sulfide ores occur in the reef
zones of carbonate platform facies, particularly the LCQF reef
limestone (Tang et al., 2012). The Qingxudong Formation
comprises a lower member (mainly argillaceous/dolomitic/algal
limestone) and upper member (mainly argillaceous/micritic
dolomite) (e.g., Wu et al., 2021). Magmatic rocks are rarely
distributed in the district.

3.2 Structures

Faults are well developed and controlled the Pb-Zn orebody
distribution in the Huayuan orefield (Figure 2). These faults are
dominantly NE- and NNE-trending, including the Huayuan-
Zhangjiajie (dip angle: 60°–75°), Lianghe-Changle (dip angle:
25°–30°), and the Malichang (dip angle: 40°–60°). Among them, the
Huayuan-Zhangjiajie fault is the main ore-controlling structure.
Open-space structures (incl. Pores, joints, and stylolites) developed
in the carbonate rocks may have served as the ore deposition sites in
the Huayuan Pb-Zn orefield (Fu, 2011).

3.3 Orebodies

Major deposits in the Huayuan orefield include the Danaopo
(4.5 Mt), Qingshuitang (2.9 Mt), Limei (3.0 Mt), and the Yutang
(3.5 Mt). Four types of orebodies were recognized in the orefield
(Figure 3): 1) stratiform replacement type is widespread and accounts
for 80% of the total Pb + Zn reserve (ore grade: 3% Zn + Pb). The
orebodies dip gently to the SE (dip angle: 2°–12°); 2) vein type is strictly
controlled by NE-trending faults (ore grade: >10% Pb + Zn),
distributed mainly in the northern Huayuan orefield with dip angle

of 30°–50°; 3) breccia type is only distributed in the third bed of the
LCQF lower member, and is commonly by high grade (ore grade:
>25% Pb + Zn); iv) lenticular type is distributed in the third-fourth bed
of the LCQF lower member, and is usually multilayered (commonly
three to seven layers; ore grade: 4–10% Pb + Zn).

3.4 Alteration and mineralization paragenesis

The Huayuan Pb-Zn orefield contains both oxide and sulfide ores,
with metallic minerals including mainly sphalerite, galena, and pyrite
(Figure 4), and non-metallic minerals including mainly calcite,
dolomite, barite, and fluorite. Ore textures include vein
(Figure 4A), disseminated (Figure 4E), metasomatic (Figure 5I),
poikilitic (Figures 5A,F,I), and cataclastic (Figure 5I). The alteration
can be divided into the diagenetic, hydrothermal, and supergene
periods (Wu et al., 2021), with the hydrothermal period further
divided into three stages: (early-ore Ⅰ) calcite + dolomite + fluorite
+ pyrite + sphalerite; (main-ore Ⅱ) calcite + dolomite + barite + pyrite
+ sphalerite + galena; and (late-ore Ⅲ) calcite + sphalerite + galena.

3.5 Petrography characteristic of apatite
samples

The apatite samples were collected from recrystallized
limestone in the lower part of LCQF. Pyrite, sphalerite, barite,
and apatite were deposited in the holes formed by dissolution and
recrystallization. Apatite grains are scattered around sphalerite,
and are euhedral hexagonal to anhedral granular, with sizes of
20–60 μm (Figure 5). Some apatite grains contain pyrite and zircon
inclusions (Figures 5F,G,I). Euhedral apatite has a flat smooth

FIGURE 3
Different types of orebodies in the Huayuan Pb-Zn orefield: (A) layered, (B) veined, (C) breccia, and (D) lenticular orebody.
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FIGURE 4
Photos of ore types in the Huayuan Pb-Zn orefield.

FIGURE 5
Back-scattered electron (BSE) photographs of apatite from the Huayuan Pb-Zn orefield: (A) automorphic apatite; (B) hypidiomorphic apatite; (C)
xenomorphic apatite; (D) xenomorphic apatite with flow structure; (E) hypidiomorphic-xenomorphic apatite with numerous fluid inclusions; (F) pyrite
inclusions in apatite; (G) apatite in veins with pyrite; (H) apatite cutting fissures formed by diagenesis; and (I) apatite and pyrite distributed around sphalerite.
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surface and lacks impurities or fluid inclusions. Anhedral apatite
has many fluid inclusions.

4 Sampling and analytical methods

4.1 Sampling

Stage Ⅱ disseminated pyrite-sphalerite ore samples were collected
from the Danaopo deposit (drill-hole ZK53049, 265–229 m depth,
109°28′E, 28°29′N). Eighteen polished thin-sections were prepared and
observed under the optical microscope and SEM to determine themineral
paragenesis. Eight apatite-bearing samples were selected for in-situmajor
and trace element analyses.

4.2 EPMA major and minor element analysis

The analysis was conducted on a JEOL JXA-8230 Electron Probe
Microanalyzer equipped with five wavelength-dispersive spectrometers
(WDS), at the Laboratory of Microscopy and Microanalysis, Wuhan
Microbeam Analysis Technology Co. Ltd. The samples were first carbon-
coated, with the precautions (suggested by Zhang and Yang, 2016) taken
to minimize the difference of carbon film thickness between samples and

obtain a largely uniform (~20 nm thick) coating (Zhang and Yang, 2016).
Details of the EPMA procedures are described in Yang et al. (2022).
Operating conditions for quantitative WDS analyses include 15 kV
accelerating voltage, 5 nA beam current, and 5 µm spot size. Data
were corrected online using the ZAF (atomic number, absorption,
fluorescence) correction procedure. The peak counting time is 10 s for
Ca, S, P, Cl. F, Si, Sr, Mg, Na, Zn, Cu, Fe and 20 s for Mn and Ti. The
background counting time is half of the peak counting time on the high-
and low-energy background positions. The following standards were
used: Apatite (P, Ca), Barium fluoride (F), Halite (Cl), Pyrite (S),
Olivine (Si), Jadeite (Na), Pyrope garnet (Fe), Strontium fluoride (Sr),
Rhodonite (Mn), Rutile (Ti), Cuprum (Cu), Zinc (Zn), and
Diopside (Mg).

4.3 LA-ICP-MS trace element analysis

The analysis was performed at the Key Laboratory of Metallogenic
Prediction of Non-ferrous Metals and Geological Environment
Monitoring (Central South University), Ministry of Education. The
analysis used a Telydyne Cetac HE 193 nm laser ablation system,
coupled with an Analytik Jena PlasmaQuant MS Elite plasma mass
spectrometer. The National Institute of Standards and Technology
(NIST) standard SRM610 was used as the external standard, Ca as the

FIGURE 6
Chondrite-normalized REE patterns of (A) calcite (after Wei et al., 2017); (B) apatite from the Huayuan Pb-Zn orefield.

TABLE 1 Fisher discriminant predictive classification, based on major element concentrations.

Predictive classification

Ture Classification Hydrothermal Magmatic Huayuan Total

Count Hydrothermal 22 8 0 30

Magmatic 115 184 63 362

Huayuan 5 5 46 56

% Hydrothermal 73.3 26.7 0.0 100.0

Magmatic 31.8 50.8 17.4 100.0

Huayuan 8.9 8.9 82.1 100.0
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internal standard, standard GSE-2G as the other standard, and NIST
SRM612 for signal correction during the analyses. The analytical
conditions include 3.5 J/cm2 energy density, 15 µm beam spot size,
5 Hz frequency, 13.5 L/min Ar gas flow, and 1.1 L/min He flow. The
apatite ablation time of 70 s, comprising 20 s background measurement,
30 s sample signal measurement, and 20 s for washing. The instrument
tuning conditions are as follows: NIST SRM 610 206 Pb and 232Th
contents > 600,000 counts; 248ThO/232Th < 3‰; 206 Pb/238U =
.20–.25; 232Th/238U = .95–1.05. The elements measured include Sc,
Ti, Ga, Rb, Sr, Y, Zr, Nb, Mo, Sn, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy,
Ho, Tm, Yb, Lu, Hf, Ta, Pb, Th, and U. The detection limit and analytical
errors are listed in Supplementary Table S2.

4.4 Fisher discriminant analysis

Fisher discriminant analysis is a linear dimensionality reduction
technique that maximizes the separation between several classes
(Duda and Hart, 1973). We performed the Fisher discrimination
on the compiled apatite data in python. A short mathematical
description follows.

Stacking the training data for all classes into a n bymmatrixX and
representing the ith row of X with the column vector xi, the total-
scatter matrix is

St � ∑
n

i�1
xi − xmean( ) xi − xmean( )T , (1)

where xmean is the total mean vector whose elements correspond to the
means of the columns of X. Define Xj as the set of vectors xi which
belong to the class j, the within-scatter matrix for class j is

Sj � ∑
n

xi ∈ Xj

xi − xj,mean( ) xi − xj,mean( )T , (2)

where xj,mean is the mean vector for class j. Let c be the number of
classes, then

SW � ∑
c

i�1
Si , (3)

is the within-class-scatter matrix, and

Sb � ∑
c

j�1
nj xj,mean − xmean( ) xj,mean − xmean( )T , (4)

TABLE 2 Fisher discriminant predictive classification, based on trace element concentrations.

Predictive classification

Ture Classification Hydrothermal Magmatic Huayuan Total

Count Hydrothermal 23 0 0 23

Magmatic 0 94 17 111

Huayuan 0 0 6 6

% Hydrothermal 100.0 0.0 0.0 100.0

Magmatic 0.0 84.7 15.3 100.0

Huayuan 0.0 0.0 100.0 100.0

FIGURE 7
Classification plots based on (A) major element and (B) trace element concentrations.
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is the between-class-scatter matrix where nj is the number of
observations in class j.

The first FDA vector w1 can be determined as

max
w1

wT
1 Sbw1

wT
1 SWw1

. (5)

The second FDA vector is computed so as to maximize the scatter
between classes while minimizing the scatter within classes among all
axes perpendicular to the first FDA vector, and so on for the remaining
FDA vectors. It can be shown mathematically that FDA vectors are
equal to the eigenvectors wk of the generalized eigenvalue problem

Sbwk � λjSWwk , (6)
where the eigenvalues λk indicate the degree of overall separability
among the classes by projecting the data onto wk. With FDA vectors
determined, observations are then classified in this reduced FDA space
using discriminant analysis (Duda and Hart, 1973; Chiang et al., 2000;
2004; Hastie et al., 2009).

5 Analytical results

5.1 Major element composition

The apatite samples have high CaO (52.57–57.15 wt%, mean
54.62 wt%, n = 90), P2O5 (39.26–42.88 wt%, mean 41.18 wt%, n =
90), and F (1.82–3.90 wt%, mean 2.92 wt%, n = 90) concentrations.
The Cl content is low (<.42 wt%, mean .085 wt%, n = 90), with that
of some samples below the detection limit. The Fe content is
.02–.53 wt% (mean .19 wt%, n = 90). The maximum Na2O,
MgO, SiO2, SO3, MnO, and SrO contents are .40 wt%, .74 wt%,
1.3 wt%, .89 wt%, .54 wt%, and .40 wt%, respectively
(Supplementary Table S1).

5.2 Trace element compositions

The apatite samples are characterized by elevated total rare
Earth element concentrations (ΣREE = 74.07–1,255.34 ppm, avg.
388.09 ppm, n = 6). The concentrations of total light and heavy
REEs (LREEs and HREEs) are of 63.06–1,106.44 ppm (avg.
294.80 ppm, n = 6) and 11.01–153.05 ppm (avg. 93.29 ppm, n =
6), respectively. Except for samples DZK114J-4–1 (ΣLREE/
ΣHREE = 5.73) and DZK114J-9–2 (ΣLREE/ΣHREE = 7.43), the
ΣLREE/ΣHREE of the most apatite samples are 1.02–2.23 (avg.
1.62, n = 4) (Supplementary Table S2).

The samples have gentle chondrite-normalized REE patterns
(Figure 6B) and distinct negative EuN anomalies (Eu/Eu* = .40–.72,
avg. .56, n = 6). All samples show weakly positive CeN anomalies
(Ce/Ce* = .92–1.21, avg. 1.08, n = 6) and a narrow Y/Ho range
(10.47–13.53, avg. 12.65, n = 6).

The Huayuan apatite are characterized by high Th
(10.71–46.42 ppm) and U (1.12–74.29 ppm) concentrations.
Except for sample DZK114J-4–1 (Th/U = .14), the Th/U ratio of
most apatite samples is 3.55–24.01 (avg. 10.06, n = 5). The Hf, Zr,
Ta, W, and Nb concentrations are low (albeit above the detection
limits), with maximum values of 1.65 ppm, 3.9 ppm, 10.82 ppm,
7.16 ppm, and 4.28 ppm, respectively.

5.3 Genetic classification of apatite

Fisher discriminant analysis was conducted on the new and
published apatite data, based on seven major and 14 trace elements
(O’Sullivan et al., 2020), to define a discrimination model for the
different types of apatite. Accordingly, 56.3% and 87.9% of the original
classified samples are correctly classified, respectively (Tables 1, 2). In
the Fisher discriminant plot (Figure 7), the horizontal and vertical axes
represent the values of the two canonical discriminant functions. The
plot shows clear clustering of data for apatite from the different origins
(hydrothermal, magmatic, and the Huayuan Pb-Zn orefield).

6 Discussion

6.1 Genesis of apatite

The general chemical formula for apatite is A10(PO4)6Z2, and the
standard chemical formula is Ca5(PO4)3(F, Cl, OH). The A position is
mainly a divalent cation dominated by Ca2+, and the Z position is
usually an anion, such as F−, OH−, or Cl− (Griffin, 2008). The calcium
ions have coordination numbers 7 and 9 (Hughes and Rakovan, 2018):
the former is linked to nine oxygen atoms, whilst the latter is linked to
one Z ion and six oxygen atoms. Various ions, such as Sr2+, Pb2+, Mg2+,
Na+, and Fe2+, can replace the Ca2+ through isomorphism.

Apatite has commonly three major origins, i.e., magmatic,
hydrothermal, and tuff (Sha and Chappell, 1999). The Huayuan
apatite has much lower ΣREE (74–1,255 ppm, mean 388 ppm, n =
6) than that of typical magmatic apatite, but higher than that of apatite
in tuff (Zhu et al., 2004). Therefore, the Huayuan apatite may have had
a hydrothermal fluid source. Some apatite samples have pores, fluid
inclusions, and flow structures. These pores and fluid inclusions are
often aligned perpendicular to the crystal growth surface. These
features are related to the apatite crystallization from hydrothermal
fluids (Chakhmouradian et al., 2017; Zheng et al., 2022). The LREE
concentrations in apatite are lower than those of stage II calcite,
possibly caused by the crystallization of calcite and monazite.
Fractionation of REE-bearing minerals may have scavenged LREEs
from the ore-forming fluids (Henderson, 1984). The Cl content of the
Huayuan apatite is low (max 0.423%, avg. 0.085%), similar to that of
typical hydrothermal apatite but lower than that of typical magmatic
apatite (Cao et al., 2012; Chen et al., 2019). The Huayuan apatite also
has high Mg content (max 0.44%, mean 0.03%, n = 90), which differs
from that of typical magmatic and purely hydrothermal apatite
(O’Sullivan et al., 2020). This may have resulted from the mixing
of Mg-rich meteoric water with the hydrothermal ore fluids. The Mg
was likely leached from the hanging-wall sequences viameteoric water
seepage. Furthermore, the Fisher discriminant classification indicates
that the Huayuan apatite is geochemically different from the apatite
with magmatic or purely hydrothermal source (Figure 7). This also
suggests that fluids from other sources may have involved in the
mineralization, e.g., meteoric water. The Sr/Y ratio of the Huayuan
apatite (3.20) is higher than that of magmatic-sourced apatite (~1.60;
O’Sullivan et al., 2020). Meanwhile, REE concentrations of the
Huayuan apatite also differ from the apatite with clastic origin.
Furthermore, the mudstone wallrocks deposited in carbonate
platform environment lacks clastics, as observed under the
microscope.
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We suggest that our apatite samples have had a hydrothermal
origin, because: 1) they are characterized by weakly negative Eu and
weakly positive Ce anomalies, different from typical magmatic or
sedimentary apatite (Gao et al., 2021); 2) they are slightly enriched in
middle REEs (MREEs) but depleted in both LREEs and HREEs,
similar to typical hydrothermal apatite (Chen et al., 2019); 3) they
have low U concentration, high Th/U ratio, and coexist with ore-
related pyrite; 4) they cut the diagenetic-related fissures; 5) they have
high Mg but low Cl concentrations.

6.2 Characteristics of ore-forming fluids

Halogen compositions also vary among magmatic and hydrothermal
ore-related apatite (Cao et al., 2012): Porphyry Mo-W ore-related apatite
has the highest F content and F/Cl ratio; porphyry W-Mo and Cu-Mo
ore-related apatite has lower F content and F/Cl ratio; skarn Cu and Pb-
Zn ore-related apatite has the lowest F content and F/Cl ratio (Figure 8A).
Due to the high and low solubility of Cl and F in aqueous solution,
respectively (Brehler and Fuge, 1974), apatite associated with crustal melt
is often F-rich and Cl-poor (Wang et al., 2014). The Huayuan apatite has
mostly low F content and low F/Cl ratio (F > 1.8 wt%, Cl < 0.4 wt%),
which are higher than the average values of apatite from the other Pb-Zn
deposit types (Cao et al., 2012). This suggests material input from deep
strata by the ore-forming fluids. Apatite is less susceptible to alteration,
and would inherit the Sr and Y signature in the fluids (Pan et al., 2016).
The Huayuan Pb-Zn ore fluids were interpreted to be water-rich, as
supported by the high apatite Sr/Y ratio (Xing and Shu, 2021). Moreover,
Sr isotopes of the Huayuan Pb-Zn ore fluid are higher than those of the
LCQF limestone but lower than those of the deep strata (Wei et al., 2017),
suggesting that the fluids may have reacted with the deep strata.

The apatite Mn, Eu, and Ce concentrations can indicate the magma
redox state (Drake, 1975; Streck and Dilles, 1998; Sha and Chappell, 1999;
Prowatke and Klemme, 2006; Cao et al., 2012; Miles et al., 2014; Pan et al.,
2016; Xiong et al., 2017; Chen and Zhang, 2018; Xiong Y. et al., 2019; Xing
et al., 2020). This is becauseMn, Eu, and Ce havemainly two valence states,

i.e.,Mn4+ andMn2+, Eu3+ and Eu2+, andCe4+ andCe3+.Mn2+, Eu3+, andCe3+

are more likely to replace Ca2+in apatite (Shannon, 1976; Sha and Chappell,
1999; Belousova et al., 2002). When the fluid is oxidized, the proportions of
Mn4+, Eu3+, Ce4+, and Eu/Eu* in the fluid increase, whereas the Mn2+ and
Ce/Ce* decrease, and vice versa when the fluid is reduced. The Huayuan
apatite has negative Eu anomalies (wide Eu/Eu* range) and weakly positive
Ce anomalies (Figure 8B), which is likely caused by redox changes.
Moreover, the Huayuan apatite was formed during the main ore stage
(stage Ⅱ) when extensive thermochemical sulfate reduction (TSR) occurred
(Wei et al., 2017), during which the ore-forming fluids have become more
reducing. As the TSR proceeded, the Eu/Eu* ratio of the ore fluids (as thus
their crystallizing apatite) decreased. The ore-fluid oxygen fugacity in the
Huayuan Pb-Zn orefield was considered higher than that of typical Cu-Pb-
Zn, W, and Sn deposits (Ding et al., 2015).

The apatite ΣREE (74—1,255 ppm) and Cl (< 0.42 ppm)
concentrations of the Huayuan Pb-Zn orefield are significantly lower
than those with magmatic and magmatic-hydrothermal origins
(Figure 8C; O’Sullivan et al., 2020). In addition, the mineralization
temperature of the Huayuan Pb-Zn deposits (140°C–328°C; Zhou
et al., 2015) is lower than that of typical magmatic-related deposits
but higher than that of typicalMVTdeposits (Xiong et al., 2020;Wu et al.,
2021), indicating that the fluid origin was independent frommagmatism.
The mixing of various fluids may have resulted in the wide range of
mineralization temperatures. Moreover, C-H-O isotope studies indicate
that the Huayuan ore-forming fluids may include meteoric water. This is
consistent with the apatite geochemical signatures that reflect the mixing
of brine and meteoric water. In addition, The Fisher discriminant results
also suggest that the Huayuan ore-forming fluids may have multiple
sources. The Huayuan apatite has higher Mg content (max .44%, mean
.03%, n = 90) than typical hydrothermal apatite (O’Sullivan et al., 2020),
and the hanging-wall of the Huayuan Pb-Zn orebodies comprises Mg-
rich dolomite. We thus suggest that the Mg may have been leached from
the hanging-wall dolomite by the percolating meteoric water. The Mg-
rich meteoric water may have then mixed with the hydrothermal fluid,
passing the highMg signature into the crystallizing apatite. Therefore, the
Huayuan Pb-Zn ore fluids may have included brine and meteoric water

FIGURE 8
Plots of (A) F/Cl vs F (after Cao et al., 2012), (B) Ce/Ce* vs Eu/Eu* (after Ding et al., 2015), and (C) ΣREE vs Cl (data from O’Sullivan et al., 2020) for apatite
from different types of deposits.
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components, and are characterized by being F-rich, Cl- and REE-poor,
and decreasing oxygen fugacity with the fluid evolution.

6.3 Metallogenic model

The Huayuan Pb-Zn orebodies are hosted in the platform-facies
LCQF reef limestone, and structurally controlled by the Huayuan-
Zhangjiajie fault zone. The geological and metallogenic characteristics
of the Huayuan Pb-Zn orefield are comparable to typical Mississippi
Valley-type (MVT) deposits (Leach et al., 2010; 2005; Yang and Lao, 2007;
Zhou et al., 2015; Xiong S.-F. et al., 2019). In addition, theHuayuan Pb-Zn
metallogeny was likely unaffected by magmatism (e.g., Zhou et al., 2014;
Wu et al., 2021; Hu et al., 2022).

Previous studies showed that the sulfide Pb isotopes and sphalerite Zn
isotopes of the Huayuan Pb-Zn ores are similar to those of the regional
Proterozoic basement rocks (Zhou et al., 2016; Zhang et al., 2022), implying
that the basement may have been a key metal source. In addition, the S
isotopes of ore sulfides are similar to those of the LCQF limestone (e.g.,
Zhou et al., 2016;Wu et al., 2021), suggesting that the lattermay have been a
major ore sulfur source. The regional fault zones, notably the Huayuan-
Zhangjiajie, controlled the distribution of Pb-Zn mineralization (Li et al.,
2010). Therefore, the Caledonian orogenic event may have facilitated large-
scale brine circulation and concentration in theHuayuan district (Wu et al.,
2021). The circulating brine may have extracted the metals from the
basement rocks, and transported them to the LCQF. The hydrothermal
fluid may have mixed with meteoric water in the LCQF, which cooled and
diluted the ore fluid and eventually led to ore deposition.

7 Conclusion

1) Apatite in the Huayuan orefield is of hydrothermal origin.
2) Ore-forming fluids in the Huayuan orefield may include brine and

meteoric water. The fluids are characterized by being F-rich, Cl-
poor, and REE-poor, with decreasing oxygen fugacity with the fluid
evolution.

3) Metallogeny of the Huayuan Pb-Zn orefield was unlikely to be
magmatic-related.
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