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This study suggests a linearly combined ground motion model (GMM) optimized for
the within-rock conditions of South Korea. Ground motions recorded by
accelerometers positioned in within-rock layers are used as target intensity
measures (IMs), and five local GMMs and four global GMMs are used as
candidates for combination. Optimization, which seeks to find a weight vector
minimizing the uncertainty of the combined model, is performed using the
quadratic programming (QP) technique, which provides very fast and solid results
for the linear combination problem. This study illustrates how to use the QP
technique for the linear combination problems. Also, we suggest optimized
weight vectors for GMM combinations for two conditions: 1) the IM prediction of
a scenario event without observations and 2) the IM prediction of a past event with
observations. Among the local and global GMMs considered, JB03, Eea15, JH21, and
BSSA14 are selected as the best four GMMs for the first condition, and Jea02, JB03,
JH21, and CB14 are selected as the best four GMMs for the second condition. The
combinedmodel reduces the standard deviation of residuals in natural logarithms by
10% and 8% for the first and second conditions, respectively, compared to the best
individual GMM at each period. Among the GMMs considered, the prediction by
Eea15 is only applicable formagnitudes less than 5. Hence, for largemagnitude (Mw >
5) prediction, CB14 is recommended instead of Eea15 for the best fourmodels for the
first condition.
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1 Introduction

After two damaging earthquakes, 2016 ML 5.8 earthquake in Gyeongju and 2017 ML

5.4 earthquake in Pohang, there is a strong need to decide which ground motion model (GMM)
or what combination of GMMs is best for the engineering problems (e.g., earthquake early
warning and the post-earthquake intensity distribution map). For the development of region-
specific GMMs in South Korea, a stochastic method simulating groundmotions for the moment
magnitude (MW) range of 4–7 and regressing a GMM using simulated intensity measures (IMs)
was popular (Noh and Lee, 1995; Jo and Baag, 2001; Jo and Baag, 2003; Park et al., 2001; Junn
et al., 2002). There are only limited ground motion records with less than mid-size events
(MW ≤ 5.4) in South Korea, so the development of the simulation-based GMMwas a reasonable
approach to consider the largeMW range. Cumulating groundmotion records over time with an
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increased number of seismic stations, some GMMs have been
developed empirically (Emolo et al., 2015), but still, the largest MW

is low to be considered for the seismic design practice. A hybrid
approach, combining empirical data set and ground motion from
stochastic simulation, was another way for the GMM development
(Jee and Han, 2021).

In the probabilistic seismic hazard assessment, multiple
GMMs are combined using a logic-tree approach that assigns
appropriate weights to each GMM and linearly combines them
(Kramer, 1996). The linear combination of multiple prediction
models with appropriate weights reduces the uncertainty of model
estimation (Kwak et al., 2018). These weights could be defined
based on the rank of GMMs using several ranking procedures
(Scherbaum et al., 2009; Kale and Akkar, 2013; Akkar and Kale,
2014; Nizamani and Park, 2021). The ranking provides the order
of preference, but it does not suggest the most efficient weights for
minimizing the standard deviation of predictions of the combined
model. For example, Scherbaum et al. (2009) suggest weights
based on the amount of the log-likelihood, but this does not
necessarily provide the minimum standard deviation of
predictions.

This study suggests the best combination of GMMs with
optimized weights minimizing the standard deviation of
predictions using the quadratic programming (QP) optimization
technique for the IM of ground motion in South Korea. The
optimized weights for multiple models were previously found using
the Monte Carlo (MC) simulation (Kwak et al., 2018), but the MC
simulation is not efficient in terms of execution time and repeatability
of the results. QP solves an optimization problem involving a
quadratic function (Goldfarb and Idnani, 1983). The QP technique
is adopted in this study to find the optimized weights by adjusting the
inequality constraints to satisfy the weight conditions of linear
combination. The QP is much faster than the MC simulation and
provides a solid result.

For the linear combination, five local (JB01, Jo and Baag, 2001;
Jea02, Junn et al., 2002; Yea08, Yun et al., 2008; Eea15, Emolo et al.,
2015; and JH21, Jee and Han, 2021) and four global (ASK14,
Abrahamson et al., 2014; BSSA14, Boore et al., 2014; CB14,
Campbell and Bozorgnia, 2014; and CY14, Chiou and Youngs,
2014) GMMs are considered as candidates. The local GMMs were
used for the seismic hazard map development (Hong, 2017) and to
predict spectral acceleration up to 5 s. To consider IMs for large MW

events for the combined GMM, which are out of range for ground
motion records in Korea, we also considered four global GMMs from
the NGA West2 project (Bozorgnia et al., 2014). We tested the
performance of the combined model by comparing it to the
seismic records observed during 2000–2018 by the National
Seismic Network operated by the Korea Meteorological
Administration (KMA).

This study suggests two optimized weight sets: one for a scenario
event (where it is anticipated that no records are available) and the
other for past events (where it is anticipated that records are available).
It should be noted that both weight sets are estimated using ground
motion records observed in South Korea. For the scenario event,
weights are found based on the total residuals of GMMs. If records are
available, the between-event residuals can be calculated, which makes
it possible to compute the within-event residuals. Therefore, for the
past event, the optimized weight set is suggested, minimizing standard
deviation of within-event residuals.

The subsequent sections describe the procedure for solving the weight
optimization problem for linear combination, introduce the groundmotion
data set from SouthKorea andGMMs, and evaluate the performance of the
combined model. Suggestion and conclusion are followed.

2 Quadratic programming defining
optimized weights

This section illustrates the linear combination and how to adjust
inequality constraints in the QP technique to determine optimized
weights in the linear combination problem. This method becomes the
base of GMM combinations and provides optimized weight vectors.

The weighted combination of n number of models is expressed as:

Ŷcomb � ∑n

i�1wiŶi, (1)

where Ŷcomb is the combined prediction, wi is the weight, and Ŷi is the
prediction by the ith model. wi has the summation condition and
lower and upper bound conditions as:

∑n

i�1wi � 1, (2)
0≤wi ≤ 1. (3)

If we express the residual of the ith model as εi, then the residual of
the Ŷcomb (i.e., εcomb) can be expressed as:

εcomb � Y − Ŷcomb � Y −∑N

i�1wiŶi � Y −∑N

i�1wi Y − εi( ) � ∑N

i�1wiεi.

(4)
This indicates that εcomb is the weighted mean of εi. Then, the

variance of εcomb (σ2comb) can be expressed as:

σ2comb � Var εcomb( ) � Var ∑N

i�1wiεi( )
� w2

1σ
2
1 + w2

2σ
2
2 +/ + 2w1w2σ12 +/, (5)

where σ2i is the variance of εi, and σ ij is the covariance of εi and εj.
Using the matrix notation, Eq. 5 becomes:

σ2
comb � w1/wn[ ]

σ21 / σ1n

..

.
1 ..

.

σn1 / σ2n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
w1

..

.

wn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � wTσ2w, (6)

where w is the wi vector and σ
2 is the covariance matrix. wminimizing

σ2comb in Eq. 6 is called the optimized weight vector.
Equation 5 is a quadratic function. Hence, finding the object

variable (i.e., w) by minimizing the value of Eq. 5 (i.e., σ2comb) can be
solved using the QP optimization technique. QP solves an
optimization problem involving the quadratic function, where the
general form is expressed as follows (Goldfarb and Idnani, 1983):

min
x

:
1
2
xTGx + aTx

s.t. : CTx ≥ b
, (7)

where x and a are n vectors, G is an n×n symmetric positive definite
matrix,C is an n×mmatrix, and b is anm vector. Equation 7 contains the
quadratic part (12x

TGx), the linear part (aTx), and the inequality
constraints (CTx ≥ b). Goldfarb and Idnani (1983) suggested a
numerical solution for finding the optimized x, minimizing the
function value. We can use this solution to find optimized wi,
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replacing variables in Eq. 7 to be compatible with Eq. 6 and constraints to
satisfy the weight conditions (Eq. 2 and Eq. 3). The adjusting process is
shown as follows:

1) Because Eq. 6 does not have a linear part, aTx is ignored by setting a
as a zero vector;

2) x and 0.5 G were replaced as w and σ2, respectively;
3) The CT matrix is set as follows (using three models, n = 3 as an

example):

CT �
1 1 1
1 0 0
0 1 0
0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (8)

4) The b vector is set as follows (using three models, n = 3 as an
example):

b �
1
0
0
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (9)

It should be noted that m becomes n+1 in Eqs 8, 9. For general n,
the first row must be set as 1 and an n×n identify matrix from the
second for CT, and the first row as 1 and 0 for the last for b. By
adjusting CT and b as mentioned previously, Eq. 7 becomes (n = 3 as
an example):

min
w

: wTσ2w

s.t. :

1 1 1
1 0 0
0 1 0
0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

w1

w2

w3

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦≥
1
0
0
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(10)

The inequality constraint of Eq. 10 indicates:

∑n

i�1wi ≥ 1, (11)
wi ≥ 0, i � 1, 2, 3. (12)

Since σ2i is a positive real number, to minimizewTσ2w in Eq. 10, the
sum of wi in Eq. 11 should be minimized. This means that the
optimization solution of Eq. 10 results in the sum of wi as unity,
which satisfies the weight condition of Eq. 2. Also, wi is greater than
zero due to Eq. 12 constraint and the sum is unity, so wi cannot be
greater than 1, which satisfies the other weight condition in Eq. 3.

The QP algorithm is available in several programming languages
(e.g., MATLAB, Python, or R). We used the function solve.QP in the
quadprog library in R to find the optimized weights (R Core Team,
2022). QP provides the uniquew resulting in the smaller σ2comb than the
solution found from the Monte Carlo simulation approach (Kwak
et al., 2018), and the computing speed is much faster. We applied this
QP technique to find the best combined GMM for within-rock
conditions of South Korea in subsequent sections.

3 Ground motion records and models

3.1 Ground motion records

At the current time (September 2022), KMA maintains
261 seismic observatory stations, and there are 169 outdated

stations that were replaced with new sensors or moved to other
locations (Korea Meteorological Administration, 2022). Figure 1
shows the locations of all 430 KMA stations. For the stations, there
are three stratigraphic levels of sensor locations: 1) surface (0 m depth;
called first level hereafter); 2) depth at the top of the bedrock layer,
which is defined as the soft rock layer or stiffer (20–70 m depth; called
second level hereafter); and 3) 100 m depth (called third level
hereafter). The KMA had installed sensors at the first level, but
they have been switching the sensor locations to the second or
third levels for the purpose of broadband detection of microseisms
with minimized ambient noise. For the second-level location, the
installation depth is intentionally kept at 20 m even though the
bedrock depth is shallower than 20 m. Currently, there are
203 stations that only have sensors at downhole (second and/or
third levels), 50 stations that have surface sensors only (first level),
and eight stations that have both surface and downhole sensors.

Among three levels of sensor locations, our interest is in the
second level. For practical purposes, predicting IMs at the surface
(i.e., first level) is necessary; the seismic hazard analysis of
superstructures or geotechnical failure events that occurred at the
Earth’s surface (i.e., landslide, lateral spreading, liquefaction, and/or
ground settlement) are related to the intensity of the ground motion at
the surface. However, the major portion of the KMA sensors is at the
second or third levels without sensors at the first level. Moreover, the
KMA keeps switching the first level sensors to the second or third
levels. This leads to a lack of first-level recordings, which limits the
development of a GMM for the surface. To predict first-level IMs,
alternatively, an amplification model from the second level to the first
level can be coupled with the second-level IM prediction. The third
level would have less variability of ground characteristics than the
second level, so the GMM targeting the third level would result in less
ground motion prediction uncertainty, but the number of records and
stations for the third level are less than the second level, and
availability of geophysical investigations down to 100 m depth is
limited at this time. It should be noted that the data available for
the second level are 3,001 records for 207 stations, and the data for the
third level are 1,979 records for 65 stations. Hence, in this study, we
targeted the second level and used records from the second-level
sensors for the target data of the combined GMM.

For the local magnitude (ML) range of 3.5–5.8, the epicentral distance
(Repi) range of <210 km, and the time interval between 2000 and 2018,
674 ground motion records have been collected at the second-level
sensors. It should be noted that the official magnitude type of
earthquake announcement in South Korea is ML, which is used by the
KMA. Among these records, we selected 614 ground motions by filtering
out poorly recorded ground motions containing very high ambient noise
or instrumental errors.We set the lower limit of theML as 3.5 because it is
rare for an event with ML < 3.5 to cause damage to structures, and ML

3.5 is the KMA’s low threshold for the earthquake early warning service.
The upper limit of the ML is 5.8 because it is the greatest magnitude
recorded in South Korea. TheML versus Repi distribution for the selected
records is shown in Figure 2. The major portion of the data is located at
the long Repi (>100 km) and small ML (<4).

3.2 Ground motion models

Five region-specific GMMs for South Korea are summarized in
Table 1. Three GMMs were developed using stochastic simulation
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(i.e., random vibration theory; Boore, 1983), one GMMwas developed
using the empirical data set, and one GMM was developed using the
hybrid approach. The stochastic simulation method extracts the stress
drop (Δσ) and Q factor from records, generates ground motions based
on point-source event generation for variable magnitude and source-
to-site distances, and finds regression models fitting generated IMs.
The empirical method finds the best-fit regression model to the
empirical IMs collected from records. The hybrid method
combines simulated IMs and recorded IMs and finds the best-fit
regression model. The Δσ and Q factors used for the ground motion
simulation per study, the dataset used, and the applicable ranges of
magnitudes and source distances are shown in Table 1. All GMMs
considered in this study have no site effect considerations for general
sites, and the reference site condition is the hard-rock outcrop. It
should be noted that simulation-based and hybrid GMMs used the
moment magnitude (MW) and hypocenter distance (Rhypo) or rupture
distance (Rrup) as the model input parameters. The GMM based on the
empirical data (Emolo et al., 2015) used ML and Repi as the model
input parameters.

The ground motion records collected in this study have limited
information:MW orML, Repi, and hypocentral depth (Zhyp). TheML is
available for all ground motions, but MW is only available for large
events. To use records with ML as an input parameter for GMM, we

transformed ML to MW using the ML–MW relationship suggested for
South Korea events (combination of Eq. 8 and Eq. 10 in Sheen et al.
(2018)):

MW � 0.9234ML + 0.8034( )/1.086. (13)
It should be noted that the ML in Eq. 13 is the local magnitude

suggested by the KMA, and the KMA uses the vertical component for
the ML estimation.

Figure 3 compares the selected IMs with respect to varying MW

(3–7) at Rhypo = 10, 50, and 200 km. For Eea15, the maximum
applicable ML (=4.9) is less than other GMMs, so predictions at
large MW are excessively high. Except Eea15, all GMMs have
similar magnitude scaling with the non-linear functional shape.

Four global GMMs from the NGA West2 project (ASK14,
BSSA14, CB14, and CY14) are also considered as candidates for
the model combination. NGA West2 GMMs require more detailed
input parameters for source, path, and site effects (e.g., fault type,
hanging wall effect, depth to the top of the fault, and region) than local
GMMs. Table 2 shows the list of input parameters in the NGA
West2 project GMMs. However, the data set collected for South
Korea only has the parameters MW, Repi, and Zhyp. Hence, we need
to assume some parameters for the NGA West2 GMMs with default
values. We set up input parameters as “unknown” if applicable,

FIGURE 1
Location of KMA seismic stations. Symbol shapes indicate the installation depth of sensors per station, and hollowness distinguishes the operation status.
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otherwise assigning general values. The fault dip angle, rake angle, and
depth to the seismogenic crust (Zbot) need default values, for which 90,
0, and 20 km are used, respectively. We assumed no hanging wall
effect, site condition with VS30 = 760 m/s, and an unknown basin
depth term. The trends of IMs for NGAWest2 GMMs are also shown
in Figure 3. It should be noted that the global GMMs have distinct
moment saturation points comparing to region-specific GMMs.

4 Residual analysis

4.1 Site condition adjustment

The target site conditions of five local GMMs are rock outcrop,
and those of global GMMs are surfaces with varying VS30. However,

the target site condition in this study is the within-rock layer
(i.e., second level), and within-rock layer records are collected.
Hence, we expect that direct comparison of GMM predictions with
the collected records is not appropriate—predictions (surface) would
be larger than observations (within-rock). Figure 4 shows boxplots of
total residuals (restt) per GMM. Generally, the medians (centerline of
the box) of restt are smaller than zero for local GMMs for a wide range
of periods, but those for global GMMs are period-dependent. For long
periods (SA1.0), medians are less than zero, but for low periods (PGA
and SA0.2), medians are greater than zero. This means that for local
GMMs, most ground motion observations are lower than predictions
as expected, but the global GMMs predict too low IMs for certain
periods. This might be attributed to the fact that the global GMMs
were developed using ground motion records from different regions.

To remove this discrepancy arising from the difference of the
target site condition and regional difference, we omitted the global bias
of restt by performing mixed-effect linear regression. The mixed-effect
linear regression provides random effects and fixed effects, where the
fixed effects are equivalent to the global bias of restt, the random effects
are between-event residuals, and the remaining are the within-event
residuals (Abrahamson and Youngs, 1992; Boore et al., 2014). Using
the mixed-effect linear regression, restt can be disintegrated as:

restt � ck + δBe + δWes, (14)
where ck is the global bias for model k, δBe is the between-event
residual for event e, and δWes is the within-event residual for event e
and site s. δWes includes path variability, site-to-site variability, and
within-site variability (Al Atik et al., 2010). Table 3 provides ck
resulting from mixed-effect linear regression for selected IMs for
five local and four global GMMs. Omitting ck does not completely
remove the effects of the actual target site condition discrepancy, but at
least it makes an unbiased mean estimation for the target site
condition.

4.2 Comparison of GMM performance

Figure 5 shows the standard deviation of restt (denoted σtt), δBe

(denoted σb), and δWes (denoted σw) for PGA and spectral
accelerations with varying periods (SAperiod). For the σb, global
GMMs perform better than local GMMs especially at short periods

FIGURE 2
Distribution of the local magnitude (ML) and epicentral distance
(Repi) of ground motions recorded at the second-level sensors during
2000–2018 by the KMA network.

TABLE 1 Comparison of parameters of five Korean-specific GMMs.

GMM Method Factors/data Input parameters Component

Jea02 Stochastic simulation Δσ = 65 bar −MW (4.0–7.5) PGA, PGV, and SA (0.01–5 s)

Junn et al. (2002) Q = 1944 −Rhypo (10–500 km)

JB03 Stochastic simulation Δσ = 92 bar −MW (4.0–7.5) PGA, PGV, and SA (0.01–5 s)

Jo and Baag (2003) Q = 1820 −Rhypo (10–500 km)

Yea08 Stochastic simulation — −MW PGA, PGV, and SA (0.01–5 s)

Yun et al. (2008) −Rrup

Eea15 Empirical Ground motions at 2007–2012 −ML (2.0–4.9) PGA, PGV, PGD, and SA (0.055–5 s)

Emolo et al. (2015) −Repi (1.4–600 km)

JH21 Hybrid Δσ = 106 bar (MW>3.63) −MW (3.0–7.0) PGA and SA (0.01–10 s)

Jee and Han (2021) Q = 500–2000 −Rhypo (10–300 km)

Frontiers in Earth Science frontiersin.org05

Jang et al. 10.3389/feart.2022.1067802

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1067802


FIGURE 3
Comparison of five Korean GMMs (Jea02, JB03, Yea08, Eea15, and JH21) and four global GMMs (ASK14, BSSA14, CB14, and CY14) for PGA, SA0.2, SA1.0,
and SA2.0 with varying MW at Rhypo=10, 50, and 200 km.

TABLE 2 Variation of input parameters adopted for the model development in the NGA West2 project and parameters selected to use for Korean event prediction.

Parameter ASK14 BSSA14 CB14 CY14 Selected

Magnitude Mw Mw Mw Mw MW

Top of rupture (km) Ztor — Ztor Ztor —

Style of faulting FRV, FNM, and SS U, FRV, FNM, and SS FRV, FNM, and SS FRV, FNM, and SS —

Dip (deg) Dip — Dip Dip 90°

Rake (deg) λ — Λ λ 0°

Down-dip rupture width (km) W — W — —

Depth to the bottom of seismogenic crust (km) — — Zbot — 20

Closest distance to rupture (km) Rrup — Rrup Rrup Rhypo

Hor. dist. to surface proj. (km) RJB RJB RJB RJB Repi

Hor. dist. from edge of rupture (km) Rx — Rx Rx 0

Hor. dist. off end of rupture (km) Ry0 — — — —

Hanging wall model FHW (RJB) FHW FHW No hanging wall effect

VS30 (m/s) VS30 VS30 VS30 VS30 760

VS30 for reference rock (m/s) 1100 760 1100 1130 —

Depth to Vs (km) Z1.0 Z1.0 (dz1.0) Z2.5 Z1.0 —

Hypocentral depth (km) — — Zhyp — Zhyp

Directivity term — — (Zhyp) DDPP —

Regional variations Region Region Region Region —

Aftershock factor FAS — — — —
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(<1 s). At long periods (>1 s), σb is similar among all GMMs except
Eea15 which has a higher σb. Eea15 predicts biased estimation for
records with ML > 4.9, especially for long-period spectral ordinates,
which is the reason for the higher σb. CY14 has the lowest σb in
average. For the σw, local GMMs have lower σw for periods <1 s than
global GMMs. Among local GMMs, JB03 has the lowest σw in average,
and among global GMMs, BSSA14 has the lowest σw. For σtt, JH21 has
the lowest σtt over a wide range of periods and JB03 is the second
lowest. Local GMMs generally perform better than global GMMs,
while Eea15 has high σtt at periods >0.5 s. Global GMMs have
relatively high σtt at periods of 0.05–0.3 s, and among them,
CY14 has the lowest σtt in average. Because global GMMs have less
uncertainty about between-event residuals and local GMMs have less
uncertainty about within-event residuals, global GMMs have better
constraints for the source term, while local GMMs perform better for
the path and site term in South Korea’s records.

5 Performance of combined GMM

5.1 Selection of best combination

For the sake of the IM prediction for future earthquakes, we
cannot specify δBe. Hence, σtt combining the uncertainty of both δBe

and δWes is the appropriate metric for the evaluation of the model’s
performance. However, if we apply a GMM for an event with records
available, we can calculate δBe, that is, equivalent to the mean misfit of
restt (Abrahamson and Youngs, 1992). In this case, δBe in Eq. 14 is
defined, so lowering σw would only contribute to the reduction of the
total uncertainty. GMMs are often used to evaluate the intensity
distribution at the post-event stage, so it is also of interest to find
the GMM combination to minimize σw. This study suggests two types
of linear combinations: one for σtt minimization and the other for σw
minimization.

FIGURE 4
Total residual boxplots of four IMs (PGA, SA0.2, SA1.0, and SA2.0) binned by ML for nine GMMs.
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In practice, for simplicity, using two to four GMMs is preferable
for the combination rather than use of several to tens of GMMs.
Hence, in this section, we examine the efficiency of the model
combination using different numbers of GMMs. Among the nine
GMMs (five local and four global), we picked one to five GMMs as
combination candidates and found the optimized weights using the
QP process. The QP process is summarized as follows:

1) The covariance matrix (σ2 in Eq. 6 and Eq. 10) of the restt and δWes

between GMMs selected was calculated;
2) σ2 is inserted into Eq. 10;
3) The optimized w is calculated.

It should be noted that the QP should have σ2 as the positive
definite matrix, so we slightly altered σ2 to be the nearest positive
definite matrix using the nearPD function in R (Higham, 2002) if σ2

is not positively definite. Figure 6 shows the average of σtt and σw of
IMs including PGA and 15 kinds of SAs ranging from 0.01 to 5 s of
the best combined models for different number of model
combination. The standard deviation is the highest for a single
GMM case, and it decreases steeply for the case of a combination
of two models. The standard deviations are decreasing with the
greater number of GMM combinations, but the reduction rate slows
down. Table 4 shows the GMMs selected for the best combination for
different numbers of models and indicates the percentage difference
in average standard deviation compared to the combination of all
nine GMMs. The single best GMM has 10.2% larger σtt than one
from a nine-GMM combination and 8.45% larger σw than one from
nine GMM combination, but the difference becomes small if the
number of GMMs for combination increases. The differences of
average standard deviation between a four-GMM combination and a

nine-GMM combination become negligible (less than 0.2%), so we
selected a four-GMM combination as the suggested GMM model in
this study.

Table 5 describes the optimized weights suggested for restt and
δWes. Three local GMMs (JB03, Eea15, and JH21) and one global
GMM (BSSA14) are recommended for restt, and other three local
GMMs (Jea02, JB03, and JH21) and one global GMM (CB14) are
recommended for δWes.

5.2 Performance of combined GMM
compared to records

To evaluate the performance of the combined GMM, we
compared the median predictions of the GMMs with the
recorded distribution. Figure 7 shows observed IMs (PGA, SA0.2,
SA1.0, and SA3.0), median IMs of six GMMs (Jea02, JB03, Eea15,
JH21, BSSA14, and CB14) adjusted by ck (Table 3), and median IMs
of two combined GMMs minimizing σtt and σw using optimized
weights (Table 5). For the comparison, we made two groups: 1)
observed IMs with ML 3.5–4.5 and median prediction of GMMs
using ML = 3.6, that is, the median ML of the observed IMs and 2)
observed IMs with ML 4.5–5.8 and median prediction of GMMs
using ML = 5.1, that is, the median ML of the observed IMs. Binned
means of observed IMs are also shown in Figure 7. The combined
GMM minimizing σtt (denoted Combtt) fits well with the
observations for all IMs considered. Because δBe are not
corrected in the observed IMs in Figure 7, the combined GMM
minimizing σw (denoted Combw) does not fit well with the
observations as good as Combtt; but still, Combw reasonably
follows the data trend. This proves that the combined model

TABLE 3 Global bias of the mixed-effect linear regression for five local and four global GMMs.

IM Jea02 JB03 Yea08 Eea15 JH21 ASK14 BSSA14 CB14 CY14

PGA −0.931 −0.728 −0.921 −0.826 −0.711 0.321 0.480 0.414 0.512

SA0.01 −0.914 −0.711 −0.946 −1.026 −0.755 0.332 0.475 0.405 0.523

SA0.02 −0.864 −0.664 −1.157 −1.151 −0.818 0.360 0.518 0.441 0.561

SA0.03 −1.027 −0.665 −1.703 −1.140 −0.828 0.480 0.612 0.472 0.642

SA0.05 −1.029 −0.686 −1.302 −0.998 −0.695 0.685 0.835 0.637 0.826

SA0.075 −0.931 −0.702 −1.028 −0.882 −0.596 0.744 0.843 0.711 0.873

SA0.1 −0.918 −0.773 −0.718 −0.911 −0.570 0.743 0.708 0.700 0.790

SA0.15 −0.808 −0.717 −0.543 −0.699 −0.540 0.715 0.533 0.569 0.621

SA0.2 −0.815 −0.795 −0.456 −0.690 −0.603 0.587 0.431 0.460 0.467

SA0.3 −1.007 −0.992 −0.322 −0.556 −0.724 0.288 0.210 0.158 0.217

SA0.4 −0.920 −0.911 −0.438 −0.455 −0.808 0.063 0.081 −0.003 0.072

SA0.5 −0.985 −0.969 −0.471 −0.460 −1.041 −0.149 −0.063 −0.157 −0.085

SA0.75 −1.378 −1.363 −0.266 −0.474 −1.165 −0.275 −0.235 −0.424 −0.309

SA1.0 −1.102 −1.099 −0.236 −0.512 −1.270 −0.419 −0.368 −0.593 −0.488

SA2.0 −1.309 −1.312 −0.140 −0.556 −1.619 −0.974 −0.680 −0.832 −0.832

SA5.0 −1.326 −1.322 −0.190 −1.210 −1.467 −0.962 −1.075 −1.004 −0.712
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with appropriate weights provides more accurate predictions across
a wide range of IMs than prediction from a single model.

5.3 GMMs for large magnitude

The suggested GMMs (Combtt and Combw) mentioned earlier
were tested with ground motion records with ML ≤ 5.8. In South
Korea, however, the magnitude range of 6.0–7.0 is used for seismic
design practice (Earthquake Engineering Society of Korea, 2018),
for which local records are not available. To check the effectiveness

of the suggested GMM for this extrapolated range of magnitude,
this section compares the trend of Combtt and Combw with the
NGA West2 GMMs, which were developed using large magnitude
ground motion records—the minimum of the upper limit MW

is 7.5.
Figure 8 shows selected IMs including PGA, SA0.1, SA0.2, SA0.5,

SA1.0, and SA2.0 with an increase of MW from 5 to 7.5. For this
calculation, Repi and Rjb are set to 20 km, Zhyp is set to 10 km, and
other parameters for NGA West2 GMMs are set as shown in
Table 2. The Combtt and Combw are extrapolated up to MW

7.5 and compared with the NGAW2eq (a combined GMM with

FIGURE 5
Standard deviation of (A) total residuals, (B) between-event residuals, and (C) within-event residuals for nine individual GMMs and combined GMMs
suggested in this study.
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FIGURE 6
Percentage difference of standard deviation between one from the combination of nine GMMs and the other from a combination of different numbers of
GMMs. (A) σtt and (B) σb.

TABLE 4 Best GMMs for different numbers of candidates.

Number Best GMMs for restt Difference (%) Best GMMs for δWes Difference (%)

1 JH21 10.2 JB03 8.45

2 JB03 and Eea15 1.48 JB03 and JH21 1.08

3 JB03, Eea15, and BSSA14 0.51 JB03, JH21, and CB14 0.13

4 JB03, Eea15, JH21, and BSSA14 0.15 Jea02, JB03, JH21, and CB14 0.01

5 JB03, Eea15, JH21, BSSA14, and CB14 0.04 Jea02, JB03, Eea15, JH21, and CB14 0.00

FIGURE 7
Comparison of four modified Korean GMMs and two global GMMs (Jea02, JB03, Eea15, JH21, BSSA14, and CB14) with combined GMMs minimizing σtt
and σw (Combtt and Combw, respectively) for PGA, SA0.2, SA1.0, and SA2.0 withML = 3.6 and 5.1 varying Repi. Records and binned means forML 3.5–4.5 andML

4.5–5.8 are overlapped.
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TABLE 5 Suggested weights of four GMMs for restt and δWes per IM.

GMM Weights for restt Weights for δWes

JB03 Eea15 JH21 BSSA14 Jea02 JB03 JH21 CB14

PGA 0.143 0.570 0.128 0.158 0 0.518 0.482 0

SA0.01 0.411 0.349 0 0.240 0 0.597 0.403 0

SA0.02 0.575 0.114 0 0.311 0 0.766 0.234 0

SA0.03 0.320 0.380 0 0.300 0 0.583 0.417 0

SA0.05 0 0.642 0.145 0.214 0 0.175 0.825 0

SA0.075 0 0.984 0 0.016 0.210 0 0.790 0

SA0.1 0 0.957 0.043 0 0.220 0 0.780 0

SA0.15 0 0.468 0.532 0 0.207 0 0.793 0

SA0.2 0.115 0.425 0.460 0 0.666 0 0.334 0

SA0.3 0 0.359 0.494 0.147 0.745 0 0.256 0

SA0.4 0.356 0.479 0 0.165 1 0 0 0

SA0.5 0.647 0.206 0 0.147 0.992 0 0 0.008

SA0.75 0 0 0.618 0.382 0.966 0 0 0.034

SA1.0 0.985 0 0 0.015 0.742 0 0.128 0.131

SA2.0 0.536 0 0 0.464 0 0.650 0 0.350

SA5.0 0.201 0.079 0.051 0.669 0 0.722 0 0.278

FIGURE 8
Comparison of magnitude scaling of PGA, SA0.1, SA0.2, SA0.5, SA1.0, and SA2.0 for combined GMMs (Combtt, Combtt-woE, and Combw) with equally
weighted NGA W2 models (NGAW2.eq).
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equal weights for the four NGA West2 models with mean bias
correction using coefficients from Table 3). At low periods (PGA
and SA ≤ 0.5 s), the IMs of Combtt increase linearly, so they become
excessively high at large magnitudes. This is attributed to the fact
that Eea15 has higher weights at low periods (Table 5), and the
magnitude application range of Eea15 is less than 5. Hence,
including Eea15 in the Combtt is not appropriate if Combtt is
used for MW > 5. For Combw, on the other hand, the trend of
magnitude saturation is comparable with the NGAW2eq. The best
four GMMs selected for Combw do not include Eea15 (Table 4), and
the MW range is up to 7 (Table 1). It means that Combw could be
used for large MW events (>5) even though it is not validated with
observed IMs.

For the suggestion of Combtt for largeMW, we omitted Eea15 and
found the best four GMMs and their weights as indicated in Table 6.
The trend of magnitude saturation of this model (Combtt-woE) is
shown in Figure 8, which is comparable to NGAW2eq for all spectral
periods. However, the difference in average standard deviation of the
Combtt-woE is 1.62% compared to all nine models (Figure 4), which is
higher than the difference of Combtt (0.15%). Hence, it is
recommended to use Combtt for small MW, which is the optimized
model, and use Combtt-woE for large MW, which avoids excessive
extrapolation at large MW.

6 Conclusion

This study suggests the best combination of GMMs for within-
rock layer ground motion in South Korea. Local and global GMMs
were used for model combination, and ground motions recorded
in the within-rock layer were used for validation. The optimized
weights were found using the QP technique, which provides fast

and solid results in the model combination problem and
effectively selects GMMs for the best combination, which
minimizes the uncertainty of the combined model. Two cases
of optimized weights were suggested: the first case for the
prediction without ground motion observations (e.g., a future
or scenario event) and the second case for the prediction with
observations (e.g., a past event with ground motion records).
Among the five local and four global GMMs considered, a
combination of JB03, Eea15, JH21, and BSSA14 is suggested for
the first case with smallMW (MW < 5), and a combination of JB03,
JH21, BSSA14, and CB14 is recommended for largeMW (MW ≥ 5).
The combination of Jea02, JB03, JH21, and CB14 is evaluated as
the best for the second case. The performance was evaluated by
comparing the standard deviation of the model residuals. The
combined model reduces the average standard deviation of
residuals by up to 10% compared to the best single GMM. The
combination of even two models reduces the standard deviation
significantly. The combined GMMs were also compared with
equally weighted global GMMs for larger magnitudes where
ground motion records for South Korea are not available. This
comparison revealed that the suggested combined GMMs are
applicable up to MW = 7.5. The linear combination using the
optimized weights suggested in this study minimizes the standard
deviation of the residuals of the combined model.

The limitation of this study is that the suggested method is
based on the empirical data, so records are required for the
estimation of optimized weights and for the removal of the
mean misfit. Also, the model uncertainty would be increased for
the ground motions, for which the magnitude and distance were not
covered in this study. In addition, the suggested model is for the
within-rock condition, so coupling with site amplification is
required to estimate ground motion amplitudes at the surface.
The suggested model provides PGA and spectral accelerations
for periods from 0.01 to 5 s given earthquake magnitude and
hypocentral distance, but a recent study reveals that the near-
fault effect such as a pulse-like seismic wave can result in more
serious damage for slopes for the same magnitude and distance
(Zhu et al., 2020; Zhu et al., 2022). The future studies will find
optimized weights without records, estimate model uncertainty for
ground motions, which are out of the range of the dataset, couple
with a site amplification model and validate with surface ground
motion records, and find the GMMs that consider near-fault effects,
as promised.
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TABLE 6 Suggested GMMs and weights minimizing σtt per IM for large MW (>5).

GMM JB03 JH21 BSSA14 CB14

PGA 0.228 0.437 0.335 0

SA0.01 0.518 0.144 0.339 0

SA0.02 0.660 0.000 0.340 0

SA0.03 0.459 0.133 0.408 0

SA0.05 0 0.591 0.409 0

SA0.075 0 0.676 0.324 0

SA0.1 0 0.754 0.247 0

SA0.15 0 0.870 0.130 0

SA0.2 0 0.823 0.177 0

SA0.3 0 0.710 0.290 0

SA0.4 0.191 0.466 0.343 0

SA0.5 0.577 0.227 0 0.196

SA0.75 0 0.634 0 0.366

SA1.0 0.953 0 0 0.047

SA2.0 0.535 0 0.451 0.015

SA5.0 0.061 0 0.939 0
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