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The related dynamic change in meteorological and hydrological parameters is critical for
available water resources, development management options, and making informed
decisions. In this study, to enhance the resolution of the predicted meteorological and
hydrological parameters under climate change, the statistical downscaling method
(SDSM), the generalized regression neural network (GRNN) model, the Soil and Water
Assessment Tool (SWAT) model, and the improved Tennant methodwere integrated into a
framework. The available water resources were assessed in the Huangshui watershed of
the Qinghai–Tibet Plateau, which has the highest average elevation in the world. The
meteorological parameters were obtained by the SDSMmodel and the GRNN model. The
SWAT model used the meteorological parameters to simulate the hydrological data under
climate change scenarios. Considering the meteorological conditions and the high
sediment content in the basin, the available water resources are evaluated by the
improved Tennant method. The meteorological data of the Xining station from 1958 to
2011 were used to analyze the dynamic changes and mutation trends in the data. The
results indicated that the precipitation would have a great increase during the wet season
fromMay to September, and the flows and available water resources would decrease with
increasing carbon emissions under different representative concentration pathways
(RCPs).
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1 INTRODUCTION

The spatial and temporal dynamics of ecosystems are closely related to fluctuations in the climate.
The meteorological parameters are severely affected by the climate change that cause the reallocation
of water resources and lead to crisis of water utilization and threaten human lives (Song et al., 2019;
Sharma and Goyal, 2020). In addition, as sensitive climate and ecosystem area, the meteorological
data in the ecotone attracts major concern for fragile ecosystem management. The climate changes
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are expected to produce large shifts in water distributions at
unprecedented rates (Hanewinkel et al., 2013; Teng et al., 2020).
Thus, predicting the meteorological parameters, the hydrological
parameters, and the water resource availability in the ecotone
areas under different climate change scenarios is important for
planning and managing the ecological environment.

Previously, in order to meet the actual condition in regional
scale, the downscaling methods were developed for improving the
spatial resolution of the global climate models (GCMs) in climate
change impact assessment (Thuiller et al., 2005; Delworth, 2006;
Taylor et al., 2012; Hughes and Mazibuko, 2018). Among those
methods, due to its relatively low computational requirements,
the functional transformation downscaling method is the most
commonly used downscaling method (Ghosh and Mujumdar,
2008; Guo et al., 2014). For example, Jeong et al. (2012) provided
a multisite hybrid statistical downscaling procedure combining
regression-based and stochastic weather generation approaches
for multisite simulations of daily precipitation. Piras et al. (2015)
advanced a statistical downscaling method to analyze the impacts
of climate change on precipitation and discharges in a
Mediterranean basin. Tang et al. (2016) developed statistical
and dynamical downscaling methods to simulate the surface
climate of China based on large-scale information from either
reanalysis data or global climate models. Although the large-scale
parameters, such as the atmospheric oscillation and the
circulation patterns with slowly changing processes and low
resolutions can be addressed by the downscaling process, the
changing process of small-scale parameters (e.g., local
temperature and precipitation) are needed to reflect for
analyzing the response relationship between underlying
surfaces and meteorological factors in hydrological simulations
(Sillmann et al., 2013; Friedlingstein et al., 2014; Zhang et al.,
2020).

Moreover, water resource availability refers to the largest
one-time utilization quantity of local water resources within an
expected time range under deduction of the ecological water
demand, and the determination of ecological water demand is
the key to evaluating water resource availability (Kattsov et al.,
2007; Whitehead et al., 2009). The acceptable approaches to
simulate ecological water demand can be divided into four
categories, including the hydrological index method,
hydraulic method, holistic method, and habitat method.
Among these, as a typical representative of hydrological
index measures, the Tennant method is widely used due to
its convenient operation and high accuracy to determine the
ratio of the ecological water demand to the average annual
natural flow through the correlation between the flow in rivers
and environmental quality of fish habitats (Yakup et al., 2018;
Suwal et al., 2020; Joseph et al., 2021). However, the application
of the Tennant method for permanent rivers in arid and
semiarid areas still has some limitations. The Tennant
method divides the year into two periods to calculate the
recommended average percentage of runoff according to the
amount of runoff monthly. At the same time, this method is
mainly studied on the basis of considering the impact of runoff
on fish and ecosystem, so it needs to be adjusted in the study
area with high sediment content in rivers. So, it needs to be

improved according to the actual situation and regional
characteristics.

Therefore, in consideration of the above limitation, the aim of
this study is to develop a general framework through integration
with the SDSM downscaling method, the GRNN model, the
SWAT model, and the Tennent method for a comprehensive
meteorological and hydrographic prediction, and available water
resource assessment of the Huangshui watershed in the
Qinghai–Tibet Plateau with the fragile ecological environment.
For the framework, the SDSM downscaling method was applied
for temperature prediction according to the large-scale observed
meteorological data, and the GRNN model was advanced to
improve the prediction accuracy of monthly precipitation. The
predicted temperature and precipitation values were the main
input parameters to the SWAT model to simulate more precise
hydrologic data under different climate change scenarios, and the
water availability within basin scale can be further obtained
through the improvement of the Tennent method. The study
results could analyze the available water resource for generating
effective water resource management schemes and address the
impacts of the climate change on ecotones in the basin.

2 METHODOLOGY

This study constructed a comprehensive assessment framework
of water resource availability based on hydrological simulation
under the impact of climate change. The methodology contains
three parts. The first step is the development of future climate
conditions including daily temperature with the SDSM method
(Section 2.1) and precipitation with the GRNN model (Section
2.2). The second step involves using the downscaled daily

FIGURE 1 | The framework of evaluation method of available water
resources.
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precipitation and temperature to simulate daily runoff using the
SWAT model (Section 2.3). The third step involves using the
hydrological data to calculate the water resource availability using
the Tennant method (Section 2.4). To evaluate the SDSMmodel,
the GRNN model, and the SWAT model, R2 and NSE are used
(Section 2.5). Figure 1 presents the general framework of the
evaluation method of available water resources based on
hydrological simulation under the impact of climate change.
Historical data and climate change scenarios both include
daily and monthly data. The daily data of historical data and
climate change scenarios will be used to predict temperature
through the SDSM model. The daily data and monthly data of
historical data and climate change scenarios are used by the
GRNN model, and the precipitation prediction results will be
obtained.

2.1 Statistical Downscaling Model
Statistical downscaling model (SDSM) is an effective decision
supporting tool with a robust statistical downscaling technique
for assessing local climate change impacts (Wilby et al., 2002;
Meenu et al., 2013). Under the present and future climate forcing,
this model can facilitate the rapid development of the multiple,
low-cost, and single-site scenarios of daily surface weather
variables. The general equation for the SDSM is as follows:

R � F(L) (1)
where R = predictand (a local climate variable), L = predictor (a
set of large-scale climate variables), and F = deterministic/
stochastic function conditioned by L and is estimated
empirically from historical observations.

Statistical downscaling model (SDSM) is used to downscale
temperature factor, which includes the daily maximum and
minimum temperatures. The data required include the daily
measured data of weather station and the daily large-scale
meteorological data obtained by GCM. In order to achieve the
purpose of this study, the software (SDSM v. 5.2) was used.

2.2 Generalized Regression Neural Network
Model
Considering that the SDSM is not accurate enough for daily
precipitation prediction, we built a new generalized regression
neural network model (GRNN method) to predict precipitation,
and the new method is suitable for the description of various
nonlinear relations. This method is based on nonparametric
regression. It takes the sample data as a posteriori condition,
performs nonparametric estimation, and calculates the network
output according to the maximum probability principle (Specht,
1991; Dalkilic et al., 2014). At present, it has been applied in many
fields such as control decision system, structure analysis, and so
on (Kumar and Malik, 2016). The network has the following
obvious advantages: 1) No model parameters need to be trained,
and the convergence speed is fast; 2) Based on radial basis
function network, it has good nonlinear approximation
performance, and has good adaptability to curve fitting
problem. In this model, a network can be employed to

estimate a dependent variable from an independent variable
through finite datasets (Cigizoglu and Alp, 2006). The
theoretical foundation of the GRNN model is the kernel
regression, which is a nonlinear regression analysis. The
regression of the random variable y on the observed values X
of random variable x can be found using:

E(y|X) � ∫0

−∞yf(X, y)dy
∫0

−∞f(X, y)dy (2)

where f(X, y) is a known joint continuous probability density
function. When f(X, y) is unknown, it should be estimated from
a set of observations of x and y. f(X, y) can be estimated using
the nonparametric consistent estimator suggested as follows:

f
�(X,Y) � 1

(2π) ρ+12 σρ+1
1
n
∑n
i�1
exp

[ − (X −Xi)T(X −Xi)
2σ2

] exp[ − (Y − Yi)2
2σ2

] (3)

where n = sample size, ρ = dimensionality of random variable x,
and σ = smooth parameter.

By substituting Eq. 3 into Eq. 2, and after solving the
integration, the following equation will be obtained:

Y
�(X) �

∑n
i�1y exp[ − (X−Xi)T(X−Xi)

2σ2 ]
∑n

i�1exp[ − (X−Xi)T(X−Xi)
2σ2 ] (4)

Equation 4 is directly applicable to the issues involving
numerical data. In order to improve the predictive accuracy
caused by the nontemporality of daily precipitation, the
GRNN model was improved to construct a two-layer GRNN
model as shown in Figure 2. First, the first layer of the GRNN
model is constructed, in which the monthly precipitation is
predicted by multiple monthly scale factors. Second, the
second-level GRNN model is constructed, which uses multiple

FIGURE 2 | The improved precipitation prediction model based on the
generalized regression neural network (GRNN) model.
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daily scale factors and monthly precipitation as input variables
and daily precipitation as output variables to calibrate and verify
the model. The model is composed of the two layers models.
Through the gradual simulation and prediction, the nonlinear
relationship between the large-scale meteorological data and the
measured daily precipitation is obtained.

2.3 Hydrological Model
The Soil and Water Assessment Tool (SWAT) is a physically
based semi-distributed hydrological model used to simulate the
quantity and quality of surface water and can be also used to
predict the impact of land use, land management practices, and
climate change on hydrology (Arnold et al., 2012), and developed
by the Agricultural Research Service (ARS) of the United States
Department of Agriculture (USDA). The hydrological simulation
in the SWAT model is mainly carried out through the
hydrological module. The process is divided into two parts,
land slope runoff and river channel runoff. The land slope
runoff consists of precipitation process, rainwater trapped by
plant canopy into soil, groundwater, and surface runoff (Nyika
et al., 2020). The river channel runoff is mainly affected by the
evaporation of water and infiltration of the river water. The
balance equation of water quantity in this model is shown as
follows:

SWt � SW0 +∑t
i�1
(Rday − Qsurf − Ea −Wseep − Qgw) (5)

where SWt = ultimate soil moisture content, SW0 = antecedent
soil moisture content, t = sample size, Rday = daily total
precipitation, Qsurf = total surface runoff, Ea = the total
evapotranspiration, Wseep = soil infiltration capacity and
lateral flow volume, and Qgw = total underground runoff.

2.4 Tennant Method of Water Resource
Availability Assessment
The Tennant method is an operational method originated from
themidwest of the United States, which can determine the ratio of
ecological water demand in the average annual river flow and
evaluate the degree of river ecology according to the analysis of
the relationship between the flow of multiple rivers and the
environmental quality of fish habitat (Abbaspour et al., 2007;
Ateeq-Ur and Abdul, 2018). Specifically, 10% of the average flow
is a minimum instantaneous flow recommended to sustain short-
term survival habitat for most aquatic life forms, 30% of the
average flow is recommended as a base flow to sustain standard
survival conditions for most aquatic life forms, and 60% of the
average flow provides the excellent habitat for most aquatic life
forms. In addition, according to the monthly runoff changes and
the growth conditions of fish and other aquatic organisms, the
evaluation standard can also be divided into two periods from
October to March and April to September. The Tennant method
can be used in calculating the ecological water demand in
permanent arid and semi-arid rivers. Practically, some
appropriate improvements should be conducted based on the
actual hydrological changes and the regional characteristics. In

this study, as the largest tributary of the upper reaches of the
Yellow River, the Huangshui River Basin suffered from serious
soil erosion and high sediment content due to the influence of
geological conditions and human factors. The sediment is mainly
concentrated from June to September. Through the calculation of
the average sediment transport in Xining station, the average
sediment concentration is 2.45 kg/m3. Therefore, in order to
ensure that there are enough water resources in the
Huangshui River to transport the sediment in the water to the
downstream, it is necessary to increase the sediment transport
water demand on the basis of the original Tennant method.

2.5. Model performance evaluation method
In this study, the determination coefficient (R2) and
Nash–Sutcliffe efficiency coefficient (NSE) were used to
evaluate the accuracy of the simulation results. The formulas
are shown as follows:

R2 �
[∑n

i�1(Oi − �O)(Si − �S)]
2

∑n
i�1(Oi − �O)2∑n

i�1(Si − �S)2 (6)

NSC � 1 − ∑n
i�1(Si − Oi)2

∑n
i�1(Oi − �O)2 (7)

where, i = the number of time series, i � 1, 2..., n; Si = the ith
modeled value; Oi = the ith observation; �S = the average of
modeled values; and �O = the average of observations. R2 ranges
from 0 to 1. The NSE ranges from minus infinity to 1.

3 STUDY AREA AND DATA

3.1 Overview of the Huangshui Watershed
The Huangshui watershed, a semi-arid area with an average
annual precipitation of less than 400 mm, is located in the
upstream of the Yellow River. Moreover, this area is the core
region of the Tibetan Plateau with the most dense population and
the most developed economy. Therefore, as a transitional and
ecologically fragile zone between the Tibetan Plateau and the
Loess Plateau, this area has become a globally well-known
ecologically vulnerable area with the characteristics of high
ecological sensitivity, low environmental capacity, a weak
capability to withstand interference, and poor stability (Song
et al., 2009; Chen et al., 2015).

The Huangshui watershed has a total area of 10,337 km2, and
the overall terrain of the basin is high in the northwest and low in
the southeast. The river originates from the mountains at an
elevation of 4,300 m, and the total basin has elevations ranging
from 2,100 to 5,000 m. The terrain of the river basin is complex
and diverse, mainly including mountains, hills, valley basins, and
other landforms. The upper reaches of the river are mainly
canyons, while the middle and lower reaches are mainly wider
canyons. The study area is located in the inland plateau
continental climate, and belongs to a subhumid climate area.
The area has a high elevation, a large amount of evaporation, and
large temperature differences between day and night. The annual
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precipitation is unevenly distributed in this region, and 60%–80%
of the total precipitation is concentrated in the rainy season.
Moreover, the dry season from November to February only
accounts for approximately 3% of the annual precipitation. In
addition, the river networks are arranged in dense, branching
patterns, with more than 10 main tributaries.

3.2 Data Collection
The meteorological data were obtained from the standard
weather station of the Yellow River upstream (1952–2011),
which was provided by the “Comprehensive data platform of
Ningxia-Inner Mongolia Reach of the Yellow River,” National
Key Basic Research Program of China. These data were measured
on a daily time span, and the original format was “.txt.” The data
of the Menyuan meteorological station (W1) and Xining
meteorological station (W2) are used in this study. The study
data contained daily meteorological data for the upper reaches of
the Yellow River and its surrounding areas from 1952 to 2011.
The standard station data included air pressures, temperatures,
humidity values, wind speeds, and 15 other factors.

The large-scale meteorological data obtained by GCM used to
estimate the future trends in climate change came from the
CanESM2 model (the second-generation Canadian Earth
System Model), which was developed by CCCma (Canadian
Centre for Climate Modeling and Analysis). The selected
large-scale meteorological factors include the daily maximum
near-surface air temperature (tasmax), daily minimum near-
surface air temperature (tasmin), near-surface air temperature
(tas), precipitation (pr), near-surface relative humidity (ths),
surface air pressure (ps), total cloud fraction (clt), eastward
near-surface wind (uas), and northward near-surface wind
(vas). The data used in this study were based on CMIP5
(Coupled Model Intercomparison Project Phase 5), which
included the historical scenario, RCP (representative
concentration pathway) 2.6 scenario, RCP4.5 scenario, and
RCP8.5 scenario (Park et al., 2018). These data had two kinds
of time spans: daily and monthly. The original format was “.nc,”
and the data were spatial grid data with a spatial resolution of 2.5°.

The DEM (digital elevation model) was provided by the
Geospatial Data Cloud site, Computer Network Information
Center, Chinese Academy of Sciences (http://www.gscloud.cn/
sources/accessdata/310?pid=302). The data were derived from
the ASTER GDEM dataset based on the Advanced Spaceborne

Thermal Emission and Reflectance Radiometer (ASTER) data
developed by the National Aeronautics and Space Administration
(NASA) and the Ministry of Economy, Trade, and Industry
(METI) of Japan. The resolution of the DEM data used was
30 m, and the original format was “.tiff.” Based on Landsat
8 remote-sensing images, the datasets were generated by
manual visual interpretation. In the study area, the land use
types included the cultivated land, forestland, grassland, water
area, residential land, and unused land. These data were obtained
from the data center of resources and environment science,
Chinese Academy of Sciences and are 1-km resolution,
remote-sensing monitoring data of the land use status of
China in 2015 with the “.tiff” format. According to the
analysis, grassland, forestland, and cultivated land were the
main types in this region, accounting for 52.45, 20.82, and 18.
02%, respectively. Construction land accounted for only 3.22% of
the total area. The soil parameters were provided by the China
Soil Map Based Harmonized World Soil Database (HWSD). The
soil data were provided by the Nanjing Soil Institute for the
second land survey in 1995, and the data resolution was 1 kmwith
the “.tiff” format. Considering that the soil particle size grading
standard in the HWSD is American standard, these data can be
directly used to establish the SWAT model soil database. The
division threshold was set at 2,000 ha, and the Xiaoxiaqiao section
was selected as the outlet of the watershed. A total of 305
subbasins are generated, and the final division results are
shown in Figure 3D. Figures 3A–D have been used in the
SWAT model, and they are elevation, land use type, soil type,
and subwatershed distribution.

In this study, the mainstream Huangshui River and its
tributaries were simulated. The hydrological data are from
eight hydrological stations in the basin, including Huangyuan
station (H1), Xining station (H2), Dongjiazhuang station (H3),
Xinachuan station (H4), Niuchang station (H5), Qiaotou station
(H6), Chaoyang Station (H7), and Fujiazhai station (H8). The
daily flow monitoring data from 2008 to 2015 were used as the
hydrological data in this study. Table 1 shows the results of the
annual average flow of each hydrological station. Xining Station is
located in the lower reaches of the Huangshui watershed, close to
the exit of the basin, with an annual average flow of 39.99 m3/s. As
the second largest hydrological station, Chaoyang station is
located in the upper reaches of the confluence point of the
Beichuan River, the main tributary of the Huangshui River

TABLE 1 | Annual average flow of each hydrological station.

Year Streamflow station (unit: m3/s)

H1 (Huangyuan) H2 (Xining) H3 (Dongjiazhuang) H4 (Xinachuan) H5 (Niuchang) H6 (Qiaotou) H7 (Chaoyang) H8 (Fujiazhai)

2008 7.32 29.55 2.13 3.41 4.95 10.62 14.95 4.14
2009 10.62 41.19 2.88 6.10 8.52 18.18 22.27 3.19
2010 9.30 37.57 3.21 4.65 7.12 18.19 20.26 3.21
2011 9.35 43.27 2.86 5.42 8.96 19.96 24.75 3.26
2012 12.01 45.60 3.55 6.70 8.74 18.67 22.34 3.75
2013 9.22 30.08 2.87 4.52 6.53 13.64 15.68 2.83
2014 10.55 51.20 3.00 5.21 10.31 21.53 24.55 4.21
2015 9.14 41.46 2.36 4.31 9.22 16.04 19.86 3.84
Average 9.69 39.99 2.86 5.04 8.04 17.10 20.58 3.55
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basin, with an annual average flow of 20.58 m3/s. According to the
statistics on the multiyear hydrologic flow data, the hydrologic
situations had markable changes in different years. For example,
the annual average flow of the Xining station in 2008 was
29.55 m3/s, which was only 57.7% of the annual average flow
of 51.20 m3/s in 2014.

The consistency of the time scales of the data utilized for the
SDSM model, the GRNN model, and the SWAT model needs to
be considered. The calibration periods, validation periods, and
predictive periods were 1979–2000, 2001–2005, and 2021–2035,
respectively, in the meteorological prediction section. In the
hydrological simulation part, according to the daily
hydrological data of the Huangshui watershed from 2008 to
2015, the relevant data from 2008 to 2013 were taken as the
model training period, those of 2014–2015 were taken as the
model validation period, and those of 2021–2035 were taken as
the prediction period. In addition, the warm up period of the
model was 3 years before the beginning time of the cycle.

4 RESULTS ANALYSIS AND DISCUSSION

4.1 The Prediction of the Meteorological
Data
4.1.1 The temperature predictions by the Statistical
Downscaling Method Model
The statistical parameter R2 was used on the observation data and
large-scale forecast of the daily maximum and minimum
temperature from 1979 to 2000, and the R2 values were
approximately 0.9, which suggested that the temperature had a

direct relation with the large-scale forecast factors and could be
predicted directly. Moreover, the unconditional process analysis
model of SDSM was applied to predict the monthly maximum
and minimum average temperatures from 2021 to 2035.

The predicted (each year from2021 to 2035) and observed (each
year from 1958 to 2011) maximum temperatures and the average
minimum temperatures in different months are presented in
Figure 4 and Table 2. Compared with the observed
temperatures, the predicted maximum average temperatures of
January, February, June, October, November, and December have
an increasing tendency, and those of April, August, and September
have an opposite tendency. However, the minimum average
temperatures have an obvious increase in winter (November to
February) and decrease slightly in summer (June to August). The
prediction results suggested that considering the factors of climate
change, the temperature fluctuation of the Huangshui watershed
would become flatter, meaning that the temperature in winter
would increase obviously, and the temperature difference within
1 year would decrease. The determination coefficients (R-squared)
of the minimum temperature and maximum temperature were
0.77 and 0.62, respectively, and the Nash–Sutcliffe coefficients were
0.74 and 0.62. According to different season, the biggest change
occurred in winter. The prediction maximum average
temperatures will change from 2.87° to 7°, and the minimum
average temperatures will change from −12.35° to −8°.

The annual average maximum temperatures and minimum
temperatures of Xining station in the Huangshui watershed under
different scenarios are shown in Figure 5. Under different scenarios,
the average maximum temperatures and minimum temperatures at
Xining station increased. The maximum temperature rose from

FIGURE 3 | The graphic digital elevation model (DEM) data (A), land use data (B), soil data (C), and the divided threshold of the basin (D).
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13.88° to 15.25°, 15.13°, and 15.21° in different scenarios. The
minimum temperature rose from 0.08° to 1.82°, 1.72°, and 2.04°.
Under the RCP8.5 scenario, the annual average maximum
temperature showed an upward trend. However, in the RCP2.6
and RCP4.5 scenarios, the annual maximum temperatures showed
certain downward trends. At the same time, the annual average
minimum temperature showed an upward trend under the RCP85
scenario. Under the RCP2.6 and RCP4.5 scenarios, the annual
average minimum temperatures presented certain downward
trends. Overall, the maximum temperature and the minimum

temperature showed the same trends under different scenarios.
According to the analysis of different scenarios, the RCP2.6
scenario had a smaller temperature variation and stable climate
between different years.

4.1.2 Precipitation Prediction by the Improved
Generalized Regression Neural Network Model
Considering that daily rainfall is affected by atmospheric
circulation, temperature, humidity, cloud cover, and other
factors, seven factors (tas., pr., ths., ps., clt., uas., and vas.,)

FIGURE 4 | The predicted results of the monthly average temperatures.

TABLE 2 | The results of daily maximum temperature and minimum temperature in different periods.

Period Model Max Min

Calibration period (1979–2000) Measured value 13.96 0.53
Global climate model (GCM) 6.52 −5.93

Validation period (2001–2005) Statistical downscaling method (SDSM) 14.73 1.08
Measured value 14.50 −0.32
GCM 7.61 −5.19

Prediction period (2021–2035) Representative concentration pathway (RCP)2.6 SDSM 15.21 1.77
GCM 8.40 −4.08

RCP4.5 SDSM 15.08 1.67
GCM 8.19 −4.25

RCP8.5 SDSM 15.17 2.00
GCM 8.34 −3.81
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were selected as large-scale meteorological factors to predict daily
precipitation. The generalized regression neural network was
constructed and trained by using the historical meteorological
data from 1979 to 2000.

The daily precipitation in the verification period
(2001–2005) is seen as the curve of the original net in
Figure 6. The values of R2 and NSE were 0.53 and 0.4,
respectively, which were not sufficiently ideal. The forecast
results of daily precipitation were also not ideal. This may be
due to the strong randomness of daily precipitation on a daily
time scale. To improve the predictive accuracy, the GRNN
model was improved to construct a two-layer GRNN model in
which the first layer took the monthly precipitation, monthly
average near-surface air temperature, average near-surface
wind, near-surface relative humidity, and surface air
pressure as the inputs to predict the monthly precipitation.
Then the monthly precipitation was induced into the second
layer as the correction factor to predict the daily precipitation.
The R2 and NSE values obtained for the improved GRNN
model were 0.72 and 0.70, respectively, suggesting that the

accuracy of the results was improved and could reach a
satisfactory level.

By combining the improved GRNN model with the large-scale
meteorological data output by the CanESM2model, the precipitation
predictions of the Xining station under different RCPs were obtained.
The annual average precipitation prediction results of the Xining
station are shown in Figure 7. The annual average precipitation
amounts of RCP2.6, RCP4.5, and RCP8.5 are 471.88, 486.98, and
485.67mm, respectively, at Xining Station, which are very close. The
annual average precipitation has an increasing tendency for RCP2.6
and RCP8.5, but a decreasing tendency for RCP4.5. Under the
RCP2.6, RCP4.5, and RCP8.5 scenarios, the annual maximum
precipitations are 568.06mm at the year of 2028, 653.66mm at
the year of 2027, and 621.39mm at the year 2034; the annual
minimum precipitations are 372.00mm at the year of 2024,
407.91mm at the year 2035, and 383.45mm at the year 2035.

The monthly precipitation predictions and the observed
precipitation data of Xining station are shown in Figure 8. It
can be seen from the figure that during the dry season (November
to April), the precipitation amounts of different RCPs have no

FIGURE 5 | The predicted results of the annual average temperatures.
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obvious changes with the observed precipitation; however, for the
precipitation of the wet season (May to September), the predicted
precipitation has a large increase.

4.2 The Prediction of the Hydrologic Data
4.2.1 Calibration and Evaluation of the Parameters
The parameters used in this model were chosen as follows: First,
the sensitivity ranking of the whole watershed parameters was
conducted through the sensitivity analysis process, and the
parameters ranked at the top were selected. At the same time,
the parameters to be calibrated, their alternative methods, and
initial rate determination range were determined in combination
with the results of the SWAT manual and related research as well
as the watershed related literature. Finally, 20 parameters and
their initial value ranges were obtained. The original data in this
paper were mainly used to calibrate the parameters and compare

the simulation results with the final evaluation to determine the
simulation effects of the model.

The daily flow rate data from 2008 to 2013 were set as the
model calibration period, and those of 2014 and 2015 were set as
the validation period of the model, and the 3 years before the
calibration period were set as the model reheating period. The
calibration was conducted for the eight hydrologic stations of the
Huangshui watershed according to the principles of branches first
and then main streams, up streams first and then down streams.
The SWATCUP model was calibrated by the universal Sufi2
(Sequential Uncertainty Fitting Version 2) method, which takes
the nondeterminacies of the input data, model structures,
parameters, and metrical data into consideration and reflected
the nondeterminacies to the ranges of the parameters. After the
parameter calibration, the uncertainty interval at the 95%
confidence level could contain most measured data.

FIGURE 6 | The simulated and observed monthly precipitations in the verification period (2001–2005).

FIGURE 7 | The annual average precipitation prediction results of the Xining station.
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The observed results of the calibration period, optimum
simulation results, and 95% confidence interval are shown in
Figure 9. It could be suggested that the SWAT model could
simulate the monthly variation characteristics of the flow rates in
the Huangshui watershed by the results of the calibration period.
It was suggested that the single peak and multiple peaks in
Figure 9 were attributed to the flow-rate peaks. When there
was one main heavy precipitation in a month or the times of
precipitation were concentrated, a single peak appeared; when the
heavy precipitation happened more than once in a month or the
times of precipitation were dispersive, multiple peaks appeared.

According to the variation characteristics of the observed and
simulated results, it was concluded that the simulated results had
smaller fluctuation ranges and that the value variation was more
stable. In the wet seasons of the second (2009) and fifth years
(2012) of the calibration period, the observed results were all
higher than the optimum simulated results. The R2 and NSE
values of most hydrologic stations are approximately 0.75 and
0.70, respectively, which can properly reflect the whole flow rates
of the Huangshui watershed.

The observed and updated simulated flow rate results in the
verification period of the Xining hydrologic station are shown in
Figure 10. The observed and simulated values are well fitted,
especially for Xining Station, which is upstream of the basin main
exit and can effectively reflect the variation characteristics of the
flow rate with time.

4.2.2 The Simulation and Prediction of the
Hydrological Data
The parameters calibrated by the SWATCUP were input into the
SWAT model to obtain runoff data at the exit of the Huangshui
watershed from 2006 to 2015, which was set as the basic period.
The average amount of runoff was 49.59 m3/s, and 2007 and 2013
had the largest and smallest runoff amount, at 60.83 and
37.31 m3/s, respectively. The runoff data were set as the basic
data for the hydrological analysis under different climate change
scenarios.

The predicted meteorological data at different RCPs were
applied in the SWAT model with the calibrated parameters of
the Huangshui Basin. The predicted runoff data at the exit of the

FIGURE 8 | The monthly precipitation predictions and the observed precipitation data.

FIGURE 9 | The observed results of the calibration period, optimum simulation results, and 95% confidence interval.

Frontiers in Earth Science | www.frontiersin.org January 2022 | Volume 9 | Article 75511910

Fu et al. Water Resources Availability Assessment

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


basin under different RCPs are shown in Figure 11. It was
suggested that under different RCPs, there was a large
distinction among the runoff data, and the runoff data were
64.59, 59.20, and 49.61 m3/s for RCP2.6, RCP4.5, and RCP8.5,
respectively. In addition, with the increase in CO2 emission, the
flow rate was larger than the flow rate between 2006 and 2015,
which was 49.59 m3/s.

4.3 Basin Water Availability Assessment
4.3.1 Analysis of Basin Ecological Water Demand
Based on monthly runoff, the original Tennant method divides
the whole year into two periods and calculates the percentages of
average annual flow. The first period is from October to March,
and the second period is from April to September. Actually, the
distinct regional characteristics and the monthly runoffs of the
Huangshui watershed force the redivision of these two periods.
According to the monthly average runoff data of the Xiaoxia

Bridge section from 2006 to 2015, it is at the exit of the Huangshui
River basin. It can be estimated that the annual average runoff of
the Huangshui watershed is 49.59 m3/s. The average runoff from
December to April is almost under 30 m3/s, which accounts for
22% of the annual overall runoff. Specifically, only runoff flow of
23.73 m3/s can be found in March. In comparison, the average
runoff in each month from May to November is above 40 m3/s,
which occupies 78% of the annual overall runoff. During the
period from July to September, the average runoff can reach
80 m3/s. Thus, this study divides the whole year into two periods,
from December to April and from May to November. Moreover,
in consideration of the convenience of calculation, different levels
of runoff percentage are recommended based on the runoff ratios
at different time periods.

In this study, the Huangshui River is the largest tributary of the
Yellow River, which contains high sediment due to the influence
of geological conditions and human factors. The detention period

FIGURE 10 | The observed and updated simulated flowrate results in the verification period of Xining station.

FIGURE 11 | The predicted runoff data at the exit of the basin under different representative concentration pathways (RCPs).
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of the sediment is from June to September. From the annual
calculation of the mean annual sediment transport at Xining
station, the mean annual sediment content in the Huangshui
River is 2.45 kg/m3. Thus, it is necessary to attach the calculation
of the sediment-carrying water volume on the original Tennant to
ensure that the Huangshui River has enough water to transport
the sediment in the water body downstream. Since sediment
transport is mainly concentrated in the flood season, the
sediment-carrying water volume of the Huangshui River
during the flood season is 35 m3/t.

The average annual sediment-carrying water volume in the
Huangshui watershed is approximately 134 million m3,
accounting for 8.58% of the overall average annual runoff.
The ecological water demand in the river channel accounts
for 60.00% of the overall annual average runoff under the
optimal conditions, and the proportion of the sediment-
carrying water demand is 8.58%. Based on the results, the

recommended final ecological base flow is 68.58% of the
annual average runoff.

4.3.2 Basin Water Availability Assessment and
Prediction
Since the total amount of basin water availability is equal to the
difference between the basin average annual runoff and the
ecological water demand, the basin hydrological simulation
and the runoff under different climate scenarios can be
predicted. Figure 12 illustrates the water availability from
2006 to 2015. It is worth noting that the optimal mean annual
ecological water demand in the Huangshui River is 1.072
billion m3.

From 2006 to 2015, the mean annual average water availability
in the Huangshui River was approximately 491 million m3. The
largest water availability was 846 million m3 in 2007. The lowest
value was 104 million m3 in 2013, which accounted for 12.29% of

FIGURE 12 | The average water availability in the Huangshui River in the baseline period.

FIGURE 13 | The annual average water availability under different scenarios.
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that in 2007. Taking the average annual runoff in different
periods as input data, the ecological water demand in different
planning periods under various scenarios can be calculated. The
results of water availability in the Huangshui watershed are
obtained during the forecast period under different
concentration emission scenarios, as shown in Figure 13. In
terms of the low-concentration emission scenario RCP2.6, the
mean annual average water availability is 640 million m3. The
largest water availability is predicted to reach almost 833
million m3 in 2025. In contrast, the lowest data point is
predicted to be 362 million m3 in 2024. Different results can
be obtained in the medium concentration emission scenario
RCP4.5. The mean annual average water availability will
decline to 587 million m3, accompanied by the largest data
being 874 million m3 in 2026 and the least data being 492
million m3 in 2035. For the high concentration emission
scenario RCP8.5, the water availability will witness a dramatic
decrease, which falls to 492 million m3. Evidently, the range of the
water availability in scenario RCP8.5 will be the largest among the
three different emission scenarios, accompanied by a maximum
of 913 million m3 in 2023 and a minimum of 225 million m3

in 2021.
The results show that the Huangshui watershed is obviously

affected by global climate change.With the increase in atmospheric
CO2 concentration and the further aggravation of greenhouse
effects in the future, more obvious changes will be found in
regional climate conditions. In the future, research and
management in the Huangshui watershed need to fully consider
the changes in temperature, precipitation, and other environmental
factors. For example, when making a water resource allocation
management plan, the decision-maker could make a flexible
allocation plan in advance according to the change in trend of
water resources available. Some emergency plans or engineering
measures need to be developed in advance based on the predicted
results. The results also indicate that climate change may have a
positive effect on the ecological environment of the Qinghai–Tibet
Plateau and other special regions. This means that rainfall in the
region will increase as a result of climate change, and the
temperature difference will decrease throughout the year. The
region could shift from a semi-arid zone to a warm-humid
zone, and ecosystems would benefit. The economic and social
development of humanity in the region will also benefit from an
increase in the availability of water resources.

In this study, the statistical downscaling method, the GRNN
model, the SWATmodel, and the improved Tennant method has
been coupled. However, there are some shortcomings in this
study, which need to be improved in several aspects. For example,
in the further research, the researchers need to consider the
response relationship between land use change and climate
change. The hydrological change trend under the
superposition of land use change and climate change should
to be studied. The uncertainty in the research also needs to be
considered, especially the problem of uncertainty amplification
and superposition caused by the coupling of different methods.
At the same time, the selection of large-scale meteorological data
itself also needs repeated comparative analysis to select data sets
with better applicability.

5 CONCLUSION

The Huangshui watershed is an ecologically fragile area on the
Qinghai–Tibet Plateau of China. The meteorological and
hydrological data of the Huangshui watershed were simulated
under different climate change scenarios. In the simulation
process, the temperature was predicted by the SDSM model;
the precipitation data were simulated by the improved GRNN
model; furthermore, the meteorological data were applied in the
SWAT model to simulate the hydrologic processes at the basin
scale under various climate change scenarios.

Through these simulations, it was determined that the basin
temperatures were obviously changed by climate change, the
improved GRNN model adopted in this study could effectively
simulate the daily precipitation, and the R2 and NSE values of the
predicted results were significantly improved. Through the
prediction results of the temperature and precipitation, the
SWAT model could effectively simulate and predict the
hydrological changes in the basin under the influence of
climate change.

Moreover, the improved Tennant method is tailor-made for
the variety of hydrological characteristics and the high sediment
content in the river basin. The conclusion can be drawn that
climate change has a great impact on water availability. The
downscaling methods combined with the SWAT model and the
calculation method of water availability have been proven
effective in the study area. It was predicted that the
temperature of the studied region would become flatter on the
existing basis. Also, the precipitation would have a great increase
in the wet season fromMay to September. In addition, the runoff
of the Huangshui watershed and the water resource availability
would decrease with increasing carbon emissions under different
representative concentration pathway (RCP) scenarios.
Moreover, the study could also provide an effective method to
assess the regional hydrology and climate systems affected by
climate change in ecotones similar to the Huangshui watershed.
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