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Southwestern British Columbia (BC) is exposed to the highest seismic hazard in Canada.
Ocean Networks Canada (ONC) has developed an Earthquake Early Warning (EEW)
system for the region. The system successfully utilizes offshore cabled seismic instruments
in addition to land-based seismic sensors and integrates displacement data from Global
Navigation Satellite Systems (GNSS). The seismic and geodetic data are processed in real-
time onsite at 40 different stations along the coast of BC. The processing utilizes P-wave
and S-wave detection algorithms for epicentre calculations as well as incorporation of
geodetic and seismic displacement data into a Kalman filter to provide magnitude
estimates. The system is currently in its commissioning phase and has successfully
detected over 60 earthquakes since being deployed in October 2018. To increase the
coverage of the EEW system, we are in the process of incorporating detection parameters
from neighbouring networks (e.g., the Pacific Northwest Seismic Network (PNSN)) to
provide additional information for future event notifications.
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INTRODUCTION

Earthquake Early Warning (EEW) systems rapidly detect and characterize earthquakes to generate
alerts so that protective action can be taken before strong ground shaking occurs. Currently, EEW
systems operated in Mexico, Japan, South Korea, Taiwan and the United States provide public alerts
for some areas with acute seismic hazard. Allen and Melgar (2019) provide a review of currently
operational systems and the rapid development that took place over the last 10 years. In comparison
to traditional observation-based seismology, the problem setting for an EEW system is different
because of the limited time available to make an accurate earthquake detection. The time needed to
analyze the full-waveform seismic data over the total duration of an earthquake cannot be afforded;
hence algorithms to estimate the location and magnitude of an earthquake are based on the initial
P-wave arrival times. In Canada, the southwestern coast of British Columbia (BC) and Vancouver
Island are situated tens of kilometres east of the locked portion of the Cascadia Subduction Zone
(CSZ) where the Juan de Fuca plate is subducting beneath the North American plate; exposing the
region to the highest seismic hazard in the country (Adams et al., 2019). This imposes a great demand
for an EEW system that could provide timely notifications for damaging earthquakes, including
tsunamigenic megathrust events.

In 2015 Ocean Networks Canada (ONC), in collaboration with Natural Resources Canada
(NRCan) (1975), started developing an EEW system for southwestern BC that currently consists of
32 land-based stations and eight seafloor stations (Figure 1). The EEW system combines land-based
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seismic sensors with seafloor-installed seismic instruments that
are connected to ONC’s subsea cabled network (NEPTUNE:
North-East Pacific Time-series Undersea Networked
Experiments). NEPTUNE is the world’s first multi-node
cabled ocean observatory consisting of an 800 km cable loop
that drapes across the CSZ (Barnes and Tunnicliffe, 2008).
Seismic sensors located at nodal points along the cabled
network on top and seaward of the inter-seismically locked
portion of the CSZ aim to contribute to more accurate results
of offshore earthquake locations and may also lead to more rapid
detection times for some events.

The addition of seafloor seismic instrumentation into a real-
time warning system has only been successfully implemented in
Japan. The Dense Oceanfloor Network System for Earthquakes
and Tsunamis (DONET1) was first installed in 2006 with a series
of cabled seafloor nodes that connect various seismic instruments
and pressure sensors to monitor the hypocentral region of the
Nankai Through, Japan. The Seafloor Observation Network for
Earthquakes and Tsunamis (S-net) was installed following the
damaging Mw 9.0 Tohoku earthquake and tsunami in 2011. This
additional network consists of 150 pressure gauges deployed
along the Japan Trench linked by fiber-optic cables
(Yamamoto et al., 2016; Wang and Satake, 2021).

By incorporating 3-axial accelerometers to co-located Global
Navigation Satellite System (GNSS) stations onshore, the
accuracy of calculated magnitudes from P-wave displacements
can be significantly improved (Crowell et al., 2009; Bock et al.,
2011; Melgar et al., 2013; Niu and Xu, 2014; Li 2015). In
collaboration with the Federal Government’s (Natural
Resources Canada (NRCan), 1975), its Canadian Hazard
Information Service (CHIS), and the Canadian Geodetic
Survey, land-based seismic stations have been added and
upgraded with geodetic instruments to acquire accurate
geospatial displacement information on-site.

Precise point positioning (PPP) algorithms use corrections
from the Canadian Spatial Reference System to allow for
centimeter-level precision of ground displacements
(Rosenberger et al., 2018; Hembroff et al., 2019). Data are
then analyzed by applying a Kalman filter (Kalman, 1960;
Smyth and Wu, 2007; Bock et al., 2011; Rosenberger et al.,
2018) that combines the geodetic and seismic displacement
values. The computational complexities involved in reliably
combining real-time acceleration and geodetic data streams
make ONC’s implementation unique as it takes advantage of
the co-location of the two instrument types, the on-site
processing of the raw data streams, and the minimal data
latency of all sensors. Ongoing research into the viability and
contribution of geodetic information in an EEW system is under
development by various groups such as Geng et al. (2013),

FIGURE 1 |Overviewmap of EEW sites. Purple triangles display sites that have both GNSS and seismic instruments. Green triangles represent sites that only have
seismic instruments deployed. The red star marks the location of the M6.6 Sovanco earthquake from October 22, 2018 as identified in the NRCan earthquake catalog.
The yellow star displays the location calculated by our EEW system for the same event (see Preliminary Results). Circles with waveform symbols display the
geographic locations of sites that contributed to the first notification of this event as described in Preliminary Results. Triangles are stations that did not contribute
to detection of the Sovanco earthquake. Data sources: Plate margin boundaries are obtained fromHyndman andWang, 1995. Digital Elevationmodel derived fromRyan
et al., 2009 NRCAN topography, and Canadian Hydrographic Service bathymetry.

1https://www.jamstec.go.jp/donet/e/.
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Murray et al. (2018), Goldberg et al. (2019), Ruhl et al. (2019), and
Hodgkinson et al. (2020).

In addition to the presence of offshore seismic and pressure
sensors located across the locked portion of the subduction zone,
the most significant aspect of the EEW system is the capability to
process real-time waveform acceleration data and GNSS
observations on-site at each onshore station, after which the
relevant detection information is sent to a central server to
associate detections and issue notifications. This is not
common practice in other EEW systems where the full-
waveform seismic data from each station are sent via network
to a central processing location (e.g., ShakeAlert; Wurman et al.,
2007; Hartog et al., 2016; Kohler et al., 2018; Kohler et al., 2020).
The specific topographical, geological, and environmental
challenges of Vancouver Island increase the difficulty and cost
to ensure a reliable, high-bandwidth network coverage to all
deployed locations. With on-site processing of seismic and
geodetic data, and by transmitting only parametric information
to a central server (associator), bandwidth efficiency is greatly
improved and operational costs are reduced, alleviating the need
for an extensive communication infrastructure.

The EEW system is now successfully operating in testing mode
with over 60 successful detections to date. Within this paper we
only focus on the detected events between October 2018 and
October 2020.

THE EARTHQUAKE DETECTION
ALGORITHMS

Several algorithms which determine the epicentre of an event
from just the first arrival times of a wave (in the case of

earthquakes, the P-wave) have initially been developed in
acoustical engineering rather than in seismology
(Friedlander, 1987; Schau and Robinson, 1987; Huang and
Benesty, 2000; Pirinen et al., 2003; Pirinen, 2006; Gillette and
Silverman, 2008).

With the arrival of a P-wave at an individual seismic station,
the earthquake detection processing is initiated. The seismic
signal is processed onsite with a polarization filter and detection
algorithms utilizing short time average, long time average ratios
(STA/LTA). P-wave detection parameters from at least four
seismic stations within a given time window are processed
using two independent algorithms to calculate the earthquake
epicentre; Direct Grid Search (DGS) and Linearized Least
Squares (LLS) (see Figure 2 and Magnitude Estimates).

We describe the implemented methods for epicentre and
magnitude calculations in the following sections.

P- and S-Wave Detection
EEW systems are dependent on the rapid identification of
P-waves and S-waves that arrive at a seismic station. P-wave
particle motions exhibit small incidence angles and
approximately linear polarization in the direction of
propagation (Aki and Richards, 2002; Rosenberger, 2010;
Rosenberger, 2019). Hence, P-waves can be distinguished from
background noise, or other seismic waves such as S-waves,
through polarization filtering. The mathematical approach is
discussed in more detail in Rosenberger (2010).

Transient signals within the background noise are detected at
each station using STA/LTA ratios (Allen, 1982; Küpperkoch
et al., 2012; Rosenberger, 2019). An STA/LTA detector works by
computing the ratio of twomoving-averages with different sizable
time window lengths ΔT such that

FIGURE 2 | Schematic representation of the EEW detection process. The waveform data are processed on site and the detection parameter are sent to a
centralized server. There the two algorithms, Direct Grid Search (DGS) and Linearized Least Squares (LLS) method are independently calculating an epicentre location. A
more detailed schematic for the EEW system is shown in Figure 4.
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S(t) � y(t)ΔTshort
y(t)ΔTlong

(2.1)

where y(t) is the moving average for the signal y(t) at time t for
varying window lengths. When a detection ratio S(t) exceeds a
programmable threshold, a detection is recorded. Ideally, STA
time windows are selected for a given station to be longer than a
few periods of a typically measured seismic signal (Trnkoczy,
2012). If the STA time window is too short, the detector will be
highly sensitive to spike-like events in the signal. The overall
sensitivity of the detector decreases with an increasing time
window. For the LTA, a longer time window makes the
detection more sensitive to P-wave signals (Trnkoczy, 2012).
The initial STA and LTA window sizes for P-wave detections
from all land-based and subsea sites were 1 –10 s, respectively. For
S-wave detections the window sizes were 3 –30 s, respectively.
Fine-tuning of these parameters on a site-by-site basis will be
followed up in the EEW system commissioning phase.

The Direct Grid Search and Linear Least
Squares Algorithms
When four or more stations within the network detect a P-wave
within a given time window of 120 s, two independent algorithms
calculate the earthquake epicentre. Within the DGS algorithm,
the region of interest is overlain by a grid of geographical
coordinates of appropriate resolution (0.15° × 0.15°; ∼15 km)
(Moni and Rickard, 2009; Rosenberger et al., 2019a). The current
grid limits are set to be within 46°N and 52.2°N, and 131.75°W and
123°W. The hypocentre depth is fixed at 25 km, which is
approximately the depth of the down-dip limit of partial
locking of the CSZ (as discussed in McCrory et al., 2004;
Wang and Trehu, 2016; Bilek and Lay, 2018). The potential
epicentre of an earthquake can be determined with a grid-search
based on the time differences of P-wave arrivals (TDOAs) at
seismic stations (N). For each grid point, the hyperbolic
intersection forward problem is computed and the possible
source location based on two stations at a time is computed
(i.e., the TDOA between stations 1 and 2, the TDOA between
stations 2 and 3, etc . . . ). The sum of these values at each grid
point indicates the maximum likelihood estimate of the source
location. The DGS algorithm, from our experience during the
commissioning phase, has proven to be very robust in the
presence of errors. Additionally, a staggered grid approach,
which is described in more detail by Rosenberger et al.
(2019a), is used to improve the results and decrease
computation times by starting with the larger cell size (0.15°;
∼15 km) and gradually decreasing the overlain grid size (0.05°;
∼5 km). To account for the quality (further referred to as quality
factor) of the solution the root-mean-square (RMS) value from all
TDOA combinations is calculated as

ΔTRMS �

�������������������������������
2

N(N − 1) ∑N−1

m�1
∑N

n�m+1
(���δtm,n‖ − ‖σm,n‖)2

√√
(2.2)

where δt are the measured and σ the theoretical TDOAs derived
from the current epicentre.

The LLS algorithm follows a method suggested by Gillette and
Silverman (2008) as a “one step” source location calculation based
on TDOA. The basic algorithm provides two source station
coordinates from initially four seismic stations which have
detected the signal. By expressing the location problem as a
set of linear equations, the epicentre can be resolved by
calculating the obtained inverse matrix. As described in
Gillette and Silverman (2008) using a singular value
decomposition (SVD) to compute the inverse matrix is
justified by the fact that for arbitrary source-receiver
geometries the matrix may have a high condition number (γ)

c � σ0

σN
(2.3)

The problem is ill-conditioned, meaning small errors in the
data may cause large errors in the solution.

The quality of the best solution for the LLSmethod depends on
the choice of the reference sensor r, as the one yielding the
smallest product of condition number and TDOA residual:

C � c(r) p ΔTRMS (2.4)

Further details on ONC’s implementation of the DGS and LLS
algorithms can be found in Rosenberger et al. (2019a).

When epicentre results from both methods converge within
less than 80 km, an earthquake event is reported with the
epicentre location being the mean of both results. A constant
initial P-wave velocity of 7,000 m/s is used for the DGS and
LLS epicentre calculations (Rosenberger et al., 2019a). The
results are refined by testing if smaller or larger velocities
would produce a more accurate epicentre based on the quality
indicators within these two algorithms. The most accurate
epicentre result is determined based on P-wave velocities
between 6,000 m/s and 8,000 m/s with an incremental step-
size of 500 m/s.

Magnitude Estimates
In the last 10 years several research publications have
discussed methods that incorporate the information
contained in the first few seconds of a P-wave record to
estimate reliable event magnitudes quickly (e.g. Kuyuk and
Allen, 2013). This is an area of active research and in
consequence there is no single, generally accepted set of
methods. Additionally, seismologists engaged in EEW
research propose a variety of empirical scaling relationships
to address different tectonic settings.

For earthquakes with smaller moment magnitudes (M; <M5)
two independent algorithms are applied in the EEW system to
estimate the magnitude; one based on the frequency content of
the early seismic signal (Lockman and Allen, 2007; Wurman
et al., 2007), the other based on initial displacement amplitudes
(Kuyuk and Allen, 2013). The first algorithm based on Wurman
et al. (2007) uses empirically derived scaling relationships
incorporating the maximum predominant period (τmax

p ) of the
waveform signal from the first 4 s after the initial P-wave
detection. The latter contains the frequency content of the
P-wave signal and therefore acts as an indicator of the size of
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an event (Allen and Kanamori, 2003; Wurman et al., 2007).
Wurman et al. (2007) describe the estimated magnitude based on
the scaling relationship valid for Northern California as,

M � 5.22 + 6.66 p log10(τmax
p ) (2.5)

The second method relies on the peak amplitude information
of the P-wave displacement (PD), which is derived from the
vertical component waveform data. Again the first 4 s of the
P-waveform are utilized to retrieve the absolute maximum value
(Kuyuk and Allen, 2013). The empiric relationship between the
peak displacement (PD) and the epicentral distance (R) to an
individual station (i) gives the magnitude estimate,

Mi � 1.23(log10 PDi) + 1.38(log10 Ri) + 5.39 (2.6)

Kuyuk and Allen (2013) state that this relationship is valid
globally and not restricted to one particular tectonic setting. τmax

p
and PD are further referred to as the seismic Berkeley
(Rosenberger et al., 2019a; Rosenberger, 2019). The mean of
these two magnitude estimates determines the final magnitude
used by the EEW system. If either of the two magnitudes is
smaller than M1 the other would be chosen. In the case of both
magnitude estimates being smaller than M1 or both differing by
more than twomagnitudes, the event association process does not
declare an event.

For larger earthquakes (≥M6), the magnitude estimates will be
continuously updated using data from the unbiased
displacements over the total duration of the earthquake
(Crowell et al., 2013). Assuming the magnitude can be
determined from the GNSS data (see next sections), it will be
selected as the estimated event magnitude value, otherwise the
magnitude will be solely computed from the seismic data.

Incorporation of GNSS Data
More recent research shows that incorporating real-time
displacement data from GNSS will provide more robust
magnitude estimates and updates during a large earthquake
(Crowell et al., 2009; Crowell et al., 2013; Hodgkinson et al.,
2020; Melgar et al., 2020). The technique to integrate a GNSS
component into a seismic station is relatively new and currently
only a small number of sites with collocated instruments exist
world-wide. The algorithms for the joint processing of seismic
and GNSS data to-date have been verified with recorded data in
offline experiments (Bock et al., 2011; Melgar et al., 2013; Niu and
Xu, 2014; Li, 2015). During large earthquakes greater than M5,
these data will provide more reliable magnitude estimates in the
early stages of a developing earthquake, especially a megathrust
event. The initial algorithms developed within ONC for an EEW
system using only acceleration data have been extended to
incorporate GNSS data to produce an unbiased displacement
time series (Rosenberger, 2019).

Magnitude Estimates From Utilizing GNSS Data
In general, accelerometer data provide the high frequency
information while applying a high-pass filter to remove any
bias. The low frequency content of the derived displacement
data is reconstructed when incorporating the GNSS data.

Adding these data provide the system with two magnitude
parameters – peak displacement (PD) and peak ground
displacement (PGD) (Crowell et al., 2013) - that are derived
from processing the GNSS data using three separate instances
of PPP functions (Zumberge et al., 1997; Collins et al., 2009; Geng
et al., 2013; Melgar et al., 2020; Hodgkinson, et al., 2020). The
three PPP instances produce independent data streams referred
to as the Orbit, Floating-point, and Integer ambiguity solutions
based on their increase in accuracy, respectively.

Unbiased displacement values are computed by combining the
individual displacement values retrieved from each separate PPP
stream with the incoming acceleration values from the seismic
instrument, applying a Kalman filter. The two horizontal
displacement values are used to calculate the PD, whereas the
horizontal and vertical displacement values provide the PGD.

Although the incorporation of GNSS data presents challenges,
the solution yields reliable results with added redundancy.
Crowell et al. (2013) described empirical relationships for
geodetic derived PD and PGD values as,

MPD � log10 PD + 0.893 + 1.73 log10 R
0.562

(2.7)

MPGD � log10 PGD + 5.013
1.219 − 0.178 log10 R

(2.8)

where R is the hypocentral distance in units of kilometres. PD and
PGD displacements are in units of centimetres. For larger events
(>M6) the final magnitude estimate from the PGD scaling
relationship (Eq. (2.8)) will be prioritized over all other
magnitude estimates in the EEW system (Rosenberger et al.,
2019c).

Experiment-Based Validation of the GNSS Data
Incorporation
ONC in collaboration with NRCan experimentally proved the
viability of combining GNSS measurements with acceleration
data by using the test system consisting of a Nanometrics Titan
SMA accelerometer and GNSS antenna both attached to a
rotating base with a radius of 50 cm (Figure 3) (Rosenberger,
2018). The mechanical system, designed by engineers at NRCan,
keeps the orientation of the accelerometer fixed in one
directionwhile the platform rotates. The unbiased displacement
time-series from real-time PPP and acceleration data were
obtained with the system conducting six experiments with
varying rotational periods between 2.0 and 12.5 s
(Rosenberger, 2018). Acceleration data was subjected to a
0.075–5 Hz band-pass filter before processing to replicate real-
time conditions in the online processing. Positional results from
the Kalman filter matched well with an average standard
deviation (STD) of 0.83 cm.

The Event Association
Each land-based station hosts an accelerometer and a fitlet2

computer; a small fanless high-performance mini PC.

2https://fit-iot.com/web/products/fitlet2/.
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FIGURE 3 | The rotating system of an accelerometer and GNSS antenna used for testing the EEW detection algorithms. The base holding the antenna and
accelerometer does not change relative orientation while testing. The plan and design was developed by Natural Resources Canada (NRCan) (1975) and the Geodetic
Survey of Canada (GSC).

FIGURE 4 | Schematic overview of data flow from one land-based site to the event association in ONC’s data centre. The raw acceleration data are processed to
obtain the detection times of P-wave and S-wave onsets and the seismically derived Berkeley parameters. The raw acceleration data and the data from the three PPP
streams are combined in the Kalman Filter algorithm to obtain unbiased displacement values. These unbiased displacements are correlated with the Berkeley parameter
values and the P-wave and S-wave detection times to compute an epicenter and magnitude estimate for the detected event. Parameter data from all sites that
detected an event are sent to ONC’s data center where the event is associated, archived, and event notifications are sent out.
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Additionally, most land-based sites are equipped with GNSS
antennas and receivers to obtain the GNSS data. The three-
component raw acceleration waveform data are recorded
continuously with a 100 Hz sample rate and sent to the fitlet
computer, where the detection algorithms (see P- and S-wave
Detection) are deployed to compute P-wave and S-wave detection
times as well as the seismic Berkeley parameters: τmax

p and PD (see
The Direct Grid Search and Linear Least Squares Algorithms).
The 100 Hz raw waveform data are also sent to the Kalman
algorithm deployed on the fitlet computer to be co-processed with
the three incoming PPP data streams sampled at 1 Hz. The
resulting unbiased displacement values, seismically derived
Berkeley parameters, and detection times of P-wave and
S-wave onsets, are then processed to calculate the final PD and
PGD values that contribute to the magnitude calculation. For
subsea based accelerometers, raw waveform data are sent to the
network server located at the shore station in Port Alberni, BC,
where the seismic Berkeley parameters and the P-wave and
S-wave detection times are computed.

All data are sent from each site (fitlet computer on land-based
stations; Port Alberni shore station server for subsea instruments)
to the ONC data centre located at the University of Victoria, BC
(UVic) and to a redundant data centre in Kamloops, BC. Data are
then evaluated (associated), archived, and event notifications are
sent out (Figure 4).

Algorithm Testing
The robustness and accuracy of the algorithms applied in the
EEW system were tested by simulating a large number (>2000) of
magnitude M7 earthquakes (Rosenberger et al., 2019b). However,
only the epicentre algorithms were tested at this stage.
Simulations of GNSS displacement data were not available at
the time of testing. The simulated earthquakes were placed at a
hypocentral depth of 20 km on individual points of a regular

geographical grid (UTM Zone 10N projection) with a grid cell
size of 15 km by 15 km. The grid encompasses the locked zone of
the CSZ as outlined in Gao et al. (2018). For a limited number of
stations in the EEW system, an epicentral distance was calculated
for each simulated event. The theoretical arrival times of P-wave
and S-wave were computed based on a spherical Earth model
travel-time algorithm using the TauP-toolkit hosted at IRIS (see
Acknowledgements and Data Resources). The seismic Berkeley
parameters, PD and τmax

p , were derived based on the empirical
relationship of magnitude and epicentral distance (Eqs 2.5 and
2.6; Incorporation of GNSS Data).

In this testing approach the first arrivals of four and then ten
stations were used in the event association to simulate the progression
of time as more stations detected the event. The condition number γ
for thematrix inversion of the LLS algorithm serves as afirst proxy for
the quality of a solution. Figure 5 shows results of the first four
stations that detected an event from anywhere in the geographic
region. Higher condition numbers (>30) represent areas where an
epicentre was more difficult to calculate from P-waves arriving at
these few stations. The geographical locations of these poorly
constrained regions (yellow to red) are in alignment with the
seismic sensor distribution of the network (Figure 5; yellow
circles; Note: The testing was performed prior to all EEW stations
being deployed hence the sparse distribution.).

Waiting for ten stations to detect the same event shows a rapid
improvement in quality of the solution (Figure 6). However, the
condition numbers for events occurring underneath most of
Vancouver Island and less than 200 km offshore from central
Vancouver Island only showed slight improvements when
including more stations in the detection algorithms.

High condition numbers amplify errors in the real-time data
and affect epicentre relocations as well as magnitude estimates.
Figure 7 represents spatial errors between true (simulated) and
calculated epicentre locations obtained from the averaged

FIGURE 5 | Results from the LLS algorithm for the first four stations that detected an event located anywhere in the geographic region. Condition numbers greater
than 30 are connected predominately to regions where the relative base-line of the respective four station array is short. Yellow circles mark the location of the seismic
stations that were included in the modelling approach.
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solution of the DGS and the LLS algorithms. The results represent
the event association from P-wave arrival detections at the first
ten stations. Areas with greater distance errors (>30 km) are
related to the station array consisting of the first ten stations
having increased uncertainty within the Gaussian function
utilized by the DGS algorithm as the distances between
sources and stations increases (Rosenberger et al., 2019a).

PRELIMINARY RESULTS

While the EEW system was only partially installed and
algorithms were still under development, the first successful
event detection occurred in late 2018, when a series of seismic

events along the Sovanco Fracture Zone (red star; Figure 1) was
detected. According to the NRCan earthquake catalog the first
earthquake (M6.1) occurred at 05:39:35 (UTC) on October 22,
2018. The hypocentre was located 218 km SW off the northern tip
of Vancouver Island at a depth of 11 km. The first EEW event
notification was sent after the P-wave was detected on six stations
within the network (see Figure 1; contributing sites are indicated
with round symbols). The detections were made within 45 s after
the origin time (Figure 8). The notification was issued 4 s later
(49 s after the origin time). The initial magnitude reported by the
EEW system was M6.6 and later updated to M6.75. The
calculated epicentre from the EEW system (yellow star,
Figure 1) was within 30 km of the epicentre reported in the
NRCan catalog (red star, Figure 1). This event is so far the only

FIGURE 6 | Results from the LLS algorithm for the first ten stations that detected an event located anywhere in the geographic region. Condition numbers greater
than 30 are connected predominately to regions where the relative base-line of the respective 10 station array is short. Yellow circles mark the location of the seismic
stations that were included in the modelling approach.

FIGURE 7 | The distribution of errors in epicentral distances from the combined algorithms after the first ten stations have detected the P-wave arrival. Yellow circles
mark the location of the seismic stations that were included in the modelling approach.
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earthquake detected within the EEW system that used the
unbiased displacements from GNSS for magnitude
calculations, due to all other detected events being of
magnitudes less than M6. It is important to note the first
P-wave from this event was detected on two subsea stations,
Clayoquot Slope Bullseye (NC89) and Cascadia Basin (CBC27);
8 s prior to the first land-based station detecting the same event
(Figure 8). This allowed for the EEW system to begin classifying
the earthquake earlier than if the system relied solely on
detections from land based stations. Three aftershocks within
the geographical range of the first detection were also recorded by
the EEW system and confirmed as successful detections based on
results from the NRCan and USGS catalogs.

EVENT NOTIFICATION

This EEW system does not deliver warnings to the general public
but rather notifications of a detected event that occurred within
the current grid boundaries of the EEW system. The notification
is a small data package that conforms to the Common Alerting
Protocol (CAP) format. It details the earthquake epicentre
coordinates, the magnitude estimate, the estimated event
origin time, and the number of stations that contributed to
the detection.

The notification is sent to each subscriber, assumed to be an
operator of critical infrastructure or responsible authority in
charge of important assets. The distributed software

architecture implemented by ONC allows each subscriber to
run codes, triggered by the arrival of the notification package,
to calculate the time left before shaking starts and the expected
Modified Mercalli Intensity (MMI) for their specific locations of
concern. Subscribers have the ability to utilize the newly
calculated information to trigger their own automated event
response workflow based on safety protocols they have
designed. For example, a mass transit operator could calculate
the MMI for the different locations of their trains across their
network and determine the best course of action to maximize the
safety of their passengers. ONC aims to reliably provide messages
for earthquakes of M4 and greater that are relevant for the region.

DISCUSSION

Observations made in empirical tests and associated real-time
detections show good initial performance of the system. The first
successful event detection for the Sovanco earthquake series shows
the EEW system can detect earthquake events occurring further
offshore from Vancouver Island with a magnitude of >M6. The
calculated magnitude values and epicentre locations aligned with
those reported by the NRCan and USGS catalogs. Following this first
successful event detection, improvements on the algorithms and the
overall EEW system were implemented with many subsequent
earthquake events successfully detected between October 22, 2018
andOctober 20, 2020 withmagnitudes ranging fromM1.7 toM6.5 as
confirmed with the NRCan and USGS catalogs.

FIGURE 8 |Waveforms that contributed to the first notification for the Sovanco earthquake that happened on October 22, 2018. Time is given in seconds after the
origin time (5:39:35 UTC) as identified in the NRCan catalog. The first twowaveforms were recorded at offshore stations (CBC27: Cascadia Basin: ODPSite 1027, NC89:
Clayoquot Slope—ODP Site 889) while the following four traces were recorded onshore (BCOV: Beaver Cove, TFNO: Tofino, UCLU: Ucluelet, VICP: Victoria Peak). Site
locations are shown in Figure 1. The parametric data from these sites can be obtained fromOcean Networks Canada Society (2021). Rawwaveform data from the
subsea instruments can be obtained from Ocean Networks Canada, (2009).
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It should be noted that the system currently is not designed to
report for events outside of the grid boundaries or for magnitudes
smaller than M4. Even though smaller events might get detected
with the sensors distributed within the ONC network and an
event association could have been declared, these results will not
be considered validated.

Figure 9A shows the distribution of magnitude errors over
time (magnitude errors are represented by color and circle size).
Magnitudes prior to April 2019 were mostly over-estimated with

the EEW system, whereas more recent event notifications tend to
slightly underestimate the earthquake magnitude. The black
dotted line in Figure 9A indicates the current magnitude
threshold for which ONC intents to send out reliable
notifications. Further improvement to the station network and
synthetic system testing will hopefully improve the magnitude
calculations. Events detected with the EEW system that were
identified in the NRCan catalog were given priority over the
events identified in the USGS catalog. Figure 9B shows errors in

FIGURE 9 | (A) Time series of magnitude errors of the final EEW system event notification in relation to the same events detected and cataloged by NRCan or USGS
(priority was given to NRCan cataloged events). The magnitude error is represented by the colour and the size of the circles. The black dotted line highlights our goal of
generating reliable notifications for relevant events of ≥M4. (B) Time-series of epicentral distance errors for the same events and represented by the same symbols as in (A).
(C)Map viewof the events shown in (A) and (B). We only show events recorded by the EEW systembetweenOctober-2018 andOctober-2020withmagnitudes ≥M3.
The EEW system generated epicentres (colored circles) and the reference epicenter locations retrieved from NRCan or USGS (black dots) are connected by lines.
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final epicentre location compared to catalog epicentres from
NRCan and USGS for the same events as shown in the panel
above. Smaller errors in magnitude (smaller circles) tend to
correlate with more accurate epicenter locations. Figure 9C
shows the spatial distribution using the same events and
symbols as above. Black lines connect the EEW epicentres
(shown as colored circles) to the epicentre locations from the
NRCan and USGS catalogs (shown as black points with priority
given to events catalogued by NRCan).

The spatial distribution of location errors aligns with the findings
of our test results described in Algorithm Testing. The epicentre
locations of events especially to the north-west and south-east of the
network are not well constrained. This is well demonstrated by a
series of events that took place on the southern section of the Queen
Charlotte Fault Zone. The locations that our EEW system estimates
for these events are systematically too close to the network, resulting
in underestimated magnitudes. All earthquakes that occurred close
to the shoreline or underneath Vancouver Island were successfully
detected with significantly smaller epicentre differences and closer
magnitude estimates. The NRCan and USGS catalogs contain no
events ≥ M3.5 with epicenters on Vancouver Island or the CSZ
offshore Vancouver Island that were missed by our EEW system
during the studied time range.

Over the next couple of years, the EEW system will undergo a
more thorough system testing which will incorporate simulated
events that represent megathrust rupture earthquakes using the
approach detailed in Melgar et al., 2016. Additionally,
improvements to the EEW network are underway, mostly to
reduce overall system latency. On average, there is a 2.5 s latency
that comprises the computation time on the fitlet computers at the
various sites and the data transfer from each site to the two servers in
operation within the system. The ∼400 km distance between these
servers is intentional in case of catastrophic damage occurring in one
of the cities. The latency of the processed PPP streams arriving at the
server locations is slightly larger, hence their data incorporation into
the magnitude computation increases the latency of the magnitude
parameters on average to 5 s after a P-wave detection occurred at any
individual station. However, if the PPP streams are not utilized in the
magnitude computation, only the seismic derived Berkeley
parameters are applied and the latency decreases.

Latency issues pose integral challenges to achieve high efficiency
and accuracy of a system; however, there are approaches used to
overcome latency. Firstly, added network densification increases the
number of stations that can contribute to detection. Station failures
affect latency, and so by adding more stations, system-wide internal
redundancy can be improved. Additionally, volatile weather
conditions cannot be ignored. Weather varies greatly across
Vancouver Island, where most of the land-based stations are
located. The winter months are especially harsh, adding difficulty
and challenges to maintaining instrument uptime. Consequently,
station outages and data latencies can be mitigated by densifying the
station network and increasing local station reliability with resilient
power supply systems and multiple data paths.

Lastly, it is beneficial to identify site-specific characteristics that
impact the instrument response to a seismic signal. As seismic waves
travel through the subsurface, changes in ground velocity greatly
affect the ground shaking observed by accelerometers, or the travel

time for a P-wave to reach a station. Applying constant parameters
across the entire system could skew the calculated magnitudes or
epicentres if a station does not account for amplification factors that
affect the recording. We intend to test the detection algorithms with
simulated earthquake events overlain by measured noise floor values
for urban sites to identify limits in our detection approach.

To increase its coverage, the modular EEW system architecture
has allowed us to incorporate detection parameters from
neighbouring networks. Through the Pacific Northwest Seismic
Network (PNSN), additional P-wave and S-wave detection times
and seismic Berkeley parameters are streamed to the ONC server and
contribute to earthquake event associations, and conversely the
parameters extracted from our sensors are made available to
PNSN. Validation of these station contributions to limit erroneous
detections is currently underway.

CONCLUSION

The EEW system developed by ONC in collaboration with
NRCan has been successfully operating in test mode since
September 2018. It’s ability to incorporate offshore seismic
stations thanks to ONC’s NEPTUNE cabled observatory, to
correlate geospatial GNSS data with collocated acceleration
data, and to calculate real-time onsite earthquake detection
parameters makes this EEW system one of the more advanced
systems in the world. The addition of underwater seismic stations
contributes to a potential decrease in warning time for offshore
events when compared to purely land-based seismic networks as
shown for the Sovanco earthquake event detection. The combination
of seismic and geodetic data is leading-edge technology that was
experimentally validated using a controlled test setup (section 2.5.2)
and the first successful M6 earthquake detections on October 22,
2018. Lastly, on-site computations of P-wave detections and
displacement values greatly reduce the overall bandwidth usage
for an EEW system and allow for efficient and immediate
implementation of the Kalman filter to combine accelerometer
and GNSS-based ground displacement data. Algorithm testing has
shown the station distribution within the area of interest is adequate
for detecting earthquake events that occur ∼120 km offshore and
underneathVancouver Island. In addition, tests have shown that four
stations are sufficient for reliably calculating an earthquake epicentre
when using the LLS and DGS algorithms. The EEW system still
needs to be further tested and improved to enhance its reliability and
detection accuracy. Upgrades to the systems infrastructure (e.g.
improved power supplies and communication links) will increase
the system reliability. Performing site-specific characterizations will
improve the overall accuracy and further densifying the EEW
network would increase the number of contributing sites available
for an event detection. This could reduce the detection time, as well as
add more redundancy to the overall network.

OUTLOOK

Currently ONC, and its partners at Natural Resources Canada, are
performing the commissioning of the system. At this time, reviews on
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the current status of the system are on-going and concernsmentioned
in the Discussion and Conclusions sections are being addressed. To
increase the coverage of the EEW system, work on incorporating
detection parameters from neighbouring networks such as the Pacific
Northwest Seismic Network (PNSN) is under way with the objective
of providing additional information for events close to the southern
border of the detection grid.

DATA AVAILABILITY STATEMENT

Real-time and historical earthquake parameter data from the
accelerometer and PPP streams in the context of this project can
be obtained by visiting http://data.oceannetworks.ca/
PlottingUtilitydata.oceannetworks.ca. Parameter data from
instruments that contributed to the Sovanco earthquake event
detection can be obtained from Ocean Networks Canada Society
(2021). The raw acceleration waveform data from instruments
that contributed to the Sovanco event shown in this article can be
obtained from IRIS (Ocean Networks Canada, 2009). The raw
acceleration waveform data from shared NRCan sites can be
obtained from Natural Resources Canada (NRCAN Canada,
1975). Both the ONC and IRIS data archives are World Data
System (https://www.worlddatasystem.org/) certified science data
repositories. The TauP calculation toolkit can be accessed from
IRIS (http://services.iris.edu/irisws/traveltime/docs/1/builder/).
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