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Rock-physics models relate rock properties to elastic properties through non-unique
relationships and often in the presence of seismic data that contain significant noise. A set
of inputs define the rock-physics model, and any errors in that model map directly into
uncertainty in target seismic-scale amplitudes, velocities, or inverted impedances. An
important aspect of using rock-physics models in this manner is to determine and
understand the significance of the inputs into a rock-physics model under
consideration. Such analysis enables the design of prior distributions that are
informative within a reservoir-characterization formulation. We use the framework of
Bayesian analysis to find internal dependencies and correlations among the inputs.
This process requires the assignments of prior distributions, and calculation of the
likelihood function, whose product is the posterior distribution. The data are well-log
data that come from a hydrocarbon-bearing set of sands from the Gulf of Mexico. The
rock-physics model selected is the soft-sand model, which is applicable to the data from
the reservoir sands. Results from the Bayesian algorithm are multivariate histograms that
demonstrate the most frequent values of the inputs given the data. Four analyses are
applied to different subsets of the reservoir sands, and each reveals some correlations
among certain model inputs. This quantitative approach points out the significance of a
singular or joint set of rock-physics model parameters.
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INTRODUCTION

The application of a rock-physics model to a relevant data set has a number of uses. An appropriate
model based on geologic context can provide an aid in the interpretation of depositional and diagenetic
history of a formation or sequence of formations of interest. Another use is to understand what seismic
velocities to expect from in scenarios both represented and not represented in a relevant data set. In
either case, inputs into rock-physics models can be treated as qualitative nearly arbitrary values that
satisfy a fit to data. That fit could be deemed successful from a visual standpoint, or a quantitative
comparison with the data could be used to determine a successful fit. This process, however, potentially
could exclude any unknown correlations among inputs, where some physical connection could be used
to determine more confidently the values of the inputs. Our work here identifies the most significant
sets of model inputs as well as significant correlations among them.We do this by quantitatively fitting
an established rock-physics model to appropriate well-log data using a Bayesian analysis process. In the
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context of seismic reservoir characterization, this type of statistical
analysis is important because it provides information to define
realistic prior distributions in the rock-physics part of a reservoir-
characterization workflow.

Bayesian approaches are commonly used to infer rock or elastic
properties from geophysical observations such as Bosch et al.
(2010), Ulvmoen and Omre (2010), Ulvmoen et al. (2010),
Nawaz and Curtis (2017), Grana (2018). The goal of these
works is to obtain subsurface distributions of rock properties of
interest. The work here determines the sensitivity of model
parameters for a model fit to a data set. The work in this paper
uses one model and well-log data from the Gulf of Mexico. Our
work is unique and important because it directly interrogates the
rock-physics model to determine the significance and any internal
dependencies and/or correlations of the inputs.Many othermodels
and relevant data could be treated in this way, so the results are not
necessarily useful for application to other models. However, the
results for an individual model are applicable to other data sets
where the inputs can be considered from most to least significant.

MATERIALS AND METHODS

Data and Rock-Physics Model
We use a data set from a clastic reservoir in the Gulf of
Mexico with water depth about 1300 m. Selected well logs
(Figure 1) from one well included gamma ray (GR), water

saturation (Sw), porosity (ϕ), density (ρb), P-wave velocity
(VP), and the calculated P-impedance (IP). The stratigraphic
sequence consists of alternating sands and shales with
P-impedances being higher in shales than in the
unconsolidated sands. The hydrocarbon-bearing sands are
named M10–M60, labeled in Figure 1A. These sands are
Tertiary age, and they resulted from deep water sand
deposition. Hydrocarbon traps resulted from salt
movement and growth faults (Contreras, 2006).

The model selected for this analysis work is the soft-sand
model (Dvorkin and Nur, 1996). It has been used with this data
set in other publications (e.g., Xie and Spikes,2021). The model is
a combination of Hertz-Mindlin (1949) contact theory and
modified Hashin-Strikman forms. The Hertz-Mindlin (1949)
theory expresses the effective bulk (KHM) and shear moduli
(μHM) for an identical set of spherical grains in the dry
condition for a specific hydrostatic pressure (P),

KHM � [C2
n(1 − ϕc)2μ2
18π2(1 − ])2 P]

1
3

(1)

and

μHM � 5 − 4]
5(2 − ])[3C

2
n(1 − ϕc)2μ2
2π2(1 − ])2 P]

1
3

. (2)

The terms in Eqs. 1,2 are the Lamé parameters (μ and ]) of the
effective homogeneous mineral, the coordination number (Cn),

FIGURE 1 | Log data from the Gulf of Mexico data set. Included are (A) gamma ray, (B) water saturation, (C) porosity, (D) density, (E) P-wave velocity, and (F)
P-impedance. In gray are the M10-M60 sands, also labeled in (A). The sands have lower impedances than the shales and tend to separate cleanly in that domain.
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and the critical porosity (ϕc). The soft sand model represents a
modified Hashin and Strikman (1963) lower bound for porosities
from zero to ϕc. Additional equations are necessary to determine
the elastic moduli at ϕc. Gassmann (1951) fluid substitution
translates the moduli to the saturated condition. In this work,
we deal with four fitting parameters: Sw, mineralogy, P, and ϕc.
Variations in Sw control the effective fluid bulk modulus
(computed using the Reuss average) and the fluid density.
Mineralogy is limited to quartz and clay (C) content, where
C � (1–the fraction of quartz). Preliminary work demonstrated
that the contributions of Cn and shear stiffness reduction (SSR)
were not significant when fitting this model to laboratory data, so
they are held constant here.

Figure 2A contains cross plots of IP as a function of ϕ for the
shales (black points), oil sands (gray points), and gas sands (blue
points). Overlain on the sand points are rock-physics model lines
from the soft sand model. Those models for both the sand types
vary as a function of ϕ and Sw while the other inputs are constant.
Tables 1,2 contains the values for the inputs and respective
moduli and densities. Figures 2B,C are also plots of IP as a
function of ϕ but only for the two sands. The color code in

Figure 2B is GR, and in Figure 2C it is Sw, both of which show
variation in this domain.

The models plotted in Figure 2A are repeated in Figure 3A
without the shale data for clarity. Plots in Figures 2B–D are the
same data, but the models have been perturbed relative to those in
Figure 3A. In Figure 3B, C changed from 20 to 30%. In Figure 3C, C
was changed back to the original, P was reduced from 20 to 15MPa.
Last, the pressure change was removed, and ϕc was changed from 0.36
to 0.35. For simplicity these perturbations were the same for both the
gas and oil-sand models. In all four cases, the models qualitatively fit
the data, but these fits do not give an indication of which inputs are
more significant to change. The Bayesian approach provides a way to
assess the significance of the model parameters.

Bayesian Analysis
The Bayesian approach includes a quantitative match of model to
data. Within it we must compute a prior, p(m), and likelihood
function, l (d|m) (i.e., Ulrych et al., 2001; Tarantola, 2005; Sen
2006). The prior (Eq. 3),

p(m)∝ exp [(m − mprior)TC−1
M (m −mprior)] , (3)

is proportional to the exponential that contains differences
between the model m and mprior, which is a second and more
informed model. Inputs to the rock physics model populate
vectors of m and mprior. The differences are scaled by the
inverse of the covariance matrix of the prior model, CM.

Next, we define the objective function [E(m)],
E(m) � (d − g(m))TC−1

D (d − g(m)), (4)

where g(m) is the rock-physics model that calculates simulated
values based on the model values in m, d is the real data vector,
and the data covariance matrix is represented by CD. The
likelihood function (Eq. 5) is then proportional to the negative
exponent of the objective function

l(d|m)∝ exp(−E(m)). (5)

Last the posterior distribution (σ(m|d)) is proportional to the
product of the prior and the likelihood (Eq. 6)

FIGURE 2 | Cross plots of P-impedance as a function of porosity. In (A),
the black points correspond to shale, gray to oil sands, and blue to gas sands.
A series of model lines from the soft sand model are plotted in black for the oil
sands and dark gray for the gas sands. The variation in the model lines
correspond to porosity in the horizontal direction and water saturation in the
vertical. Plots with shading contain only the oil and gas sands color coded by
gamma ray (B) and water saturation (C).

TABLE 1 | Rock physics model input values.

ϕ Sw P (MPa) ϕc Cn SSR

Gas sand 0.17–0.29 0.2–1.00 20 0.36 5 3
Oil sand 0.21–0.39 0.2–1.00 20 0.38 5 4

TABLE 2 | Elastic moduli and densities used in the rock-physics models [modified
from Mavko et al. (2009)].

Gas Oil Brine Clay Quartz

K (GPa) 0.37 0.8 3 16.8 36
µ (GPa) – – – 5.60 45
ρ (g/cc) 0.15 0.60 1.05 2.58 2.65
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σ(m|d)∝ l(d|m)p(m). (6)

The number of model parameters is four, which is small enough
to allow for a tractable analytical solution. No sampling
methods are required. We analyze posterior multivariate
histograms, so a normalizing factor to obtain probabilities is
not needed.

Data Selection
Data input into the analysis is a subset of the oil or gas sands.
The selection of the subset is a two-step process. First, one of
the rock-physics model lines shown in Figure 2A or
Figure 3A is used as a reference. The reference is required
because the computed models must be relatively close to the
data used in the Bayesian framework. If the data and model
are significantly far apart, then the objective function in Eq. 4
has large values, and so the likelihood function (Eq. 5) will
have exceedingly small values. Second, data are selected that
occur within a certain percent of both IP and ϕ from that
reference model. Some scatter in the data is necessary as to not
overfit the models to the data. Figure 4A shows two subsets
(black points) on which we perform the analysis separately.

The reference models had Sw values of 0.4 for the lower set and
0.8 for the upper set. For both, the percent away from the
reference was 2%, which resulted in 216 data points for the
lower set and 155 for the upper set. Similarly, for the gas
sands, two reference models were used with Sw values of 0.4
and 0.8 (Figure 4B). The percent away from the reference was
1%. The numbers of points were, respectively, 127 and 75. We
conduct the analyses on these four subsets of data and call
them analysis 1, 2, 3, and 4. Analyses 1 and 2 correspond to the
lower and upper subsets, respectively, for the oil sands.
Likewise, analyses 3 and 4 refer to the lower and upper
subsets, respectively, for the gas sands.

RESULTS

The first set of results comes from analysis 1, for one subset of the
oil sands. The model priors are user provided based on some
knowledge of the data. The models m and mprior were normal
distributions of size 200 × 4, so 200 values of each of the four
inputs. Mean values for mprior were [Sw, C, P, ϕc] � [0.4, 0.2, 20,
0.38] and covariance matrix

FIGURE 3 | The four plots contain perturbed versions of the rock physics models in Figure 2. The oil sands are in gray points and gas sands in blue. The models in
(A) are the same as those in Figure 2A. The composition was altered slightly in (B) relative to (A). In (C, D) the pressure and critical porosity, respectively, were changed
relative to the models in (A). All four sets of models match the data from a qualitative perspective.
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.0020 0 0 0

0 0.0010 0 0
0 0 0.1000 0
0 0 0 0.019

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The mean of m was slightly different, and the covariance matrix
for it had slightly larger values on the diagonal. All combinations
of the priors were computed, so 2004 models with no sampling.
The data to model comparison (Eq. 4) used IP . The posterior is
four dimensional with size 200 × 200 × 200 × 200 × , which is not
possible to display nor visualize. Instead, we sum over two given
dimensions to compute bivariate histograms, both priors and
posterior, which are easy visualize. Each bivariate histogram is a
joint histogram of the two variables. Thus, a combination of two
values of two variables has a frequency for that pair of values
together. Prior bivariate histograms for pairs of C − Sw, P − Sw,
and ϕc − Sw are in Figures 5A–C. Figures 5D–F contain their
accompanying bivariate posterior histograms. The priors have
smooth appearances with relatively small frequencies. The
posteriors show much different appearances among
themselves. In Figure 5D, many pairs of C and Sw have
relatively large frequencies, whereas in Figures 5E, F, a wide

range Sw values are present for narrow ranges of P and ϕc,
respectively. Priors for pairs of P–C, ϕc − C, and ϕc − P are in
Figures 5G–I, respectively, with their corresponding posteriors in
Figures 5J–L. The priors are relatively smooth and have wide
ranges of possible pairs. Posteriors in Figures 5J, K display a wide
range of C values for narrow ranges of P and ϕc. The plot in
Figure 5L, however, shows isolated pairs of ϕc and P.

Figure 6 contains the bivariate priors and posterior
histograms for analysis 2, the second oil sand analysis. The
procedure for analysis 2 was the same as analysis 1. The only
differences were the mean of mprior, which was [Sw, C, P, ϕc] �
[0.6, 0.2, 20, 0.38], and the covariance matrix, which was

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.0030 0 0 0

0 0.0010 0 0
0 0 0.1000 0
0 0 0 0.019

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Similar updates were made for m. The layout of Figure 6 is the
same as Figure 5. All six priors are relatively smooth. Four of the
six posteriors (Figures 6E,F,J,K) have wide ranges of one
parameter with a narrow range of the other. Figure 6D
indicates many possible pairs, but the posterior in Figure 6L,
like Figure 5L, shows isolated, joint values of ϕc and P.

Results from analyses 3 and 4 are plotted in Figures 7, 8,
respectively. The same analysis procedure was repeated again.
The means and covariance matrices of the models in analysis 3
were the same as in analysis 1. The difference is that the effective
fluid bulk modulus and density is a function of the gas-brine
mixture rather the oil-brine mixture. In Figure 7, the posterior
histograms resemble the counterparts in Figures 5, 6 although
with different peak frequency values. Most notably, the histogram
in Figure 7F again shows an isolated joint pair of ϕc and P. Last, in
analysis 4, the mean for mprior was [Sw, C, P, ϕc] � [0.72, 0.2, 20,
0.38] and covariance matrix

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.0036 0 0 0

0 0.0010 0 0
0 0 0.1000 0
0 0 0 0.019

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

The bivariate histograms in Figure 8 also resemble their counterparts
in Figures 5–7. Figure 8L displays an isolated pair of ϕc and P.

DISCUSSION

The Bayesian analysis method allowed us to determine
quantitatively the most and least significant model inputs.
Importantly, it revealed correlations between parameters that
are not obvious. In all four analyses, the posterior of pressure and
critical porosity indicated isolated pairs. Each analysis had a
different set of values. If another prior is used, the result
would change in terms of the value of pressure and critical
porosity, but an isolated set occurs. This correlation is not
intuitive, but it indicates that these two parameters are the
most significant. Posterior histograms that contain saturation
or clay content is more intuitive. More specifically, it is

FIGURE 4 | (A) Portions of the oil sand data (black points) used in
analyses one and two. The lower set corresponds (216 points) to analysis one
and the upper (155 points) to analysis two. For the gas sand data (B), the
lower set of black points (127 points) corresponds to analysis three and
the upper (75 points) to analysis four.
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FIGURE 5 | Bivariate histograms for analysis one. Plots (A–C) are the bivariate prior histograms forC − Sw,P-Sw, and ϕc − Sw, respectively. Plots (D–F) contain the posterior
histograms corresponding to the priors in (A–C). Priors for P-C, ϕc − C, and ϕc − P are in (G–I) with their corresponding posteriors in (J–L). When many pairs in a posterior occur
together, such as in (D) (C − Sw ) that indicates relative insensitivity to those two variables. Counter to that is (L)where isolated pairs ofϕc andPoccur together in even larger numbers.

FIGURE 6 | Bivariate histograms for analysis two. The juxtaposition is the same as in Figure 5. The prior model differed between analysis one and two, but the
bivariate posterior histograms show patterns similar to those in Figure 5.
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FIGURE 7 | Results from anallysis three for gas sands displayed again as bivariate prior and posterior histograms. The layout is identical to Figure 5. The prior was
different from inversions one and two including different fluid properties of gas relative to oil. However, the posterior histograms, in particular (D) and (L), resemble their
counterparts in Figures 5, 6.

FIGURE 8 | Analysis four, for gas sands, resulted in similar bivariate histograms comparedwith those in Figure 7. However, the frequencies are considerably lower. This is
the result of the prior model not being as close to the data as they were in the other inversions. Nonetheless, the patterns repeated themselves among the different posteriors.
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understandable that a small change in either might not change the
velocity very much.When one or the other is paired with pressure
or critical porosity, the result is a relatively broad range of with a
narrow selection of pressure or critical porosity. When applying
this method to well data, we considered, fluid types and
saturations, and mineralogy along with pressure and critical
porosity. Preliminary work indicated similar correlations
between pressure and critical porosity on dry, clean sands. The
extension to include fluids and composition indicates similar
patterns and correlations that were not expected.

This study demonstrates a way to determine the significance of
inputs into one rock-physics model. The significance becomes
evident of any singular or joint set of rock-physics model
parameters. In an application to reservoir characterization, the
most significant terms should be set first, and the others can be
more loosely defined. If this model was deemed appropriate on a
different data set, then in a deterministic application, the most
significant inputs should be selected first and jointly. The other
inputs would then provide more subtle fine tuning. This approach
would limit the number of variables to consider within the requisite
sensitivity study for that data set. If this model was used in a
statistical seismic inversion, a user could set narrow limits on the

priors for the most significant parameters and wider ranges for the
lesser ones. The effect of this would be to reduce the size of the
model parameter space to explore. This was work done on one
model one data set, and the results are relevant specific to this
model and applicable to other data sets. Knowledge about this one
particular model might be useful for similar types of models, given
an appropriate data set, but not likely for other types of models.
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