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We use stratigraphic, sedimentological, and borehole data and seismic profiles from
the western Tarim Basin to document its Mesozoic tectonic evolution. A nearly 60-
km-wide, Triassic fold-and-thrust belt along the southwestern margin of Tarim Basin
is unconformably overlain by a Jurassic-Cretaceous sedimentary sequence along a
regional angular unconformity. The Lower-Middle Jurassic strata consist mainly of an
upward-fining sequence ranging from terrestrial conglomerates to turbidite deposits,
which represent the products of an initial rift stage. Palaeocurrent analyses show
that sediments for these rift deposits were derived from the paleo-Kunlun and paleo-
Tienshan Mountains to the southwest and northern, respectively. The overlying Upper
Jurassic-Cretaceous series consist of coarse-grained, alluvial fan to braided river
deposits in the lower stratigraphic member, and lagoonal mudstones and marine
carbonates in the upper member. These finer-grained rocks were deposited in a
subsiding basin, indicating that a significant change and reorientation in the drainage
system should have occurred within the basin during the Early Cretaceous. The
western Tarim Basin evolved from a syn-rift stage to a post-rift stage during the
Jurassic-Cretaceous. A post-orogenic stretch developed due to the evolution of the
Paleo-Tethyan orogenic belt in Central Asia is a likely geodynamic mechanism for this
major tectonic switch from a contractional episode in the Triassic to an extensional
deformation phase in the Jurassic-Cretaceous.

Keywords: western Tarim Basin, Triassic thrust, Early-Middle Jurassic rift, Cretaceous depression, tectonic
switch, Paleo-Tethys
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INTRODUCTION

Central Asia comprises an intricate collage of many crustal blocks
and discrete geological domains, such as high orogenic plateaus,
mountain ranges and sedimentary basins, which are separated by
crustal- or lithospheric-scale faults (Figure 1A). This geological
collage was built up through progressive accretion of continental
fragments and terranes into the south Asian margin throughout
the Phanerozoic (Watson et al., 1987; Windley et al., 1990; Allen
et al., 1993; Matte et al., 1996; Mattern and Schneider, 2000;
Xiao et al., 2005, 2015). The India-Asia collision has shaped the
diverse landscape of Central Asia in the Cenozoic, obliterating
some of the prior structural relationships while also exhuming
previously deeply buried tectonic units (De Grave et al., 2013;
Li G.W. et al., 2019). The majority of research on the Central
Asian geology has mainly focused on its Paleozoic amalgamation
history (Windley et al., 2007; Charvet et al., 2011; Xiao et al.,
2015; Han and Zhao, 2018) and the Cenozoic deformation
processes related to the growth of the Tibetan Plateau (Molnar
and Tapponnier, 1975; Jiang and Li, 2014; Blayney et al., 2016; Sun
et al., 2016). Many well-developed Mesozoic sedimentary basins
with stratal thicknesses exceeding 5 km attest to widespread
tectonic processes during this interval (Hendrix et al., 1992;
Graham et al., 1993). However, the definition and origin of these
sedimentary basins and their evolution is a topic of debate in the
current literature (e.g., Watson et al., 1987; Sobel, 1999; Ritts and
Biffi, 2001; Li et al., 2004; Li and Peng, 2010; Yang Y.T. et al., 2017;
Cheng F. et al., 2019).

The western Tarim Basin, located to the northern margin of
the Paleo-Tethyan orogenic system, is an important geological
archive of the long-term tectonism within Asia during the
Mesozoic and Cenozoic (Sobel, 1995, 1999; Bershaw et al.,
2012; Cao et al., 2015). It has been widely accepted that the
early Cimmerian (Triassic) continental collision events produced
extensive crustal deformation and magmatism within the Paleo-
Tethyan orogenic belt (Figure 1B; Xiao et al., 2002; Zhang
et al., 2016; and reference therein). Numerous studies have
been carried out to document the petrology, geochemistry and
thermochronology of various tectonic units involved in the
Triassic collision (Li G.W. et al., 2019). However, tectonic
processes of the subsequent post-collisional events have not
been investigated in detail, largely due to the incomplete record
of sedimentary and magmatic events in the mountain ranges
(Sobel, 1999). Although the Jurassic-Cretaceous basinal strata
with unusually large sediment thicknesses have been investigated
since the 1990s (Hendrix et al., 1992; Graham et al., 1993; Sobel,
1995, 1999), their origin and geological history remain poorly
constrained. Several competing models have been proposed (Wu,
2018). Some researchers have suggested successive development
of foreland basins in Central Asia as a response to episodic
subduction and collision events within the Tethyan domain to
the south during this period (Hendrix et al., 1992; Graham et al.,
1993; Sobel, 1999; Yang Y.T. et al., 2017). Sobel (1999) argued for
an Early-Middle Jurassic transtensional tectonics in the western
Tarim Basin that occurred along the Talas-Ferghana fault and a
large-scale strike-slip fault along the eastern Pamir. Some other
scientists attributed it to an episode of post-Triassic extensional

tectonics (Zhang et al., 2000; Chen et al., 2003, 2009, 2018; Li
et al., 2013). The validity of these models remains to be tested.

These Jurassic-Cretaceous tectonic deformations occurred
after the Paleozoic-Early Mesozoic amalgamation history along
the paleo-south Asian margin, and since then they played a first-
order role in the localization and evolution of the Cenozoic
intracontinental deformation along the northern edge of the
Tibetan Plateau (Ritts and Biffi, 2001; Jolivet et al., 2010; Jolivet,
2015; Tong et al., 2020). Therefore, the geological processes of
these Mesozoic basins must be clarified in order to understand
a coherent history from Paleozoic to Cenozoic. Nowadays the
main obstacles limiting our better definition of the pre-Cenozoic
tectonic pattern is largely due to the incomplete basin geometry
remolded by Cenozoic deformation, and few direct evidence of
pre-existed structures are preserved (Figure 1C). Meanwhile, the
structures and prototype of the basin that currently covered by
thick Cenozoic deposits are lack of detailed studies (Figure 1D).

This paper serves as a study using structural and
sedimentological analyses in the field, in combination with
new 2D seismic profile interpretation and tectonostratigraphy
with published data, to address the tectonic evolution of the
western Tarim Basin throughout the Mesozoic. A regional
synthesis suggests that the western Tarim Basin suffered
extension during the Jurassic-Cretaceous, following the Triassic
orogeny along the West Kunlun Mountains (Mts.) and the
Southwest Tienshan Mts. This work provides new insights on
understanding of tectonic switch from Triassic contractional
phase to Jurassic-Cretaceous extensional phase in the western
Tarim Basin and establishing a geodynamic relationship between
the Paleo-Tethyan orogenic belts and related basins.

GEOLOGICAL BACKGROUND AND
TECTONOSTRATIGRAPHY

Geological Background
The Tarim Basin is located in Central Asia, in the Xinjiang
Province, northwest China. It is an almond-shaped basin with
an area up to 50 × 104 km2 (Figure 1A). The Tarim Basin is
the largest intracontinental petroliferous basin in China (Jia and
Wei, 2002; Laborde et al., 2019) that is surrounded by the South
Tienshan Mountains to the north, the West Kunlun Mountains
to the southwest, and the Altyn Mountains to the southeast
(Figure 1A). Its stratigraphic record spans the Proterozoic
through the Cenozoic and reflects its long Phanerozoic tectonic
history (Jia et al., 2004). During the Paleozoic, the northern
Tarim margin was separated from the Yili-Middle Tienshan
block by the South Tienshan Ocean, which was a seaway in
the paleo-Asian Ocean (Xiao et al., 2015; Käßner et al., 2017).
The southern margin of the Tarim Basin faced the wide Paleo-
Tethyan Ocean, which separated it from the Gondwanaland
(Mattern and Schneider, 2000; Stampfli and Borel, 2002). The
South Tienshan ocean floor was subducted northward beneath
the Yili-Middle Tienshan continental block between the Late
Devonian and the Carboniferous, and was finally closed in the
latest Carboniferous–earliest Permian (Han and Zhao, 2018).
After the Ordovician-Silurian collision with the West Kunlun
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FIGURE 1 | (A) Schematic tectonic map of Northwest China showing the major tectonic units separated by faults and sutures (B) Simplified geological map of the
western Tarim Basin and adjacent mountain ranges, presenting distribution and thickness of Lower Cretaceous strata (modified after Cheng X.G. et al., 2019),
Paleozoic-Mesozoic magmatic belts and major faults (modified after Cao et al., 2015). Zircon U-Pb geochronological data of the plutons in West Kunlun orogen are
from Zhang et al. (2016) and reference therein. Five seismic profiles (C-C’ to G-G’) are shown with black line. (C) E-W trending geological section (A-A’) near
Tamuhe river, and another (D) S-N trending geological section (B-B’) near Kekeya are presented below. Section (A-A’) and section (B-B’) show the unconformity
between Mesozoic and Paleozoic and the uniform deformation of the Jurassic and Cretaceous formations.

terrane (Xiao et al., 2005; Zhang C.L. et al., 2018), the southern
Tarim experienced the progressive amalgamation with several
terranes, which were derived from Gondwanaland, into the active
margin of southern Asia, such as Qiangtang-Tianshuihai and

Karakoram-Lhasa terranes (Zhu et al., 2013; Robinson, 2015). It
is commonly accepted that the Paleo-Tethys Ocean subducted
northward under the West Kunlun terrane by the Late Permian-
Early Triassic, forming a magmatic arc along the southern margin
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(Mattern and Schneider, 2000; Xiao et al., 2002). This magmatic
arc construction was followed by its collision with the Qiangtang-
Tianshuihai terrane along the Kangxiwa suture in the Middle-
Late Triassic as revealed by extensive syn-collisional magmatism
as well as crustal shortening (Yang et al., 1996; Cao et al., 2015;
Zhang et al., 2016). As a result of these tectonic events, the West
Kunlun orogenic belt experienced strong basement reactivation
and uplift, and crustal deformation propagated toward the
northern part of the Tarim Basin, leading to the synchronous
uplift of the South Tienshan Mountains during the Triassic
(Hendrix et al., 1992; Han et al., 2016). The inferred timing of the
amalgamation of the Qiangtang and Lhasa terranes ranges from
Middle Jurassic to Late Cretaceous (Fan et al., 2015; Li S. et al.,
2019), which makes the Jurassic-Cretaceous tectonic setting of
the northern Tibetan Plateau somewhat enigmatic. Finally, the
indentation of India into Asia since approximately 65–50 Ma
resulted in a northward propagation of deformation across the
Tibetan Plateau and forming the large intracontinental foreland
basin in the Tarim (Figure 1D; Laborde et al., 2019).

Mesozoic Stratigraphy and Lithofacies
The western Tarim Basin preserved the complete terrestrial
sequences spanning the Jurassic through the Cenozoic. Thick
Jurassic-Cretaceous sediments are well-exposed in the elongated
basins along piedmont of West Kunlun and Southwest TienShan
Mts., whereas Triassic deposits are almost absent (Sobel, 1999).
The Jurassic record includes the Lower Jurassic Shalitashi (J1s)
and Kangsu Formations (J1k), the Middle Jurassic Yangye (J2y)
and Taerga (J2t) Formations, and the Upper Jurassic Kuzigongsu
(J3k) Formation (Figure 2). The Cretaceous record consists of
two groups, the Lower Cretaceous Kezilesu Group (K1kz) and
the Upper Cretaceous Yengisar Group, which can be subdivided
into the Kukebai (K2k), Wuyitake (K2w), Yigeziya (K2y), and
Tuyiluoke (K2t) Formations in a stratigraphically ascending
order. The Jurassic-Cretaceous stratigraphy and lithofacies
distributions of the western Tarim Basin have been well-studied
through field sedimentological observations (e.g., Sobel, 1999;
Zhang et al., 2000; Jia et al., 2004). Two tectonostratigraphic units
were established as described below.

Lower Tectonostratigraphic Unit: Lower to Middle
Jurassic Series
The Lower to Middle Jurassic sequences rest stratigraphically
on the Paleozoic basement along an angular unconformity, and
start at the bottom with the Shalitashi Formation, which ranges
in thickness from 32 m to 1495 m (Zhou et al., 2005). The
Shalitashi Formation is composed predominantly of massive
and poorly sorted terrigenous conglomerate and polymictic
breccia (Figures 3A,B), which are interpreted as proximal gravels
representing alluvial fan deposits (Sobel, 1999). The Kangsu
Formation mainly consists of stacked gray-greenish sandstones
with coal beds containing abundant plant fossils (Figures 3C,D;
Liao et al., 2010). Basal conglomerates and erosional basal
surfaces represent fluvial deposits (Figure 2). The Middle Jurassic
Yangye Formation is composed of continuous gray, black,
and gray-green rippled or burrowed siltstone and shale, with
disseminated leaf fragments and thin coal beds (Sobel, 1999). In

FIGURE 2 | Generalized tectonostratigraphic column of Jurassic to
Cretaceous system in the western Tarim Basin. Modified after Sobel (1999)
and Zhou et al. (2005).

the Keziletao section, this formation is dominated by successive
gray-yellow thin sand-shale interbedded series (Figure 3E) with
typical Bouma sequences (Figure 3F). Groove casts at subface
of sandstone beds (Figure 3G) and soft-sediment deformation
of mudstone mass encapsulated by the sandy body (Figure 3H)
indicate turbidite deposition. This association is described
as marginal lacustrine to half deep lacustrine facies deposits
(Zhou et al., 2005). The uppermost part of the unit is Taerga
Formation, which comprises gray-yellow shale beds intercalated
with siltstones (Figure 3I). These beds are relatively thin
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FIGURE 3 | Photographs of Jurassic strata. (A) Conglomerate of Shalitashi Formation in Wulagen section. (B) Pyroclastic breccia of Shalitashi Formation in Keziletao
section. (C) Thick-bedded sandstone with a lenticular body of Kangsu Formation in Keziletao section. (D) An isoclinal fold of Kangsu Formation in Keziletao section.
(E) Thin-bedded flysch deposits of Yangye Formation in Keziletao section. (F) Bouma sequence in Yangye Formation. (G) Groove cast at the subface of sandy layer
in Yangye Formation. (H) Muddy mass with soft-sediment deformation in Yangye Formation. (I) Thin-bedded mudstone with intercalated siltstone of Taerga
Formation in Kangsu section. (J) Parallel unconformity and yellow weathering crust between Middle and Upper Jurassic in Oytag section. (K) Medium-grained
gravels in reddish conglomerate of Kuzigongsu Formation.

and uniform single-layers with thicknesses of centimeter-scale.
Thin gray-white argillaceous limestone interlayers and limestone
nodules occur the upper part. These laterally well-extended mud-
siltstones represent the shallow lacustrine sequences.

Upper Tectonostratigraphic Unit: Upper Jurassic to
Late Cretaceous Series
The stratigraphically upper succession begins with the Upper
Jurassic Kuzigongsu Formation, which rests on the Middle
Jurassic rocks along a regional parallel unconformity (Figures 2,
3J; Yang Y.T. et al., 2017). The Kuzigongsu Formation comprises
reddish thick-bedded conglomerates in the lower member and

rhythmic layers of upward-fining pebbly sandstone in the
upper member. The medium-grained and well sorted pebbles
represent stream deposits in an alluvial fan (Figure 3K). The
Kuzigongsu Formation phases upward into pebbly sandstones
and mudstones with tabular cross laminations (Figure 4A) and
scoured subfaces (Figure 4B) that represent fluvial deposits.
The Lower Cretaceous thick-bedded coarse sandstones with
muddy interlayers of the Kezilesu Group conformably rest on
the Kuzigongsu Formation (Figure 4C). Large cross laminations
characterize the Kezilesu Group deposits (Figures 4D–F). The
upward-fining sand-mud sequence containing limestone nodules
in the upper part of the Kezilesu Group points to a depositional
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environment transitioning from a braided fluvial-delta plain to
a braided delta front subfacies (Sobel, 1999). Since the Late
Cretaceous, this region has been predominated by several cycles
of mudstone (Figure 4G) and marine carbonate beds (Bosboom
et al., 2011; Zhang S.J. et al., 2018). Previous studies have
found benthic foraminifers, ostracods and abundant bivalves,
which indicate the steady high-energy lagoons or estuarine
environments (Xi et al., 2016).

MATERIALS AND METHODS

To gain information on buried structures and distribution of
Mesozoic strata in western Tarim Basin, five available 2D seismic
reflection profiles from the Tarim Oilfield Co., Ltd., PetroChina
are applied to this study. These seismic profiles are distributed in
Keliyang, Qimugen-Aertashi and Kangsu regions from the south
to the north (Figure 1B). The synthetic seismic data are time-
migrated with the vertical scale in milliseconds two-way travel
time, and all of them show relatively clear deep structures. Four
drilling wells (WX1, S1, QB3 and KY) are used for calibrating
stratigraphic reflector layers on the seismic profiles. The joint use
of borehole data and formation occurrence on geologic map is
applied to track the strata in the piedmont segments that have low
signal-to-noise ratios. The seismic profiles in the basin interior
are imaged well so that we could track the reflectors reliably.

On most cross profiles, eight stratigraphic units, including
Lower Paleozoic, Carboniferous, Permian, Mesozoic, Paleogene,
Miocene, Pliocene and Quaternary units, are determined. Two
key lithologic interfaces are identified for their high-amplitude
reflection features. One of the lithologic interfaces is the
gypsum horizon at the bottom of the Paleogene, and another
is the salt layer in the lower Cambrian series. The angular
unconformity which separates the Mesozoic strata from the
Paleozoic basements, could also be identified by the truncate
surface (Figure 5; Cheng et al., 2012).

Besides, Palaeocurrent data of Jurassic-Cretaceous are
collected by measuring dips of cross-lamination and are revised
by attitudes of strata in this effort.

SEISMIC STRUCTURES IN WESTERN
TARIM BASIN

Profile C-C’
The seismic line C-C,’ run across the well KY, is almost orthogonal
to the West Kunlun piedmont structural belt (Figure 1B). Along
this transect, most of the basin surface is covered by Cenozoic
sediments. Carboniferous to Permian strata were exhumed by
south-dipping basement-involved faults in the southmost of the
transect. Well KY reveals that the Carboniferous overlapped on
the Permian with gentle attitudes. The forelimb of the asymmetric
anticline is almost vertical and exposes Jurassic to Quaternary
strata with uniform deformation. We propose a breakthrough
fault-propagation fold model to explain this structure (Figure 5).
Growth strata reveal that an early anticline has started to generate

during Pliocene and the forelimb of the anticline was broke-
through in Quaternary (Wang et al., 2016a).

In the basin outback, two regional high-amplitude reflective
bands are interpreted as two regional decollement layers
corresponding to the Paleocene gypsum reflector and the Lower
Cambrian evaporite, respectively (Guilbaud et al., 2017). In
Yecheng subbasin, a fold-and-thrust belt with an approximate
width of 60 km formed. At the root zone, it was characterized
by a series of south-dipping basement-involved faults with a
passive-roof back thrust on the top, which is corresponding
to the base of Paleocene gypsum, and formed a series of
stacked structural wedges (Figure 5). At the front zone, several
north-vergent thrust ramps developed and together terminated
along the basal detachment. Paleozoic strata were folded by
several thrust ramps and formed an array of shear fault-bent
anticlines. These anticline’s forelimbs were quite closed relative
to their long backlimbs, and the tops of the Permian were
partly eroded. The Mesozoic-Cenozoic cover overlying on these
wedges showed northward-dipping occurrence on the whole.
Comparing with the Paleozoic strata, Jurassic-Cretaceous have
obviously endured relatively slight deformation. The angular
unconformities between the Jurassic-Cretaceous cover and
Paleozoic basements are clearly identified based on seismic
reflector discontinuity. Integrated with the evidence of absence of
Triassic deposits, smaller-scale displacements between Jurassic-
Cretaceous strata contrast to Paleozoic deformation (Figure 5),
and the discordant deformation of Cenozoic overlays together
indicate that during the Triassic the western Tarim Basin was
possibly uplifted and the sector represented fold-and-thrust belt.

Profiles D-D’ and E-E’
The seismic profile D-D’ (Figure 6), which is situated to the
north of Qimugen, is a typical section to reveal the topographical
controlling of Cretaceous distribution along basinal edge both by
reflections and drilling wells (Liao et al., 2010). It shows that the
topography low is a catchment with thick Cretaceous deposits,
whereas the topography high accumulates thin Cretaceous
or none sediments (Cheng et al., 2012). The stacked thrust
structures are present in Paleozoic strata with SW-dipping faults,
although Late Cenozoic overprints cannot be negligent. We
interpreted that most of these SW-vergent faults have been active
during Triassic for the following reasons. First, the Cretaceous
strata settled on Permian basements unconformably with absence
or erosion of Triassic sediments. Secondly, most faults are
truncated by Cretaceous subface or have a small displacement in
Cretaceous reflections. Finally, the gently stable Cenozoic strata
fold between well S1 and YS1 are unable to compensate all
the deformation within Paleozoic strata if only Late Cenozoic
compressional event was responsible for it. Thus, it urgently calls
for the paleo-structures prior to the Cretaceous deposition.

Similarly, dual-phases contractional evolution is
comprehended along section E-E’ which shares comparable
structural style along the Qimugen-Aertashi belt (Figure 6).
The whole of the transect shows a simple monocline where the
attitudes between Mesozoic and Cenozoic strata are gentle and
concordant. It indicates that the Late Cenozoic deformation was
mild respect to the complex structures beneath the Cretaceous.
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FIGURE 4 | Photographs of Late Jurassic to Cretaceous strata and the underlying deformed Paleozoic strata. (A) Tabular cross lamination in Kuzigongsu Formation.
(B) Sand-mud binary structure with scoured subface in Kuzigongsu Formation. (C) Medium- thick sand- mud interbedded series of Kezilesu Group. (D) Tabular
cross and parallel sandy layers of Kezilesu Group. (E) Trough and tabular cross lamination at middle part of Kezilesu Group. (F) Wedged and tabular cross lamination
at upper part of Kezilesu Group. (G) Reddish calcareous mudstone with dwelling structure in Kukebai Formation. (H) Folded carboniferous and the post- orogenic
unconformity (I) Stacked Carboniferous strata with monocline Cretaceous overlayer from Aertashi section. (J) The outcrops from Keziletao show that the recumbent
fold occurred within Carboniferous strata, and it was overlaid by the Early Jurassic (Kangsu Fm.) along an angular unconformity. (K) The underlying Carboniferous
strata having vertical attitude and the overlying Earliest Jurassic conglomerate in Qimugen section. (L) The conglomerate of Shalitashi Fm. mostly consisted of
limestone gravels.
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FIGURE 5 | Interpretation of the seismic profile near the Keliyang section, the location is showed in Figure 1B. Strata division of well KY and key surface marks have
been indicated on the profile.

Profiles F-F’ and G-G’
Profiles F-F’ and G-G’ are situated in north Kashgar depression
and perpendicular to each other in NS and EW direction,
respectively (Figure 1). Kilometer-scaled thick Jurassic-
Cretaceous outcrops are exhumed along the north and east
of profiles. Different from the above sections, profiles F-F’
and G-G’ lie in the interactional zone between the Pamir and
Southwest TienShan Mts. (Figure 1) and thus bare dual load
from the south and north (Burtman, 2000; Liu et al., 2017).
Complex compressional architecture since Late Miocene erased
the trails of paleo-structures which have been deeply buried
under the Cenozoic basin (Cheng et al., 2016; Li T. et al., 2019).
Nonetheless, graben-shaped structures formed in Jurassic are
described via steep reflection axis and thick Jurassic-Cretaceous
sequence tracing from outcrops and lateral seismic reflections
(Figure 7). On the profile F-F,’ Lower-Middle Jurassic strata were
truncated by south-dipping normal fault, whereas the reflections
in Upper Jurassic and Cretaceous are continuous. It indicates that
the Early-Middle Jurassic sediments were controlled by faults,
which show characteristics of syn-rift sequences, while the Late
Jurassic and Cretaceous basin was more uncommitted. Although

this basin structure requires more details to confirm, the
abnormally thick and fast filling of Jurassic sequence on outcrop
probably gives support for such normal fault interpretation.

DISCUSSION

Early Cimmerian (Late Triassic)
Deformation
It is generally recognized that the regional deformation
throughout Central Asia at the end of the Triassic was a result
of closure of the Paleo-Tethys Ocean and the ensuing collision
with the strips of Cimmerian-terranes drifted from Gondwana
(Şengör et al., 1984; Otto, 1997; Wilmsen et al., 2009; Zanchi
et al., 2009; Gillespie et al., 2017). In Tibetan Plateau, the Early
Cimmerian orogeny was driven by the convergence between
Tarim and Qiangtang block (Matte et al., 1996; Yin and Harrison,
2000; Zhu et al., 2013; Song et al., 2015). Previous analyses
proposed that the northward subduction of the Paleo-Tethys
ocean floor beneath the South Kunlun has initiated by Late
Permian-Early Triassic, producing an accretionary prism at the
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FIGURE 6 | Interpretation of the seismic profiles in Qimugen area. Locations of the profiles are showed in Figure 1B.

margin of South Asia, and it was followed by the resultant
collision in the Late Triassic (Mattern and Schneider, 2000;
Xiao et al., 2003). During the collisional phase (ca. 243-227Ma),
a mega-magmatic belt of high-K calc-alkaline granitoid belt
extending with NW orientation intruded within West Kunlun
Mts. (Figure 1B; Liao et al., 2012; Jiang et al., 2013; Wang
et al., 2016b; Zhang et al., 2016). And the suture zone along
Mazha-Kangxiwa (also called Karakax fault) performed as a
ductile shear fault to accommodate the convergence between
Qiangtang and Tarim at the end of Triassic (Xu et al., 2007;
Ge, 2018). The simultaneous crustal cooling event (ca. 250-
200Ma) was recorded by low-temperature thermochronology
from these Triassic batholiths that revealed a fast orogenic
exhumation progress in West Kunlun Mts. (Cao et al., 2015; Li
G.W. et al., 2019). These batholiths thus continued to be the
source region for the Tarim Basin to the northeast throughout the
Mesozoic (Bershaw et al., 2012; Cao et al., 2015; Han et al., 2016).

Together with large scale magmatism, metamorphism and
topographic uplift, an intense crustal contraction occurred within
the paleo-Kunlun ranges and documented the early Cimmerian
orogeny along the middle segment of the Paleo-Tethyan domain
(Wu et al., 2016).

Previous studies have revealed that this contractional event in
Late Triassic formed a south-verging fold-and-thrust system to
the southern West Kunlun Mts., which is called the Tianshuihai
back-thrust system (Cowgill et al., 2003). We report here an
intense fold-and-thrust deformation generated along the western
Tarim Basin that stand by paleo-Kunlun ranges to the south.
Structural analysis suggests that the Triassic deformation was
mainly controlled by advancing thin-skinned thrust-folds and
these north-northeast vergent stacked faults formed the front
fold-thrust belt of the paleo-Kunlun wedge, which was probably
propelled by the Karakax ductile extrusion from the collisional
core zone (Li G.W. et al., 2019). Outcrop structural analyses also
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FIGURE 7 | Interpretation of the seismic profiles in Kangsu area. The green and blue lines show the subface of Cretaceous and Jurassic strata, respectively.
Locations of the profiles are showed in Figure 1B.

give clues about the existence of these paleo-deformations. At
Aertashi, along the Yarkant river, Carboniferous strata exposed
and formed a series of asymmetric anticlines and synclines
that controlled by mountain-ward dipping thrusts (Figure 4I).
By contrast, Cretaceous strata just unconformably rest on the
upside with a simple east-dipping monoclinic style. At Keziletao,
Early Jurassic strata overlay on the Carboniferous recumbent
fold through an angular unconformity (Figure 4J). Similarly,
it could also be seen that the underlying Carboniferous layers
were almost vertical (Figure 4K) and covered by the Earliest
Jurassic conglomerate of Shalitashi Fm. from Qimugen section
(Figure 4L). Field mapping along transect across western Tarim
margin reveals a southeast- strike anticlinoria, which is composed
of Devonian-Carboniferous in the core showing closed-form.
The Cretaceous cover stays on two limbs with gentle style
(Figure 8; Cheng X.G. et al., 2019). The discordant relationships

between two sets of strata indicate a two-stage shortening history
since the Early Mesozoic: a Triassic stage of southwest tectonic
stress making Paleozoic strata thrusted and stacked, followed by
a Late Cenozoic stage of tectonic reactivation making Jurassic-
Cretaceous strata gently folded. To sum up, the ancient fold-
and-thrust belt preserved in the Paleozoic strata, as well as the
unconformity between the Paleozoic and Mesozoic strata indicate
that the western Tarim Basin was involved into the strongly
contractional tectonism during Early Cimmerian event.

Extensional Basin During
Jurassic-Cretaceous
The Early Cimmerian orogeny caused the complete absence of
Triassic strata in the western Tarim Basin, and the Jurassic-
Cretaceous basin overlay on the deformed Paleozoic with a

Frontiers in Earth Science | www.frontiersin.org 10 March 2021 | Volume 9 | Article 636383

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-09-636383 March 10, 2021 Time: 14:3 # 11

Wu et al. Tectonic Switch of Western Tarim

FIGURE 8 | Anticlinoria near Aketala village showing two main phases of deformation (modified after Cheng X.G. et al., 2019). (A) planar geological map and the
stereoplots (lower hemisphere- equal area projections) of anticline limbs, data collected from the Cretaceous strata (a) and Paleozoic strata (b). (B) cross section
A-A’ and its balanced pattern after restoring the Cenozoic deformation.

sharply divergent unconformity. The Early Jurassic basin was
characteristic by sudden subsidence with thick conglomerate
or breccia settled at the bottom (Figures 3A,B). The upward-
fining sequence of Lower-Middle Jurassic gradually varied from
a set of thick-bedded channel sandstones to deep lacustrine
flysch deposits (Figures 3C–H), which imply the fast subsidence
phase of the basin. During this stage, there was a significant
lateral variation of cumulative stratigraphic thickness along

the strike of the banded basin (Figure 9). The maximum
subsidence occurred in Qiemugan-Keziletao area in the central
regions, where the Jurassic deposits with stratal thicknesses
exceeding 4 km accommodate (Figure 9). The moderate and
weak subsidence with variable Lower-Middle Jurassic thickness
were developed in Kangsu and Kekeya area in the southern
and north regions, respectively (Figure 9). These major isolated
depocenters were separated by high hinges that reject Jurassic
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sediments settled on. Palaeocurrent indicators show that the
eastward paleo-drainage system had formed along West Kunlun
side, but the paleo-drainage system along Southwest Tienshan
was dominated by southward channels (Figure 10A). These
basins are likely associated with normal faults along the orogenic
belt side, as suggested by syn-rifting structures on seismic profiles
(Figure 7). The linear geometry of Early-Middle Jurassic basin is
also compatible with the trending of paleo-orogens or regional
large inherited faults which gave the possibility for reactivation
of pre-existing structures during stretching phase (Figure 9;
Cheng F. et al., 2019). Although, the transtensional model
proposed by Sobel (1999) argue for the Early-Middle Jurassic
pull-apart basin that bounded by two postulated large-scale
strike-slip faults. One is the Talas-Ferghana fault, and another is
possibly the ancestor of Main Pamir thrust. This kinematic model
requires the large dextral strike-slip fault cut through the Kashgar
depression and extended southward into Yecheng depression.
However, seismic profiles from the western Tarim Basin and
paleomagnetic constraints do not favor such hypothesis (Li et al.,
2007; Huang et al., 2009; Zhang and Sun, 2020). Instead, the
southern extension of this zone was a transform-orogen junction
with southward motion of the eastern wall accommodated by
southward thrusting at the margins of the south Tien Shan and
the Tarim Basin (Huang et al., 2009). Therefore, the Early-Middle
Jurassic extensional model controlled by range-side normal faults
is more comprehensible.

The successive phase of basin developing started with
the regional parallel unconformity that separated the upper
association from the Lower-Middle Jurassic series. Contrast to
the pioneering phase, the sequence of Late Jurassic through Early
Cretaceous were characterised by several cycles of coarse clastic
deposits with large scale cross laminations that suggest a fluvial to
braided delta setting (Figures 4A–F). The Cretaceous basin was
obviously more unconfined and not confined by directly faulting
effects (Figure 7). Vaster extensiveness and more flat topography
during the Early Cretaceous indicate consistent expansion of the
basin boundary (Figures 9, 11). Palaeocurrent analyses firstly
showed the reversed flow direction from east to west in the
middle segment during this time (Figure 10B). It suggests
that a new clast source possibly eroded from the basement in
outback contributed to the Early Cretaceous basin. Ultimately,
the basin was dominated by several recurrent depositions of
mudstone-carbonate association in Late Cretaceous (Hao et al.,
1987; Bosboom et al., 2014; Xi et al., 2016), showing that
the sedimentary environment was chiefly controlled by several
transgressive-regressive cycles (Zhang S.J. et al., 2018).

Syn-rift basins are usually associated with the rapid stretching
of continental lithosphere and form a series of block normal faults
that create discrete sunken space for sediments (Jackson et al.,
2006; Allen and Allen, 2013). If crustal thinning is substantial,
rift basins are commonly accompanied by inherited post-rift
(depression) phase depends on thermal subsidence compensation
(McKenzie, 1978; Ziegler and Cloetingh, 2004; Shi et al., 2017).
As the basin structurally reorganizes, a transitional unconformity
usually develops (Bell et al., 2014; Zhang et al., 2019). Meanwhile,
the transition from isolated to large depocenters is expressed by
a progressive change in the sequence stratigraphy, from coarse,

alluvial fan and fluvial facies into lacustrine or marine facies
(Gawthorpe and Leeder, 2000).

A similar process occurred in the western Tarim Basin
during the Jurassic to Cretaceous. Fault-controlled, fast and thick
accumulation of clastic sediments resulted in the formation of
the Lower- Middle Jurassic system in the western Tarim Basin,
and the coeval and lithologically analog sequences represent
syn-rift phase in sedimentary basin evolution. Comparing to
the syn-rift type, extensional faulting gradually became inactive
showing on seismic interpretation (Figure 7) and the sediments
covered the rift shoulder since Late Jurassic. Simultaneously, a
transitional unconformity between Middle and Upper Jurassic
occurred and the basin came into depressional phase. This
growing unconformity ultimately affected the basin outback
with the expansion of Cretaceous deposition. As a result,
the unconformity between the Cretaceous and Paleozoic were
widely preserved in the western Tarim Basin (Figure 4H).
The lopsidedness of Cretaceous thickness tends to decrease,
and sediments deposited in a single and relatively unconfined
basin. Nonetheless, the thickness of Lower Cretaceous still varies
according to the terrains where they get accommodation. In
particular, stratigraphic columns show obvious continuity and
inheritance of thickness between the Lower Cretaceous members
and Lower-Middle Jurassic members (Figure 9). In other words,
the Cretaceous inherited the Jurassic basin depocenters and
further expanded on the formed basis (Figure 11). Cretaceous
deltaic and ensuing epeiric sea deposits overlapping on the
top along a parallel unconformity represent the post-rift
accumulation. The relatively persistent depositional sequences
accompanied by subsequent transgressions imply that the
western Tarim region was seldom disturbed by additional
structural activity. In this regard, a complete Late Mesozoic
extensional basin mode overprinting on the fossil fold-and-thrust
belts has been established.

Geodynamic Switch for Paleo-Tethyan
Evolution
The drivers for regional extension have been linked to
subduction retreat (Uyeda and Kanamori, 1979; Zheng and
Dai, 2018), mantle plume and related continental rift (White
and McKenzie, 1989; Li et al., 2008), and post-orogenic
stretch that caused by lithosphere thinning (Kay and Kay,
1993; Krystopowicz and Currie, 2013). Subduction retreat and
mantle plume event commonly produce massive volcanism or
intrusions in the uppermost crust (Bryan and Ferrari, 2013;
Ernst et al., 2019). However, the western Tarim Basin and its
periphery are relatively inactive and without magmatic material
inputting from surrounding orogens during Jurassic-Cretaceous
(Chapman et al., 2018).

Geological observation indicates that mega-collisional
orogenic belts usually undergo late or post-orogenic thinning (or
extension) around the world, such as the well-known examples
of the eastern Alps and Tibetan Plateau (Gaudemer et al., 1988;
Ratschbacher et al., 1989). Conventionally, a complete orogenic
evolution comprises three major stages orderly: collision
and crustal thickening, to metamorphism and orogenic root
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FIGURE 9 | NW- SE correlation of cross-sections shows the distribution of Jurassic and Cretaceous and their stratal thicknesses. The locations of these stratigraphic
columns are given below. Thickness data of Cretaceous were measured by PetroChina. Thickness data of Jurassic were from Sobel (1999) and Zhou et al. (2005).

FIGURE 10 | (A) rose diagrams of Early-Middle Jurassic paleocurrent directions. (B) rose diagrams of Early Cretaceous paleocurrent directions. Paleocurrent data
were measured in the field and some of them were compiled from Yang W. et al. (2017) and Sobel (1995).

delamination, and finally lithospheric collapse and extension
(Leech, 2001). Crustal thickening and topography elevating along
Paleo-Tethyan orogenic belt have been demonstrated based on
structural, petrological, geochemical and thermochronological
evidence discussed above (Xu et al., 2007; Cao et al., 2015;

Liu et al., 2015; Zhang et al., 2016; Li G.W. et al., 2019). Some
of Latest Triassic post-collisional magmatism and bimodal
magmatism have been reported in West Kunlun and South
Tienshan Mts. in recent years (Liao et al., 2012; Jiang et al., 2013;
Tang et al., 2017). It indicates the post-orogenic delamination
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FIGURE 11 | Paleogeographic evolution of the western Tarim Basin during the Late Triassic to Late Cretaceous. The basin boundary is retreated to the original
position by restoring the structural deformation of balanced sections from Cheng et al. (2012, 2016). (A) Late Triassic paleogeography. (B) Early-Middle Jurassic
paleogeography. (C) Early Cretaceous paleogeography. (D) Early Late Cretaceous paleogeography.

could have occurred. However, the post-Triassic extensional
basin was always ignored (Leith, 1985; Brookfield and Hashmat,
2001). Structural and tectonostratigraphic analyses in western
Tarim Basin provide new insights into the evolution between
the Early Cimmerian orogeny and the subsequent Jurassic-
Cretaceous extension along the Paleo-Tethyan orogenic belt.
Chronologically, the Early Jurassic rift succession unconformably

rested on the Paleozoic strata that deformed in Triassic orogeny.
Such rapid basin subsidence and sedimentation following
Triassic collision are most like post-orogeny pattern that
usually makes an abrupt change from positive relief to negative
landform (Peron-Pinvidic and Osmundsen, 2020). Spatially,
the distributions of Jurassic-Cretaceous strata are mainly
constrained by the residual landscape within the scope of Triassic
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fold-and-thrust belts (Figure 11). The depocenters are situated
close to orogenic belt side, whereas the far outback of basin has no
Jurassic-Cretaceous record. Close tempo-spatial coupling implies
that the paleo- fold-and-thrust belt could play potential roles in
controlling the subsequent subsidence and deposition, although
the detail manners of how the ancient contractional structures
reverse and reorganize are required to confirm. Taking all of these
considerations, we propose that the post-orogenic dynamics of
Paleo-Tethyan orogenic belt is likely to dominate the tectonic
switch from Triassic contraction to Jurassic-Early Cretaceous
extension along the South Asian margin.

CONCLUSION

A better understanding of the Mesozoic western Tarim Basin
provides significant insights into the tectonism prior to
Cenozoic for the northwest margin of the plateau. A synthetical
analysis based on seismic interpretation, tectonostratigraphic and
sedimentological studies leads us to draw the following main
conclusions:

(1) New seismic profile interpretations provide constrains
on the basin architecture. An approximate 60 km
wide fold-and-thrust deformation belt formed along the
western Tarim Basin margin during Triassic. These range-
side dipping stacked faults belong to the north front
thrusts of the paleo-Kunlun wedge, which was caused by
contractional deformation during the Early Cimmerian
orogeny. This contractional event was the primary cause
that leading to the topography uplift and the absence of the
Triassic system in the western Tarim Basin.

(2) The Jurassic-Cretaceous system rests on the folded
Paleozoic strata along a post-orogenic unconformity.
The Jurassic-Cretaceous stratigraphy is divided into two
tectono-sequences, separating by the regional parallel
unconformity between Middle Jurassic and Upper Jurassic
series. The fault-controlled Early-Middle Jurassic basin
accumulated thick sediments, evolving from alluvial fan
to deep lacustrine deposits. The Late Jurassic-Cretaceous
basin underwent a significant expansion, characterised by
braided fluvial-delta and epeiric sea facies. Based on the
inherited depocenters of the Jurassic and Cretaceous basin
and the distinct tectonostratigraphic evolution history, we
propose that the western Tarim basin evolved from a syn-
rift stage to a post-rift stage during the Jurassic-Cretaceous.

(3) We discuss the close tempo-spatial relation between the
Triassic fold-and-thrust belt and the ensuing Jurassic-
Cretaceous extensional basin. And we propose that the

post-orogenic stretch is a likely geodynamic mechanism
for this major extension. This event highlights a significant
tectonic switch from a contractional episode in the
Triassic to an extensional deformation phase in the
Jurassic-Cretaceous, and it could be associated with the
coherent evolution of the Paleo-Tethyan orogenic belt
in Central Asia.
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