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Paleoelevation reconstructions derived from proxy data such as stable oxygen isotope
records in terrestrial archives have been determined for Cenozoic mountain ranges around
the world. Recent studies have highlighted that a variety of paleoclimate processes can
contribute to the isotopic composition of a measured precipitation (δ18Op) signal used in
elevation reconstructions. These processes can include: regional, global, and topographic
variations in paleotemperature; environmental conditions of an air mass before orographic
ascent; evapotranspiration; water vapor recycling; and changes in the vapor source. In
some cases, these processes can overprint the elevation signal sought in proxy data and
preclude robust elevation reconstructions. Recent advances in isotope tracking climate
models allow us to estimate paleoclimate changes during orogen development and
associated changes in paleo δ18Op due to both climate and topographic changes.
These models account for adiabatic and non-adiabatic temperature changes, relative
humidity variations, changing continental evapotranspiration, vapor recycling, vapor
source changes, etc. Modeling strategies using high-resolution isotopes-enabled
General Circulation Models (iGCMs) together with time-specific boundary conditions
and variable topography provide a powerful tool for enhancing elevation
reconstructions from δ18Op proxy data. In this review, we discuss the principles,
benefits and caveats of using iGCMs for interpreting isotopic records from natural
archives for paleoelevation reconstructions. We also highlight future challenges for the
application of iGCMs to paleoaltimetry proxy data that open up new avenues for research
on tectonic-climate interactions.
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INTRODUCTION

Quantitative paleoelevation techniques based on proxy data include approaches such as stable
isotopes (e.g., δ18O, δD) measured in terrestrial deposits, paleofloral and faunal findings and their
physiognomic characteristics, and clumped isotope (Δ47) paleothermometry. These techniques (and
others) have been extensively applied to various mountain ranges such as the Himalayas and Tibetan
Plateau (Rowley and Currie, 2006; Gébelin et al., 2013; Ding et al., 2014), the North America
Cordillera (Chamberlain et al., 2012; Gébelin et al., 2012; Cassel et al., 2014), the Andes and Andean
Plateau (Mulch et al., 2010; Garzione et al., 2017) for elevation reconstructions throughout the
Cenozoic, ranging from the Paleocene and Eocene (e.g., Ding et al., 2014) up to the Pleistocene (e.g.,
Hoke et al., 2014). Oxygen isotope paleoaltimetry is one of the most widely applied techniques and is
based on a progressive decrease in the δ18O value of precipitation (δ18Op) with elevation during the
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topographic (i.e., orographic) ascent of an air mass. This
technique assumes Rayleigh distillation of an air mass under
equilibrium conditions and without local evaporation or
advection of additional vapor from outside the system
(Rozanski et al., 1993; Gat, 1996).

Oxygen isotope paleoaltimetry uses δ18O preserved in
pedogenic or lacustrine carbonates (hereafter referred to as
δ18Oc) as a proxy for paleoelevation. Interpretation of
measured δ18Oc generally requires two steps. For the first step,
the reconstruction of paleoprecipitation δ18O (δ18Opp) using the
calcite-water fractionation coefficients depend on the carbonate
formation temperature as described through the equilibrium
between calcite and water δ18O (Kim and O’Neil, 1997).
Paleoaltimetry estimates based on δ18O alone, without
independent information on paleotemperatures from other
proxies or a paleoclimate model, depend on assumptions made
about the paleoelevation and temperature (global and regional)
changes relative to the modern. Knowledge of these paleo-
conditions is challenging to come by. Moreover, if a surface
temperature is assumed, then the calculation of paleoelevation
from the proxy involves circular reasoning. This is because the
temperature used at the point of interest depends on the elevation
through the temperature lapse rate and often the chosen
coefficients from the equations in Kim and O’Neil (1997)
already implies high elevations.

For the second step, the reconstructed δ18Opp must be
attributed to a paleoelevation using a δ18Opp-elevation
relationship (the “isotopic lapse rate”) in a reference to low-
elevation δ18O. A common approach (largely due to it’s
simplicity) is to assume that the modern isotopic lapse rate
measured from precipitation in an elevation-transect of
stations (e.g., Gonfiantini et al., 2001; Fiorella et al., 2015), or
simulated using a one-dimensional thermodynamic model for
δ18Op composition based on the Rayleigh distillation, can be used
to predict changes in the δ18Op response to changes in
temperature, and the relative humidity of air parcels during
orographic ascent (Rowley et al., 2001; Rowley and Garzione,
2007). This approach assumes the isotopic lapse rate at the time of
carbonate formation not to change over millions of years. Thus,
both of the previous steps rely on several assumptions regarding
the contribution (if any) of global and regional climate change to
δ18O and the stationarity of the δ18Opp-elevation relationship
throughout geologic time.

However, numerous recent studies have shown that a range of
atmospheric processes are important for the interpretation of
δ18Opp. For example, hemispheric-scale atmospheric circulation
and associated teleconnections (Schneider and Noone, 2007;
Takahashi and Battisti, 2007; Pausata et al., 2011), moisture
transport changes (Ehlers and Poulsen, 2009; Poulsen et al.,
2010), evapotranspiration and water vapor recycling within
continental interiors (Risi et al., 2013; Chamberlain et al.,
2014), and shifts in precipitation amount and ratios of
convective-to-large-scale precipitation (Lee and Fung, 2008;
Feng et al., 2013; Botsyun et al., 2019a) all can affect δ18Opp.
The effect of these complicating processes on isotopic lapse rates
range from insignificant to major, up to the extent of flattening or
inverting the paleo isotopic lapse rate relative to the modern (e.g.,

Moran et al., 2007). Thus, despite the intriguing potential of
proxy records to reconstruct the paleoelevation history of
orogens, the interpretation of the data requires several
assumptions about the congruence between modern and paleo
atmospheric processes and climate which may, or may not, be
correct (e.g., Starke et al., 2020). Therefore, a rigorous
interpretation of paleoelevations requires evaluating these
assumptions on a case-by-case basis, which in practice is not
always simple. One promising methods to address these concerns
is an application of climate models for reconstructing time-
specific temperatures, δ18Op and isotopic lapse rates for
adequate interpretation of δ18Oc signal.

Basic Principles of Isotope Tracking
Climate Models. . . in a Nutshell
Climate (and paleoclimate) models are typically based on a set of
governing primitive equations for conservation of mass, energy,
and momentum. These equations are solved simultaneously by
discretizing (gridding) the surface of the earth and atmosphere
and applying a numerical model. If only an atmospheric General
Circulation Model (GCM) is used (as opposed to a coupled
ocean-atmosphere GCM) then solving these equations also
requires application of boundary conditions such as sea-
surface temperatures, solar radiation, and also material
properties of the atmosphere and land surface such as
greenhouse gas concentrations, topography, vegetation/ice
cover, sea-ice extent, soil properties, etc. Given the physics-
based approach of these models, they can be used for diverse
purposes including weather prediction/forecasts, future climate
predictions, or paleoclimate predictions so long as the
appropriate boundary conditions, and land surface properties
are known. Thus, paleoclimate modeling studies that are applied
to paleoelevation proxy data interpretation are “simply” applying
well used and tested climate models from the atmospheric
sciences community, with the caveat that they require a means
for predicting the isotopic composition of precipitation,
discussed next.

Isotopic Modeling and (Non-)stationarity of
δ18Op-Lapse Rate
Climate modeling has been extensively applied to study the
impact of mountain surface uplift on atmospheric physics and
dynamics (Ruddiman and Kutzbach, 1989; Broccoli and Manabe,
1992; Sepulchre et al., 2006). The implementation of water
isotope tracking in simple climate models (Dansgaard, 1964)
and further into GCMs (Joussaume et al., 1984) enabled
calculation of the atmospheric, land surface, and topographic
processes impacting δ18Op. Since the development of iGCMs, a
diverse range of studies have been conducted documenting the
sensitivity of δ18Op to climate change resulting from variations in
pCO2 (Poulsen et al., 2007; Poulsen and Jeffery, 2011), sea surface
temperatures (SSTs) (Sturm et al., 2007), sea level variations
(Poulsen et al., 2007), and paleogeography (Sewall and Fricke,
2013; Roe et al., 2016; Botsyun et al., 2019a), and much more
(Risi, 2009; Sturm et al., 2010 and references herein).
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The previous iGCM based studies have shown, among other
things, that present-day isotopic lapse rates are not always
suitable for paleoelevation reconstructions. First, modeling
studies have shown spatial non-stationarity of the isotopic
lapse rates. For example, Galewsky (2009) uses an idealized,
fully nonlinear atmospheric model to evaluate the effects of
stratified atmospheric flows on orographic precipitation
isotopic ratios, with the aim of improving the foundation
for interpreting proxy records used for paleoelevation
studies. He showed that existing Rayleigh condensation
models are strictly applicable for paleoaltimetry studies only
when the atmosphere is not stratified. Changes in climate or the
horizontal terrain aspect ratio can change precipitation
isotopic ratios at least as much as changes in surface
elevation (Galewsky, 2009), suggesting that proxy records
must be interpreted within a broad context of climate
variability and landscape evolution.

Second, iGCMs have demonstrated the impact of global
climate change on δ18Op and the non-stationarity of isotopic
lapse rates through time. For example, in climate simulations with
elevated CO2 concentrations, the middle troposphere undergoes
preferential moistening and warming, which weakens vertical
stratification and gives rise to shallower lapse rates (Poulsen and
Jeffery, 2011). Li et al. (2016) identified spatial and temporal
variations in simulated isotopic lapse rates for different high relief
zones along the flanks of the Tibetan plateau during Late
Quaternary climates. They found that the precipitation
weighted annual mean δ18Op lapse rate at the Himalaya is
about 0.4‰/km larger during the Middle Holocene and 0.2‰/
km smaller during the Last Glacial Maximum than during pre-
industrial times. These changes are large enough to impact the
interpretation of proxy data (Li et al., 2016). Furthermore, results
from Botsyun et al. (2020) predict a similar magnitude (4–5‰
relative to present day) of change in δ18Op resulting from the
topographic development of the European Alps and paleoclimate
change during the Pliocene and the Last Glacial Maximum.

Third, modeling studies show that regional (e.g. continental or
subcontinental scale) climate changes result from mountain
surface uplift and also have a potential impact on δ18Op. For
example, previous work has shown that Andean Plateau surface
uplift resulted in the onset of convective precipitation (Poulsen
et al., 2010) following a switch of the prevalent moisture source
and associated transport paths from the South Pacific to the
Equatorial Atlantic and initiation/strengthening of the South
American Low Level Jet (Ehlers and Poulsen, 2009; Insel et al.,
2010). These studies suggest that high precipitation rates enhance
the isotope amount effect, leading to more negative δ18Op at high
elevations and, thus, increases in the isotopic lapse rate. In
agreement with this result, experiments with reduced
elevations of the Andean Plateau by Insel et al. 2012 show
that use of present-day isotopic lapse rate can lead to an
underestimation of surface elevation by 2,000 m.

Regional climate changes associated with surface uplift have
also been shown to impact δ18Op across the North American
Cordillera (Feng et al., 2013) and Tibetan Plateau (Botsyun
et al., 2016; Shen and Poulsen, 2019). For both these areas it was
suggested that neither the common assumption that isotopic

fractionation occurs primarily through rainout following
Rayleigh distillation, nor the application of modern
empirical δ18Op lapse rates to past environments, are valid.
Shifts in atmospheric processes, including shifts in local
precipitation type between convective and large-scale rain
and between rain and snow, intensification of low-level
vapor recycling particularly on leeward slopes, development
of air mass mixing and changes in wind direction and moisture
source changes all contributed to the deviations of the isotopic
signal.

Finally, the robustness of applying the present-day isotopic
lapse rate to interpret Eocene Tibetan Plateau proxy data was
recently tested in work of Botsyun et al. (2019a). In this study, an
iGCM with time specific Eocene boundary conditions was
applied to assess the influence of changing Eocene
paleogeography on climate and δ18Op signals. The authors
found that a combination of increased convective
precipitation, a mixture of air masses of different origin,
widespread aridity, and an intensified water recycling
resulted in a reversed isotopic lapse rate across the southern
flank of the Tibetan Plateau. These processes resulted in the
most negative δ18Op occurring over northern India and
increased δ18Op northward (Figure 1). Taken together, these
results indicate that standard stable isotope paleoaltimetry
methods are not applicable in Eocene Asia and an alternative
method, which takes into account paleo isotopic lapse rates,
should be developed.

In recent years, iGCMs have been extensively applied for
δ18O proxy interpretation by using model-derived: 1) δ18Op

lapse rates for various elevation scenarios; and 2) δ18Oc and soil
temperatures for time-specific simulations including various
paleogeographies and paleotopographies. Fan et al. (2017)
and Gao and Fan (2018) used an iGCM-derived
δ18Op-elevation gradient from Feng et al. (2013) to constrain
the paleoelevations of the Cordillera orogenic system (Uinta
Mountains, United States). This approach allows them to
consider vapor mixing in the mountain flank and the warm
climate during the Paleogene. Sundell et al. (2019) interpreted
observed δ18Op across the Peruvian central Andes using
different lapse rates including the thermodynamically-derived
non-linear model from Rowley et al. (2001), an empirical
approach from Quade et al. (2007), and reconstructed
isotopic lapse rate using a climate model. Experiments with
25, 50, 75, and 100% of Andean elevations from Insel et al.
(2012) and experiments with 50 and 100% Andean elevation
from Poulsen et al. (2010) together with climate correction are
used for the data interpretation.

Botsyun et al. (2019a) designed experiments with variable
Tibetan Plateau elevations and Eocene paleogeography to
compare simulated δ18Oc values with previously published
data. These sensitivity tests identified that the best model-data
fit corresponds to a low Tibetan Plateau in the Eocene. The
authors showed that quantitative estimates of paleoaltimetry
from stable isotopes depend on the outcome of a climate
model, which in turn used paleoaltimetry, as input. This
means that paleoaltimetry and paleoclimate models need to be
iteratively tuned until the input elevation and the output relations
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between isotopic ratio and elevation are mutually consistent
(Figure 2).

Limits of climate modeling technique to
paleoaltimetry studies
From a stable isotope paleoaltimetry point of view the application of
iGCMs have several limitations. The key caveats of climatemodeling
approach are linked to: 1) the limited ability of themodel to simulate
δ18O patterns over regions with complex topography due to the
complexity of natural processes and limited scope of model
parameterizations; 2) uncertainties in precipitation and δ18O

changes in monsoonal areas; 3) limited computational resources
for high-resolution fully-coupled ocean-atmosphere simulations; 4)
uncertainties in the choice of boundary conditions (e.g. Figure 2), 5)
relatively low model spatial resolution, and 6) a “social” challenge
whereby the most fruitful applications involve a collaboration
between proxy-oriented and model-oriented scientists.

Examples supporting the first point are as follows. Convective
processes are known to have a significant imprint on the stable
oxygen isotope composition of precipitation, especially in the
tropics (Risi et al., 2008). However, convective processes in a
iGCM strongly depend on the parameterization applied
(Hourdin et al., 2006). Large uncertainties also exist in iGCMs

FIGURE 1 | Schematic representation of the processes in the atmosphere and over land that potentially contribute to a δ18Op signal resulting in: (A) an isotopic
lapse rate according to a Rayleigh distillation model for an isolated air parcel; and (B) flattened or inversed isotopic lapse rate. Examples of proxy data interpretations
based on iGCM results.

FIGURE 2 | Principal scheme showing application of a paleoclimate model for paleoelevation reconstructions. t.f.—transfer function.

Frontiers in Earth Science | www.frontiersin.org February 2021 | Volume 9 | Article 6245424

Botsyun and Ehlers Climate Models in Paleoelevation Reconstructions

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles#articles


depending on the representation of water stable isotopes
parameterizations used for the isotopic exchanges between
vapor and rain droplets during descent and the degree of
partial reevaporation (Lee and Fung, 2008; Risi et al., 2010).
Risi et al. (2010) demonstrated a sensitivity of modeling results to
evaporation, especially in dry regions where this process is
prevalent. In addition, the isotopic equilibration time of
raindrops is drop-size dependent, with smaller equilibration
time for small raindrops (Lee and Fung, 2008). Given this, if
raindrop size is not taken into account an underestimation of
equilibration times for heavy rains with big raindrops could be
expected. Additional potential limitations of using iGCMs
include complexity associated with realistic representation of
soils, evapotranspiration schemes, geochemistry, vegetation,
and clouds (Risi et al., 2010; Haese et al., 2013; Rio and
Hourdin, 2015). These challenges are active areas of research
in the climate modeling community and improvements in model
parameterizations are always occurring.

The response of the hydrologic cycle to the climate forcing in
monsoon areas vary depending on the model applied and, even
for future climates, monsoons amplification has not been
shown as a strong feature (Wang et al., 2020). Furthermore,
the interpretation of water isotope variations and their link to
monsoon is not straightforward even for recent climates (e.g.,
Middle Holocene) when there is no problem of mountain
elevation change (Lin et al., 2019). Further uncertainties are
associated with the application of atmosphere-only climate
model with no feedbacks between the atmosphere,
vegetation and the ocean. Use of modeling techniques with
SSTs and sea ice extension prescribed from coupled simulations
to run a separate high resolution atmospheric model suffer
from not taking into account ocean variability and its feedback
to the atmosphere. Moreover, vegetation can also play an
important role in isotopic changes through not only
evapotranspiration changes, but also through changing
surface albedo feedback. Given this coupled high-resolution
ocean-atmosphere and dynamic vegetation modeling
approaches are preferred, but extremely challenging to
conduct. However, usage of high-resolution atmosphere-only
iGCMs that use previous coarser resolution coupled ocean-
atmosphere models for boundary conditions have been shown
to be a good trade-off between the high-resolution necessary to
capture observed spatial, seasonal, and daily variations of δ18Op

and computation resources required (Botsyun et al., 2019b).
Furthermore, paleoclimate studies are sensitive to the

paleogeographical reconstruction used (e.g., Baatsen et al.,
2016). Producing paleogeographic reconstructions for climate
models is time-consuming and elaborate. For example,
paleoclimate models frequently use reconstructions where the
latest state-of-the-art of plate tectonic, crustal and paleomagnetic
reconstructions, paleotopography, paleobathymetry, or
vegetation distribution have not yet been incorporated. The
availability of realistic Cenozoic boundary conditions, such as
sea-surface temperatures, is also limited, unless a time-
consuming coupled ocean-atmosphere model is used. Finally,
coarse model resolutions used in iGCMs to reduce simulation
time often prevent accurate representation of smaller-scale

topographic features such that explicit simulation of air masses
ascending mountain topography are only grossly represented
(Hourdin et al., 2006; Haese et al., 2013). Despite the above
caveats, numerous studies have applied iGCMs to capture
regional changes in δ18Op through time, and comparison of
model predicted δ18Op to observations (e.g., Global Network
of Isotopes in Precipitation (GNIP) stations data) to understand
model limitations are commonly conducted when applying
models to new locations.

When are state-of-the-art climate models
useful and when can simpler approaches be
applied?
Despite the previously mentioned limitations associated with
iGCMs, applications of climate models to enhance proxy
interpretations are gaining success (e.g., van Hinsbergen and
Boschman, 2019). Modeling studies have shown that simpler
(i.e., non-iGCM based) paleoaltimetry approaches are valid
when the Rayleigh distillation process is dominant. However,
iGCMs have provided several examples of when atmospheric
processes lead to δ18Op variations that are different, and
sometimes opposite, of those estimated using Rayleigh
distillation models of moist adiabatic condensation. For
example, Shen and Poulsen (2019) used the ECHAM5-wiso
model to show that Rayleigh distillation is only prevailing in
the monsoonal regions of the Himalayas when the mountains
are high. In contrast, when orogen topography is lower, local
surface recycling and convective processes become important. This
is due to weakened forced ascent causing weaker Asian monsoons.
In this example, applying a standard paleoaltimetry approach is not
valid. Similarly, over the North America Cordillera changes in
atmospheric processes have been shown to impact δ18Op and
violate the common assumption that isotopic fractionation
occurs through rainout following Rayleigh distillation (Feng
et al., 2013). In this example, the atmospheric changes included
shifts in local precipitation type between convective and large-scale
rain and also between rain and snow, intensification of low-level
vapor recycling on leeward slopes, and development of air mass
mixing and changes in wind direction and moisture source. Given
the uncertainty of when, or when not, a one-dimensional Rayleigh
distillation model adequately represents moisture transport, the
significance of lateral vapor mixing, or temporal changes in the
isotopic lapse rate, the application of iGCMs is recommended (e.g.,
Li et al., 2016) as an initial step to characterize these processes
rather than assuming they are insignificant.

There are, however, observational (non-iGCM based)
techniques that have emerged to help circumvent the effects of
changing atmospheric processes on paleoaltimetry data. One such
technique is the δ-δ approach. This approach assumes that a
baseline sets of samples collected from a low elevation
stratigraphic succession provides a reference frame for
interpreting higher elevation samples. The implicit assumption
is that any regional or global climate change will affect stable
isotopes records from both (low and high elevation) localities
equally if looking at the same time interval. If true, then the
difference between the two records can be interpreted as
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resulting from elevation change, thereby enabling a paleoelevation
reconstruction (e.g., Campani et al., 2012; Gébelin et al., 2012;
Mulch, 2016; Pingel et al., 2020). While the δ-δ approach holds
promise and there are geographic locations where this may work
well, the approach does require that a suitable baseline location has
been chosen–which is difficult to do without prior knowledge. In
recent work by Botsyun et al. (2020), an iGCMwas used to explore
the δ18Op signal of Cenozoic topographic and paleoclimatic change
in the European Alps. The results of their study suggest that the δ-δ
approach is applicable for the case of the European Alps under the
condition that the low-elevation reference section measured hasn’t
experienced climate change, and that it is located far enough away
and upwind from the area of interest to not experience climate
changes associated with orogenic uplift.

In summary, when working with proxy records from “non-
simple” locations where Rayleigh distillation assumptions may
not be valid, the modern paleoelevation community is well
equipped to make a step forward to more advanced
reconstructions involving isotope enabled climate modeling.
However, doing this requires a collaboration between proxy
and climate modeling communities to evaluate how simple, or
complex, the δ18Op response is to changing atmospheric
processes. In this review, we have highlighted how application

of climate models in conjunction with geological/geochemical
data provides a powerful tool to incorporate climatic change
effects into the analysis of paleoaltimetry work. Moreover,
paleobotanic data and stable oxygen isotope paleoaltimetry can
be reconciled using climate models. Further model-data
comparison studies that combine multiple proxy types,
together with iGCM modeling efforts testing the impact of
complex topography structures as well as atmospheric
parameterizations on δ18O are paving the way for more
accurate and robust paleoelevation estimates in the decades
to come.
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