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We develop Bayesian statistical models that are designed for the inference of ice

softness and basal sliding parameters, important glaciological quantities. These models

are applied to Langjökull, the second largest temperate ice cap in Iceland at about 900

squared kilometers in area. The models make use of a relationship between physical

parameters and ice velocity as stipulated by a shallow ice approximation that is generally

applicable to Langjökull. The posterior distribution for ice softness concentrates around

18.2 × 10−25s−1Pa−3; moreover, spatially varying basal sliding parameters are inferred

allowing for the decomposition of velocity into a deformation component and a sliding

component, with spatial variation consistent with previous studies. Bayesian computation

is conducted with a Gibbs sampling approach. The paper serves as an example of

statistical inference for ice softness and basal sliding parameters at temperate, shallow

glaciers using surface velocity data.

Keywords: surface velocity, basal sliding, data analysis-methods, Bayesian inference, ice properties

1. INTRODUCTION

The dynamics of glaciers have become of greater scientific interest in recent times due to global
climate change and its impact on the size and flow of glaciers; perhaps most crucially, melting
glaciers have an effect on sea levels (Björnsson et al., 2006; Zammit-Mangion et al., 2014; Hock
et al., 2019). Glacial dynamics are dependent on two main physical parameters: ice softness, related
to the deformation of ice, and basal sliding, related to basal velocity (Cuffey and Paterson, 2010).
Both ice softness and basal sliding parameters cannot be measured directly and must be estimated
in order to properly understand glacial dynamics and, consequently, globally relevant phenomena
such as sea level rise. The purpose of this paper is to use surface velocity data in combination
with Bayesian statistical inference in order to infer ice softness and basal sliding parameters, with
particular application to Langjökull, a prominent Icelandic glacier (Björnsson, 2017). Iceland, about
10 percent of whose area is covered by glaciers (Björnsson and Pálsson, 2008), is a natural laboratory
for cryosphere science, particularly in an era of increasing temperatures and glacial melting.

A simplified definition of a glacier is a mass of ice that is situated upon bedrock or sediment,
where ice is accreted from compacted snowfall and is lost due to melting. Ice slowly flows in the
direction of the negative gradient of the glacier surface. The flow is thought to be a combination
of deformation of the ice due to gravity and sliding of the glacier at the bed. For glaciers that
are temperate such as Langjökull, ice softness, which governs the rate of ice deformation, is also
constant because softness is dependent on temperature. In contrast, the basal sliding parameter can
vary both spatially and temporally, especially during glacial surge events (Björnsson et al., 2003).
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We employ Bayesian statistical modeling of surface velocities
in order to obtain posterior distributions for ice softness
and basal sliding parameters; as such, the approach allows
for uncertainty quantification of these pivotal glaciological
quantities. Bayesian inference has appeared in the glaciology
literature before, albeit for different aims. For instance,
Brinkerhoff et al. (2016) use Bayesian inference to estimate
subglacial topography, while Werder et al. (2020) and Guan
et al. (2016) use Bayesian inference to estimate ice thickness, and
Minchew et al. (2015) use Bayesian methods to infer velocity
fields from multiple repeat-pass interferometric synthetic
aperture radar (InSAR) measurements in Iceland. Petra et al.
(2014) and Isaac et al. (2015) develop computationally efficient
methods for inverse problems involving ice-sheet models, within
a Bayesian framework. Perhaps the closest Bayesian inference
papers in the literature to the work described here are in Pralong
and Gudmundsson (2011) and Raymond and Gudmundsson
(2009), which use Bayesian inference to estimate basal sliding
and basal topography properties jointly. Building off of this
work, we infer ice softness and basal sliding parameters jointly,
and infer posterior probability distributions for ice softness
and basal sliding parameters. In many instances subglacial
topography is not known and must be inferred, but in the case
of Langjökull basal topography is known due to the radio-echo
survey of the bed Björnsson and Pálsson (2020) and surface
elevation topography maps from various sources are also
available (Pálsson et al., 2012).

An important result is that the estimated value of ice softness
is comparable to the recommended value for temperate glaciers
fromCuffey and Paterson (2010), despite that a nearly flat prior is
used. In contrast to the previous works, the Bayesian estimate also
comes with an uncertainty estimate, here represented with the
posterior standard deviation. The posterior is substantially more
precise (i.e., lower standard deviation) than the prior, suggesting
that the learning of physical parameters is achieved. The inferred
spatial variation in basal sliding appears to be consistent with
prior work on characterizing horizontal velocities at Langjökull
(Minchew et al., 2015).

The structure of the paper is as follows. In section 2, we
begin with an overview of the equations that are used to relate
ice softness and basal sliding parameters to glacier surface
velocities computed with the shallow ice approximation of the
stress balance, as derived in Marshall et al. (2005). A detailed
description of Bayesian statistical models of surface velocity and
an explanation of the Gibbs sampler (i.e., a Markov chain Monte
Carlo approach for sampling from the posterior distribution) that
is used for inference of physical parameters follows. Additionally,
we describe the surface elevation, bed topography, and surface
velocity data from the University of Iceland Institute of Earth
Sciences (UI-IES). Section 3 discusses the results of applying
the Bayesian statistical models to the Langjökull data. Section 4
discusses these results in a more general glaciological context,
points out limitations of the approach, and suggests future
avenues for work. While the focus of this paper is Langjökull, the
delineated approach can be applied to other glaciers where data
on surface velocity, bed, and surface topography are available,
and the SIA is appropriate. The melting of such glaciers is

expected to contribute to the rise of sea levels within the next
century, supporting the scientific importance of the statistical
modeling and inference within this paper.

2. METHOD

The Bayesian statistical models that are used in this analysis
involve a shallow ice approximation (SIA) model for glacier
surface velocity in 2 horizontal dimensions. The probability
distributions for surface velocity data use these equations and
take either a normal or t distribution. Prior distributions are
used for the ice softness and basal sliding parameters, and
a Markov chain Monte Carlo (MCMC) algorithm known as
Gibbs sampling is used to conduct posterior inference. In the
following subsections, we discuss these matters in more depth,
and conclude with a description of the data sources that we apply
the Bayesian statistical modeling and methodology to. We refer
the reader to the Appendix, section 5, for further mathematical
equations and details.

2.1. Review of Exact Shallow Ice
Approximation Surface Velocity Equations
We use an analytically exact SIA model for horizontal velocities
without longitudinal coupling, as in Equation (12) of section 2.2
of Marshall et al. (2005), a section which presents the derivation
of the SIA for a 2 dimensional model. The SIA is valid when the
thickness of a glacier is much less than horizontal dimensions,
as occurs at Langjökull (Björnsson and Pálsson, 2008). A SIA
(Hutter, 1983) is a commonly used physical model for shallow
glacial dynamics as for instance in Marshall et al. (2005), Bueler
et al. (2005), Jarosch et al. (2013), and Gopalan et al. (2018),
to give a few examples. A SIA has been applied specifically to
Langjökull in Flowers et al. (2007), for instance. By x and y
directions, we are referring to their typical usage in a Cartesian
coordinate system. In particular, Marshall et al. (2005) show that
the exact surface velocities in the x and y directions, vx and vy
respectively, are given by:

vx = γ τx +
2B

n+ 1
(ρgα)n−1Hnτx, (1)

vy = γ τy +
2B

n+ 1
(ρgα)n−1Hnτy. (2)

In the above equations, B is the constant ice-softness parameter
and γ (x, y, t) is the basal sliding field parameter, which varies
spatially and temporally. Additionally, ρ is the density of ice, g
is gravitational acceleration, n is a constant from the constitutive
relation for temperate ice that is typically set to 3 (and is precisely
3 in this paper), and H(x, y, t) is glacial thickness.

Furthermore, if S(x, y, t) denotes the glacier surface elevation,
basal shear stress is given by:

τx = −ρgH
∂S

∂x
, (3)

τy = −ρgH
∂S

∂y
, (4)
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and α is the surface slope, given by:

α =

√

(

∂S

∂x

)2

+

(

∂S

∂y

)2

. (5)

As such, glacial flow under this model is in the direction of the
negative surface gradient, the− ∂S

∂x and− ∂S
∂y terms.

2.2. Bayesian Statistical Models for
Surface Velocities
We construct and use Bayesian statistical models that allow
for the inference of ice softness and basal sliding parameters.
The models have two important pieces – the first relates the
analytical SIA surface velocities, vx and vy, which in turn depend
on the physical parameters B and γ , to the observed surface
velocity data. The second important aspect of the Bayesian
model is the prior distribution for parameters. In the next few
subsections we describe both the data distributions and prior
distributions, and follow up with how Bayesian inference is
conducted computationally.

2.2.1. Normal Distribution for Surface Velocities
We first consider a normal distribution (i.e., a normal model) for
surface velocity data. Specifically, the observed velocity in the x
direction for a particular site i with spatio-temporal coordinates
(xi, yi, ti) is a normal distribution withmean vx(B, γ (xi, yi, ti)) and
standard deviation σx. Likewise, the observed surface velocity in
the y direction for a particular site i at time t is also normally
distributed with mean vy(B, γ (xi, yi, ti)) and standard deviation
σy. Expressions for vx and vy are given in Equations (2.1)
and (2.2). Independence is assumed between x and y velocity
components for a given site and between distinct sites. A Kendall
correlation test between x and y velocity components fails to
reject the assumption of no correlation with the data, which is
consistent with the assumption of independence between x and y
surface velocity components. The reader is referred to section 5,
the Appendix, for a precise mathematical specification.

2.2.2. t Distribution for Surface Velocities
We next consider a t distribution (i.e., a t model) for surface
velocity data. That is, the observed velocity in the x direction
for a particular site i with spatio-temporal coordinates (xi, yi, ti)
is t distributed, with mean vx(B, γ (xi, yi, ti)) and scale σx. To
accommodate heavy-tailed deviations from the SIA mean, we
use a small degrees of freedom parameter: 3.0001. This choice
of degrees of freedom allows for heavy tails (heaviness of tails
increases with decreasing degrees of freedom) and maintains
a well-defined skewness (skewness is undefined for degrees of
freedom less than or equal to 3). Likewise, the velocity in y
direction for a particular site is also t distributed with mean
vy(B, γ (xi, yi, ti)) and scale σy. As with the normal distribution
model, independence is assumed between x and y velocity
components for a given site and between distinct sites. As
discussed in the previous section, a Kendall correlation test
between x and y surface velocity components fails to reject
the assumption of no correlation with the data set, which is
consistent with the assumption of independence between x and

y velocity components. The reader is referred to the Appendix
(Section 5) for a precise mathematical specification.

2.2.3. Prior Distributions for Physical Parameters
A normal distribution with mean 35 and standard deviation 30
that is truncated to be on the interval [1, 70] is used for the
ice-softness parameter (units are 10−25s−1Pa−3); this is a nearly
flat prior on the interval [1,70] (see comparison of the prior
and posterior in the next section) that encapsulates a range of
temperate ice softness values presented in Cuffey and Paterson
(2010) (24, 38, and 55 in units of 10−25s−1Pa−3) based on
ice-softness measurements. Additionally, the prior distribution
for log γ follows a Gaussian process distribution with mean
0 and Matérn kernel for the covariance, where correlation is
a decreasing function of Euclidean spatial distance between
measurements. Specific mathematical equations for all priors are
given in the Appendix (section 5).

We use the parameterization log γ so that a Gaussian process
prior is sensible: a Gaussian process prior for γ would still allow
for spatial correlation but admit negative values for γ , which is
not physically plausible. The Matérn kernel is commonly used
for geostatistical applications (Gelfand et al., 2010; Bakka et al.,
2018) and subsumes both the exponential and Gaussian kernels,
widely used for Gaussian processes. Specifically, a smoothness
parameter of 0.5 corresponds to exponential and a smoothness
parameter that approaches infinity corresponds to Gaussian. In
this work, smoothness and range parameters of theMatérn kernel
are selected byminimizing the posterior predictivemean absolute
error over the set {100, 1000, 10000} for the range and {0.5, 2,
10} for the smoothness. Based on this criterion, a range of 100
is used for the normal and t distribution Bayesian models; the
smoothness is 10 for the t distribution Bayesianmodel and 0.5 for
the normal distribution Bayesian model. The marginal variance
is set to 100, which is large enough such that sensible values of
basal sliding (i.e., correct order of magnitude) are within one
to two standard deviations of the mean. The prior sensitivity
analysis in the Appendix (section 5) examines when priors are
changed using an inverse-gamma prior (which is not truncated)
for B as well as a smaller marginal variance for the Gaussian
process prior for log γ . The results indicate that the posterior is
not substantially affected by changing the prior distributions.

2.2.4. Posterior Distribution and Inference via Gibbs

Sampling
The overarching aim of this Bayesian analysis is to sample from
the posterior distribution of B, log γ , σx, and σy, which by Bayes’
theorem is:

p(B, log γ , σx, σy|Yx,Yy) ∝

p(Yx,Yy|B, log γ , σx, σy)p(B)p(log γ )p(σx)p(σy).

In the above expression, the x surface velocity measurements at
N sites are denoted by Yx ∈ R

N , and the y surface velocity
measurements are denoted by Yy ∈ R

N . The posterior samples
of B and log γ are substituted into Equations (2.1) and (2.2) for
vx and vy to generate posterior samples of the x and y velocities.
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The posterior distribution is not analytically tractable, and a
Markov chain Monte Carlo algorithm (MCMC) is often used
to sample from the posterior distribution in such a scenario
(Tierney, 1994). Specifically, we develop a Gibbs sampling
approach to sample from the posterior distribution. The idea
of the Gibbs sampling approach is to sequentially sample from
the posterior distribution of each parameter conditional on the
data and remaining parameters: p(B|−), p(log γ |−), p(σx|−), and
p(σy|−), where - indicates all other variables and data. If this
is iterated for many steps, the samples will be drawn from
the posterior distribution, p(B, log γ , σx, σy|Yx,Yy). Section 5
contains the precise Gibbs sampler steps that are run iteratively.

The Gibbs sampler crucially relies on an elliptical slice
sampling step for log γ . Instead of sampling from each
component of log γ one-by-one for each of the N sites (which
is usually computationally inefficient), we use elliptical slice
sampling because of the Gaussian process prior on log γ .
Elliptical slice sampling (Murray et al., 2010) is an extension
of slice sampling (Neal, 2003) that is designed to sample from
a posterior distribution in which the prior distribution is a
Gaussian process. This property holds since log γ has a Gaussian
process prior. The algorithm is shown to be a competitive
alternative to Metropolis-Hastings (Tierney, 1994) for Gaussian
process priors, often times working better for real data in terms
of a larger effective sample size of Monte Carlo output per unit
compute time (Murray et al., 2010).

400,000 posterior samples are drawn from the posterior of
physical parameters using Gibbs sampling for both the normal
and t distribution variations, after removing a burn in of 50,000
iterations from 450,000 total iterations. The effective sample size
and R̂ convergence diagnostic from Vats and Knudson (2018),
a recent version of the convergence diagnostic from Gelman
and Rubin (1992), provide evidence of convergence of Gibbs
sampling; these results are detailed in section 5.

2.3. Langjökull Data
The models set forth in the previous section are applied to
Langjökull, which is Iceland’s second largest temperate glacier
by area (and third by volume) (Björnsson and Pálsson, 2008).
Langjökull is 900 km2 in area, 190 km3 in volume, 210 m mean
thickness, and has a max thickness of about 650 m. In particular,
we use:

• 100 m resolution surface elevation topography maps of
Langjökull at 1997 (Pálsson et al., 2012), 2007 (Pope et al.,
2016), and 2015 (Porter et al., 2018).

• 100 m resolution topography map of the Langjökull glacier
bed, constructed from radio echo sounding profiles, nearly 1
km apart, surveyed in 1997 (Björnsson and Pálsson, 2020).

• 51 GPS surface velocity measurements taken across Langjökull
at 1997, 2007, and 2015, including (x, y, t) covariates. The
UI-IES takes measurements twice a year: once in late spring
(end of April to beginning of May) for winter mass balance
measurements and once in the fall for summer balance
measurements (end of September to mid-October). The
displacement measured between the two yearly measurements
divided by time yields an estimate of the horizontal surface

velocity at a particular measurement site during the summer
time, when basal sliding is expected to have a substantial role
in velocity (Minchew et al., 2015). A topographical map of
Langjökull with the surface velocity survey sites is included in
Figure 1.

Notice that the x and y velocity equations given in Equations
(2.1) and (2.2) require glacial thickness and the surface elevation
derivatives with respect to x and y. The former is obtained
with the difference between surface elevation and bed elevation,
and the latter is obtained with central differences of the surface
elevation topographical maps. The Langjökull surface elevation
ranges from 440 to 1,440 m above sea level. The grid that
contains the surface elevation data and bed measurements is of
dimensions 43,800m by 46,400m. Langjökull is about 50 km long
and 20 km wide, which explains the name “long glacier."

3. RESULTS

The posterior mean of ice softness using the t distribution is 18.2
with a posterior standard deviation of 0.847, and the posterior
mean for ice softness using the normal distribution is 17.8 with
a posterior standard deviation of 1.11 (units of 10−25s−1Pa−3).
For comparison, 23.7 is estimated by Gudmundsson (1999), 23.4
is found in Aðalgeirsdóttir et al. (2000), 22.2 is found in Albrecht
et al. (2000), and 20 is found in Hubbard et al. (1998), also in
units of 10−25s−1Pa−3. The recommended value fromCuffey and
Paterson (2010) is 24×10−25s−1Pa−3. The posterior distributions
for ice softness appears to be in the vicinity of these values,
though strictly less. Using the t distribution for surface velocities,
the posterior distribution for ice softness is slightly closer to
the recommended value for temperate glaciers from Cuffey and
Paterson (2010) than when the normal distribution is used, and
has a lower standard deviation (i.e., more precise) as is illustrated
in Figure 2. Moreover, plots of posterior means for x and y
velocities vs. observed x and y velocities are displayed in Figure 3

and show a generally close agreement; the few outliers in the
x velocity direction are at locations close to the outer edge of
the glacier where the SIA is a poorer physical description. As
velocities are dependent on both ice viscosity and basal sliding,
the overall agreement between observed and predicted surface
velocities indicates that inferences are physically realistic.

An important consequence of the model output is the ability
to decompose posterior ice velocity into a ice deformation
component (referred to as viscous flow in Minchew et al., 2015)
and a sliding component. The panels of Figure 4 map the
posterior mean of deformation velocities and sliding velocities
across Langjökull during the melt seasons of 2007 and 2015, and
are overlaid on surface elevation topography. Several important
observations are apparent based on these maps. First is that
the direction of velocity in the negative of the surface gradient,
evident based on the directions pointing toward areas of rapid
elevation descent. The second main observation is that there are
two important regions of significant basal sliding in the southwest
and north of the glacier. In the southwest (i.e.,W-Hagafellsjökull)
the bed consists of gentle slopes of layers of lava flows of a
shield volcano (now even visible at the glacier edge), and in the
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FIGURE 1 | Surface topographical map of Langjökull along with surface velocity survey locations.

north region hard bed is also likely, whereas much of Langjökull
bed is probably of more permeable bedrock or sediments. Less
permeability makes it more likely for meltwater to heighten the
water pressure at the bed, at the start of melting periods (which
may occur more than once during the melt season), thus creating
conditions for basal sliding.

In Minchew et al. (2015) Figures 4C,D, maps of speed
assuming only viscous (i.e., deformational flow) are compared
to maps of measured speeds with InSAR at Langjökull; the
difference between the two is indicative of the amount that basal
sliding contributes to surface velocity. These maps also show
evidence of significant basal sliding velocity in the north and
southwest of Langjökull, consistent with the spatial variation we
have observed in posterior basal sliding speeds. Additionally, we
see a significant posterior deformation velocity component in the
southeastern part of Langjökull (see the arrow that runs off of
the body of Langjökull in the southeast), where basal sliding is
quite low. This result is also consistent withMinchew et al. (2015)
because deformation speed is quite close to total speed in this
region (Figures 4C,D of Minchew et al., 2015). We do not notice
significant temporal variation in posterior velocities except for

what appears to be a slight reduction in basal sliding velocities
in the north and southwest regions. This finding is likely to be
related to less summer melt (about a third) in summer 2015 than
in 2007 observed via mass balance measurements.

In addition to maps of posterior basal sliding and
deformation, Section 5 Figures A7–A10 provide illustrations
of the posterior uncertainty in the basal sliding parameter
for 2007 and 2015. The numbers on the maps indicate the
measurement sites, and the boxplots that follow have numbering
on the horizontal axis corresponds to the numbering on the
map. The boxplots plot the posterior distribution for the basal
sliding parameter at the corresponding site, illustrating the
uncertainty in the posterior distribution. The regions that show
large amounts of basal sliding, both in 2007 and 2015, are in areas
with large basal sliding speeds, as illustrated in Figure 4; these
regions are in the southwest and north. Moreover, uncertainty in
basal sliding is much larger in the north than in the southwest,
both in 2007 and 2015. In the southwest, the basal sliding
parameters appear to be larger in 2007 than in 2015 (just under
4 × 10−4 in 2007 vs. 3 × 10−4 in 2015 in units of ma−1Pa−1).
The reduced amount of basal sliding corresponds to about a 1/3
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FIGURE 2 | Illustration of posterior densities for ice softness using a normal distribution and t distribution for surface velocities. The prior, nearly flat, is also shown for

comparison. Units are 10−25s−1Pa−3.

FIGURE 3 | An illustration of the posterior mean for x and y glacier surface velocities compared to the observed x and y glacier surface velocities (using a t distribution

for surface velocities). Units for velocities are in meters per year. Overall, the observed and inferred values agree, particularly for the y-velocity values.

reduction in melt as measured by mass balance measurements in
2015 and 2007.

4. DISCUSSION

The objective of this paper is to develop Bayesian models for
glacier surface velocity, based on a shallow ice approximation,
that allow for the statistical inference of important glacial
parameters: ice softness and basal sliding. Specifically, one model
stipulates a normal distribution for surface velocities, whereas the
other specifies a heavy-tailed t distribution.

Overall, a notable result is that the posterior distribution
for ice softness is close to values derived in the literature (for
instance, the recommended value from Cuffey and Paterson,

2010), albeit by different methods. In contrast to these works,
the estimate of ice softness is accompanied with an uncertainty
estimate as well via the posterior standard deviation. An
additional differentiating aspect of our work in comparison to
other Bayesian approaches involving glacial surface velocity is
the use of a t distribution in addition to a normal distribution
(an assumption used in Pralong and Gudmundsson, 2011;
Brinkerhoff et al., 2016 to give a few examples). The pattern
of spatial variation in basal sliding is also consistent with prior
studies of surface velocity at Langjökull, in particular Minchew
et al. (2015). However, it is important to note that these patterns
of spatial variation in basal sliding are specifically during the
melt season, so it is not possible to verify how the approach
performs for inferring sliding velocities during the winter-spring
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FIGURE 4 | Illustration of posterior mean horizontal surface velocities across Langjökull during the 2007 and 2015 melt seasons. (A,B) illustrate 2015 velocities due to

deformation (i.e., viscous flow) and sliding, respectively. (C,D) illustrate 2007 velocities due to deformation (i.e., viscous flow) and sliding, respectively. The velocities

are overlaid on surface topographical maps (elevation in meters), and the arrow directions are that of the steepest descent. The lengths of the arrows are proportional

to speed: the black arrow on panel (A) corresponds to 12.4 m/a. Substantial sliding appears to occur in the southwest and north; the sliding magnitude appears to

be slightly less in 2015 compared to 2007, which corresponds to about 1/3 less melt during 2015 based on mass balance measurements.

season when the total velocity is expected to be almost due to
deformation only.

The residual analysis detailed in the Appendix (section 5)
provides a means of assessing the normal distribution and t
distribution used for surface velocities. Residuals are defined as
centered and scaled versions of the x and y observed surface
velocities (i.e., subtracting off the posterior mean of surface
velocity and dividing by the posteriormean of the scale parameter
for both directions). A Shapiro-Wilk test is conducted for the
residuals, and the assumption of normality is rejected for both the
x and y surface velocity residuals, providing evidence against the
use of the normal distribution for surface velocities. Additionally,
Figure A11 of section 5 provides quantile-quantile (QQ) plots
comparing the sample quantiles with theoretical quantiles for
the residuals assuming that a normal distribution holds. A

good fit occurs when there is close agreement between sample
and theoretical quantiles but is not observed for the normal
distribution residuals, particularly for the x-velocity components.
We also include a QQ-plot for the t distribution residuals in the
second row of Figure A11. There is some improvement in the
QQ-plot for the t distribution residuals of x-velocities, but not as
much for the y-velocities, it appears. Overall the residual analysis
supports the claim that a normal distribution is not a good fit
for surface velocities and a heavy-tailed t distribution improves
goodness-of-fit.

We must also lay forth limitations of our approach. Perhaps
the greatest limitation is the use of the shallow ice approximation,
which will not always hold. Another issue is that of scalability;
the Gibbs sampler for posterior inference takes on the order of
a few hours on 2020 iMac with 3.8 GHz 8-Core Intel Core i7
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processor with a data set of 51 surface velocity observations.
The approach may be more time consuming with a larger
data set, especially for the Gaussian process prior for basal
sliding parameters, whose probability density involves finding
the inverse and determinant of a covariance matrix, generally
computationally costly operations.

There are a number of future steps that can be taken to
extend this analysis. First, the posterior distributions for the
physical parameters can be used in Monte Carlo simulations
involving a time dynamical model of glacier evolution in order
to derive projections for how the shape of Langjökull will
evolve in the future. Second, alternate continuous distributions
may be tested besides the normal or t distribution used within
this work (perhaps even a non-parametric distribution). Third,
additional correlation structures besides theMatérn kernel can be
investigated for the prior distribution on the basal sliding field.

While the models have been exclusively applied to Langjökull,
we believe this work serves as a guide for selecting physical
parameters and quantifying their uncertainty at other temperate,
shallow glaciers around the globe, the melting of which is
expected to contribute significantly to sea level rise in the next
century. Additonally, the R code written for performing Bayesian
inference with a Gibbs sampler may be reapplied for other
scenarios where surface topography, bed topography, and surface
velocity data are available. Despite that the models we have used
rely on a SIA, different equations for vx and vy, for instance based
on a numerical solver, may be used.
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