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We present the compilation of a new database of active faults in Slovenia, aiming at
introducing geological data for the first time as input for a new national seismic hazard
model. The area at the junction of the Alps, the Dinarides, and the Pannonian Basin is
moderately seismically active. About a dozen Mw > 5.5 earthquakes have occurred
across the national territory in the last millennium, four of which in the instrumental era.
The relative paucity of major earthquakes and low to moderate fault slip rates necessitate
the use of geologic input for a more representative assessment of seismic hazard. Active
fault identification is complicated by complex regional structural setting due to
overprinting of different tectonic phases. Additionally, overall high rates of erosion,
denudation and slope mass movement processes with rates up to several orders of
magnitude larger than fault slip rates obscure the surface definition of faults and traces of
activity, making fault parametrization difficult. The presented database includes active,
probably active and potentially active faults with trace lengths >5 km, systematically
compiled and cataloged from a vast and highly heterogeneous dataset. Input data was
mined from published papers, reports, studies, maps, unpublished reports and data
from the Geological Survey of Slovenia archives and dedicated studies. All faults in the
database are fully parametrized with spatial, geometric, kinematic and activity data with
parameter descriptors including data origin and data quality for full traceability of input
data. The input dataset was compiled through an extended questionnaire and a set of
criteria into a homogenous database. The final database includes 96 faults with 240
segments and is optimized for maximum compatibility with other current maps of active
faults at national and EU levels. It is by far the most detailed and advanced map of active
faults in Slovenia.
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INTRODUCTION

Modern seismic hazard assessment studies strive in
incorporating state-of-the-art knowledge from its various
input datasets. We report on the new map and database of
active, probably active and potentially active faults in Slovenia
through the lens of seismic hazard input model. Slovenia and its
immediate vicinity is a seismically moderately active region with
a number of damaging to very destructive historic earthquakes,
including some of the strongest events in the broader Alpine
area. Several historic earthquakes with moment magnitudes in
mid to upper 6s and maximum intensities up to Imax � X have
occurred in the past (e.g. 1348, 1511). Recent damaging
earthquakes include the 1976 Ms 6.5, Ms 6.1 and Ms 6.0
Friuli earthquakes, 1998 Ms 5.7 Krn-Bovec earthquake and
the 2004 Mw 5.2 Bovec earthquake (Aoudia et al., 2000; Bajc
et al., 2001; Kastelic, 2008; Gosar, 2012; Gosar, 2019a; Gosar,
2019b) (Figure 1). The near-continuous tectonic activity in
Mesozoic and Cenozoic spans rifting phases of Meliata and
Vardar oceans and the complex Alpine orogeny phase,
beginning in Cretaceous and still ongoing (Schmid et al.,
2020, and references therein). The long and varied tectonic
history has resulted in strong structural footprints and
overprints.

Slovenia is located in a relatively quiescent part of the broad
Eurasia-Africa collision zone. While the most active part of the
collision zone is located further south in the central and
eastern Mediterranean region, with historic earthquakes
with Mw > 8 (e.g. Papadopoulos et al., 2007; Shaw et al.,
2008; Stiros, 2010), the part at the junction of the Alps, the
Dinarides and the Pannonian basin is nevertheless an area of
noteworthy tectonic and seismic activity. The largest historic
earthquakes in the region produced major damage even by
modern standards. The 1348 Villach/Carinthia/Friuli
earthquake may have resulted in as many as 5000–10 000
fatalities according to contemporary sources, although it may
well be that part of the figure was the result of the devastating
Black death epidemic of bubonic plague at the time (Hammerl,
1994). The same event resulted in two large landslides: the
landslide/collapse of Mt. Dobratsch (∼1 km3) and most likely
the Veliki vrh landslide (20–100 million m3) (Zorn, 2002;
Merchel et al., 2014) (Figure 1). The 1511 Idrija/Friuli
earthquake caused up to 12 000 fatalities and resulted in
major damage in parts of Slovenia and northeast Italy
(Ribarič, 1979; Cecić, 2011). These figures are large by
modern standards and extremely large taking into account
the much smaller medieval and early renaissance populations
in the region. It should be noted that the epicenters of both,
and in particular the 1348 event are comparatively poorly
constrained and have been variously placed in Slovenia,
northeast Italy or south Austria. Paleoseismic evidence
strongly supports an epicenter of the 1511 in Slovenia
(Bavec et al., 2013).

The damaging 1895 M 5.9-6.1 Ljubljana earthquake (Živčič,
2009; Stucchi et al., 2012). hit the urban, logistical and
governmental center of the country, clearly demonstrating the
earthquake hazard to the modern population (e.g. Lapajne, 1989;

Vidrih and Godec, 1995). The Ljubljana skyscraper, built in 1933,
used state-of-the-art earthquake-resistant construction. As part
of former Yugoslavia, Slovenia enforced a new, strict earthquake-
resistant building code following the destructive 1963 Mw 6.0
Skopje earthquake (e.g. Georgescu et al., 2013). Past seismic
activity is rather extensively documented in several earthquake
catalogs (Ribarič, 1982; Zivčić, 2009; Stucchi et al., 2012; Grünthal
et al., 2013). The most recent and currently used earthquake
hazard map was compiled and published nearly two decades ago
(Lapajne, 2001). The map is mostly based on instrumental and
historic seismicity, resulting in strong concentration of
earthquake hazard in three areas affected by strong historic
events: the extreme NW Slovenia, bordering on the Friuli
region in Italy, central Slovenia, resulting from the 1895 event
and the extreme SE part of the country, resulting from
earthquakes in 1917, 1924 and 1928.

The contribution of fault earthquake sources had thus far
not been systematically included in the national earthquake
hazard map. The presence of active major regional strike-slip
faults has been recognized for some time (Poljak et al., 2000,
2010; Vrabec & Fodor, 2006; Placer, 2008). The Idrija fault has
long been tentatively linked with the 1511 earthquake
(Ribarič, 1979; Fitzko et al., 2005). Active faults had never
before been systematically mapped and cataloged on a
national level. The last structural map of Slovenia that
included active and inactive faults, the ‘Structural-tectonic
map of Slovenia’ was published two decades ago. It used now
obsolete concepts and methods and a rather limited data set
based on the general geologic map of Slovenia, which was
compiled from the 1960s to the 1990s (Poljak, 2000). Parts of
Slovenian territory are included in other national or broader
European databases. The western half of Slovenia is included
in the Italian DISS database of seismogenc faults (DISS
Working Group, 2018), while the majority of the country is
part of the SHARE EDSF database of seismogenic faults,
which covers a large part of Europe (Basili et al., 2013).
Following the call by the Ministry of Environment and
Spatial Planning for a new earthquake hazard map, the
Office of Seismology and Geology of the Slovenian
Environment Agency contracted the Geological Survey of
Slovenia to produce a new active fault map as a geologic
input into the new national earthquake hazard map. The goals
in compiling a new active fault map and database included:
compatibility with existing active fault and fault earthquake
source maps and databases (e.g. SHARE, DISS), future
expandability and adaptability through the use of state-of-
the-art concepts and methods and full traceability of all input
data, reasoning and argumentation for each spatial,
geometric, kinematic and activity parameter. The project
also coincides with compilation of the new European
earthquake hazard map (ESHM20), for which this map and
database is also being used as an indirect input (Basili et al.,
2020). Our database is built upon the experience and well-
established knowledge on active fault studies and data base
compilations (e.g. Wallace, 1986; Yeats, 2012; Styron and
Pagani 2020, and references therein) and reflects the
current state of knowledge on active faults in Slovenia.
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REGIONAL GEOLOGIC CHARACTERISTICS

General Structure and Regional Tectonic
Subdivision
The regional tectonic subdivision follows a structural imprint
formed over a complex history of Variscan orogenic cycle
followed by Mesozoic rifting and the Alpine orogenic phase
which has been ongoing since the late Mesozoic. The study
region is characterized by a triple junction involving three
distinct lithospheric domains: the European plate, the Adria
microplate and the Pannonian domain (Brückl et al., 2010)
(Figure 2). The Adria microplate, a fragment of the African
plate, detached in the lower Jurassic is in long-term collision
with the European plate (Anderson and Jackson, 1987). Its
current GNSS data-derived motion is northwards at
approximately 2-4 mm/yr, combined with counterclockwise
rotation of approximately 0.30°/Myr an angular velocity
around a pivot point underneath the western Alps (Weber
et al., 2006, 2010; Serpelloni et al., 2016). The Pannonian
domain consists of several structural blocks of different
continental affinity, mainly the ALCAPA and Tisza crustal
blocks/mega-units merged into one soft plate (Brückl et al.,
2010; Schmid et al., 2020). The Pannonian domain underwent
thinning due to crustal extension and thermal collapse in its
Pannonian basin part (e.g. Handy et al., 2014; Horváth et al.,
2015) that occupies the NE-most area of our study zone. The
boundary between the European plate and the Pannonian
domain is represented by strike-slip, with local transtensional
and transpressional regimes and a general GNSS data-derived
eastward motion of the Pannonian domain at approximately

1 mm/yr (Brückl et al., 2010; Serpelloni et al., 2016). The contact
between the Adria microplate and the Pannonian domain is of
transpressional nature (Brückl et al., 2010).

The collisional triple junction has resulted in a complex
regional tectonic structure comprised of higher-order
Adria-derived units (Southern Alps, the Dinarides, ALCAPA
mega-unit) and the complex Tisza mega-unit (Schmid et al.,
2020). The Southern Alps are a thrust belt formed in the
Oligocene to Early Miocene top-to-S thrusting on generally
E-W striking thrust faults, extending from northern Italy across
its NE territories into NW Slovenia and further across the central
and eastern Slovenia where it is predominantly buried under thick
Neogene sediments of Paratethyan origin of the Pannonian basin
(Schmid et al., 2020, and references therein). Part of the thrust belt
in the northern and northeastern Italy is active, accommodating
the ongoing CCW rotation of the Adria microplate (e.g., Galadini
et al., 2005; Monegato and Poli, 2015; Poli et al., 2018).

The Dinarides are an Adria passive margin-derived unit
comprising a stack of top-to-SW thrusts and nappes, formed
during latest Cretaceous to Eocene. The external Dinarides are
composed of a very thick sequence of Paleo-Mesozoic platform
carbonates of the Adriatic carbonate platform, while the
Internal Dinarides are composed of composite nappes,
derived from distal Adriatic margin and obducted Western
Vardar ophiolites (Schmid et al., 2020). After Middle-Late
Eocene the northward motion of the Adria microplate
resulted in the formation of a narrow belt of steep reverse
faults west of the External Dinarides, forming the boundary
with the undeformed Adria foreland (Placer et al., 2001, 2010;
Vrabec and Fodor, 2006). The extreme NW part of the External

FIGURE 1 | Generalized seismotectonic map of the junction between the Alps, the Dinarides and the Pannonian Basin tectonic domains with plotted significant
seismicity (Mw ≥ 5.0). Faults west of Slovenia are summarized after Poli and Zanferrari (2018). Earthquakes are from SHEEC catalogs 1000–1899 (Stucchi et al., 2012)
and 1900–2006 (Grünthal and Wahlstrom, 2012). Focal mechanisms for Mw > 5.0 events (Bajc et al., 2001; Pondrelli et al., 2006; Kastelic, 2008). Earthquake induced
phenomena: 1 - Dobratsch, 2 - Veliki vrh, 3 - Srpenica, 4 - Lake Bohinj.
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Dinarides and neighboring part of the Southern Alps are cross
cut by the subvertical faults of the Dinaric dextral strike-slip
system, formed in the Late Miocene, absorbing the NNW-SSE
shortening due the CCW rotation of the Adria microplate and
accommodating the eastward motion of the Pannonian domain
(Poljak et al., 2000, 2010; Grenerczy et al., 2005; Vrabec and
Fodor, 2006; Caporali et al., 2008; Kastelic et al., 2008; Weber
et al., 2010).

The northeastern part of Slovenia is part of the ALCAPA
mega-unit, divided from the Southern Alps by the Periadriatic
fault system. The ALCAPA mega-unit comprises the
Austroalpine unit of the Alps (Schmid et al., 2020, and
references therein). The dextral strike-slip Periadriatic fault
system has accommodated the still-ongoing left-lateral
extrusion of the ALCAPA mega-unit since 21–23 Ma (e.g.
Schmid et al., 2013). The structure and activity in the eastern
part of Slovenia are mostly controlled by the interaction between
the ALCAPA and Tisza mega-units. Tisza is an accreted tectonic
block/mega-unit composed of composite terranes of Eurasian
origin formed in the Mesozoic and finally emplaced in
present-day configuration in Paleogene-Miocene (Csontos
et al., 1998; Handy et al., 2014; Schmid et al., 2020). The
boundary between the ALCAPA and Tisza mega-units is the
Miocene-formed Mid-Hungarian Zone (MHZ) of which only the
north-westernmost part is located in Slovenia. The northern edge
of the MHZ, also referred to as the Balaton fault/line is the
eastward continuation of the Periadriatic fault system. The MHZ
is zone of repeated tectonic inversions (Csontos et al., 1998),
currently in its south-westernmost part a sinistral strike-slip zone
resulting from the Tisza eastward motion outpacing the eastward
motion of ALCAPA (Serpelloni et al., 2016).

Geodetic Evidence
The N-S horizontal shortening rate across the territory of
Slovenia has been estimated at 2–4 mm/yr, based on GNSS
measurements (Weber et al., 2010; Serpelloni et al., 2016).
Strong motion vector divergence is observed from west to east,
with motion vectors in W Slovenia deviating counterclockwise
from north and motion vectors in E Slovenia deviating clockwise
from north, with E-W velocity components <1 mm/yr (e.g.
Serpelloni et al., 2016). GNSS measurements have also been
used to constrain slip rates on several faults (Pavlovčič
Prešeren et al., 2005; Caporali et al., 2013). In the past decade
some data on fault slip rates has also been obtained by PSInSAR.
The method has mostly been used to detect and observe slope
mass movement processes, however, motion along faults in NW
Slovenia has been observed as well, with derived horizontal and
vertical motion components on the order of 0.5–1 mm/yr
(Milanič, 2010). Vertical motion has also been reported with
leveling line polygons, in western and central Slovenia, which
returned cumulative values of uplift up to 7 mm/yr (Rižnar et al.,
2005; Rižnar et al., 2007).

Seismicity
Slovenia is considered a region of moderate seismicity. The
historic record begins in 792 AD (Ribarič, 1982), however,
reliable records are considered to begin in the 14th century
(Živčić, 2009). Major historic earthquakes with epicenters in
Slovenia or the immediate vicinity include the 1348 M 6.4–7.1
(Imax � IX-X) Villach earthquake, 1511 Mw 6.9 (Imax � X) Idrija
earthquake, the 1689 Mw 5.6 (Imax � VIII) Šentvid pri Stični
earthquake, the 1690 Mw 6.6 (Imax � VIII-IX) Carinthia
earthquake, the 1699 Mw 5.6 (Imax � VIII) Metlika earthquake

FIGURE 2 |General structure and regional tectonic subdivision of Slovenia and its vicinity. The thick gray lines represent the boundary between the European plate
(EU), the Adria microplate (AD) and the Pannonian Domain (PA) (from Brückl et al., 2010). Higher order units are compiled and simplified from Schmid et al. (2020).
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and the 1895 M 5.9–6.1 (Imax � VIII-IX) Ljubljana earthquake
and more recently the 1917 M 5.7-6.2 (Imax � VIII) Brežice
earthquake, the 1926 Mw 5.8 (Imax � VII-VIII) Cerknica
earthquake and the 1998 M 5.4 (Imax � VII-VIII) Krn-Bovec
earthquake (Ribarič, 1982; Postpischl, 1985; CPTI Working
Group, 2004; Guidoboni et al., 2007; Živčić, 2009; BRGM-
EDF-IRSN/SisFrance, 2010; Rovida et al., 2011; Grünthal et al.,
2013; Stucchi et al., 2012; Tiberi et al., 2018). Evidence of
prehistoric earthquakes is relatively sparse, with
paleoearthquakes so far attributed to two known active faults,
the Idrija fault and Vodice fault (Bavec et al., 2013; Jamšek
Rupnik et al., 2015). No older events have been constrained
beyond preliminary detection. Additional evidence of Late
Pleistocene and Holocene earthquakes has been found in
lacustrine sediments of past and current lakes in the Julian Alps
of NW Slovenia. Rapuc et al. (2018) found in Lake Bohinj evidence
of up to 29 events in the past 6600 years, including the large events
in 1348, 1511 and 1690 (Figure 1). Two seismite layers dating to
12790 ± 85 BP have been found in lacustrine sediments in Srpenica,
Julian Alps (Marjanac et al., 2001).

COMPILATION OF THE FAULT DATABASE

Objective
The objective was to compile a new map and database of active
faults with the potential to generate Mw > 5.5 earthquakes, which
translates into >5 km length assuming full-length rupture (Wells
and Coppersmith, 1994). The primary use of this database is to
provide geological input on active faulting for a new design
ground acceleration map of Slovenia and the database format,
parameter choice and constraints are determined by this use.
Additionally, the aim was to produce a standalone database of
active faults in Slovenia, at a level of systematic mapping and
parametrization that had never been done in the past, and to
provide a homogenous and uniform basis for research of
individual faults and fault systems, including future structural,
geodetic and paleoseismological investigations. The database is
designed for use on a national level, such as input for the national
seismic hazard map. It may serve as a starting point for more
specific applications, such as fault displacement hazard analysis,
however, only taking into account limitations of the database and
considering that it was not mapped on a scale and with such detail
to be directly compliant with seismic hazard models for the
critical facilities (e.g. IAEA-SSG-9 guidelines; IAEA, 2010)
neither does it include the distributed rupture data that are
needed for fault displacement analyses (e.g. Youngs et al.,
2003). In this aspect the presented active fault database can
serve as a reference model.

Database Criteria, Format and Workflow
In setting up the criteria for the active fault database, we studied
several regional/national compilations in order to comply with the
accepted definitions and standards (e.g. Haller et al., 2011; Styron
and Pagani, 2020, and references therein). Each fault is an
individual database entry that includes all relevant spatial,
geometric, kinematic and activity data. This includes full

traceability of all geometric and seismotectonic parameters,
including origin of parameter or input data, with references,
and full history of changes. Given our regional setting and the
fact our database is included in the new version of the European
database of seismogenic faults (Basili et al., 2020), the fault geologic
and seismotectonic parametrization is such that it supports direct
translation into fault seismic sources in a format compatible with
existing European databases such as SHARE (Basili et al., 2013)
and DISS (Basili et al., 2008; DISS Working Group, 2018) by using
the composite seismic source approach.

The workflow included extensive data mining, compilation and
critical synthesis of available data, systematical identification and
parametrization of faults, followed by preparation of the database
(Figure 3). Data was systematically mined for geologic,
paleoseismic, geodynamic, geophysical, geodetic and
seismological data. Data sources included publishes papers,
reports, internal (unpublished) reports in the archive of
the Geological survey of Slovenia. Input data also includes
published and unpublished geologic maps, field observations,
shallow (high-resolution seismic reflection, seismic refraction
tomography, electrical resistivity tomography, ground-penetrating
radar) and deep geophysical (seismic data) and DEMs at various
resolutions, most notably the national 5 m DEM (Public
Information of Slovenia, the Surveying and Mapping Authority
of the Republic of Slovenia, DEM 5, 2006) and to some extend the
national LiDAR DEM (Ministry of the Environment and Spatial
Planning, Slovenian Environment Agency, 2011). We evaluated
older published data on faults by comparison with the latest data
sets, including geomorphic analysis of shaded relief. We
systematically identified faults with surface trace lengths of 5 km
or longer and constrained their geometry using all available data.
Each fault was mapped for individual segments. We constrained
seismotectonic parameters for all faults and their segments.

The final database is composed of three components: the fault
map (.shp file), parametrization table (MS Excel spreadsheet,
linked to the .shp file) and an explanatory report (240 + pages,
currently only in Slovene). The .shp file includes all fault and
segment traces. The parametrization table includes all geometric,
kinematic and activity parameters for each individual fault and
segment. It is accompanied by a .txt log of all changes in any
parameter in the parametrization table, with each change fully
documented, with argumentation. The explanatory report
contains definitions and argumentation for the database
format, parameter choice and definitions, as well as detailed
discussion of all available data for each individual fault,
separated into two sections–fault trace description with a fault
trace map, geometric, kinematic and activity parameter
discussion and definition. Parametrization, including the
discussion of all available data and argumentation for the
determined parameter values is thus fully traceable.

Criteria, Definitions, Parameters, Data
Origin, Quality Designators
We defined all faults and fault segments according to a
predetermined set of criteria, definitions and parameters.

Frontiers in Earth Science | www.frontiersin.org May 2021 | Volume 9 | Article 6043885

Atanackov et al. Database of Active Faults in Slovenia

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Fault Activity
We classified faults by activity into three categories: active,
probably active and potentially active. A fault is considered:

•Active, if there is direct evidence for its activity in Quaternary
(2.6 Ma). This includes: paleoseismic evidence of activity,
offset Quaternary geomorphic indicators, geophysical
evidence of offset Quaternary strata, seismicity correlated
with the fault and geodetic evidence of fault activity. Similar
criteria were applied for southern alpine thrusts in north Italy
(e.g. Galadini et al., 2012).

• Probably active, if there is indirect evidence for its activity in
Quaternary. This includes: the presence of Quaternary
sedimentary basins structurally related with the fault,
effects of the fault on drainage systems (offsets,
deflections, changes in stream behavior such as for
example a change from incision to aggradation, etc.),
offsets of geologic markers impossible to explain with
preceding tectonic phases (assuming an inherited/
reactivated fault).

• Potentially active, if it is in a favourable structural relationship
with a known active fault or if it is in a favourable geometry for
activity within the current stress field.

Direct evidence of Quaternary activity includes: results of
geodetic observations (GNSS, leveling data, geodetic control/
reference networks), geomorphic and age dating analysis
(offsets of Quaternary surfaces), geophysical and age dating
analysis (offsets of Quaternary strata), paleoseismological
evidence and seismicity data. Any fault with Quaternary
activity confirmed by one or several of these methods is
considered active. Due to a general lack of Quaternary
sediments overlaying the faults, small number of active

faulting studies, and generally insufficient age constraints on
Quaternary surfaces, evidence of activity during any time over
the Quaternary period is considered as evidence of fault activity.
Indirect evidence of activity includes: Quaternary sedimentary
basins in structural relationship with the fault, with no
quantitative data, and offsets of Neogene strata. Such faults are
considered probably active. In potentially active faults, a
favourable structural relationship with a confirmed active fault
is considered such, that activity on the active fault can induce
activity on the potentially active fault. Additionally, faults with no
evidence of activity (but not evidence of inactivity) within an
active fault system is considered potentially active. Also, a fault is
considered potentially active if it is in a favourable geometry with
respect to the current stress field.

Similar temporal constraints (e.g. Quaternary activity) have
been used in a number of similar active fault databases, such as for
example the active fault map of Turkey (Emre et al., 2018),
the Quaternary active fault map of Iberia (García-Mayordomo
et al., 2012), the Quaternary fault and fold database of the
United States (U.S. Geological Survey et al., 2020) and to a
lesser extent Greece (Ganas et al., 2013), where active faults
show activity in Middle Pleistocene to Holocene, and Neogene
syn-rift basins are also considered as evidence of very likely
present activity. In areas where slip rates are higher, and/or
more age data for Quaternary surfaces is available, generally
shorter time spans are used (e.g. Langridge et al., 2016) or
additional activity classes are added (e.g. Emre et al., 2018;
U.S. Geological Survey et al., 2020).

Fault Segmentation
A fault segment is defined as part of the fault that is distinct from
other parts in geologic criteria and is not necessarily an
earthquake segment, e.g. not defined by the limits of historic

FIGURE 3 | Active fault map and database compilation workflow.
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coseismic surface ruptures. Fault segments were divided into five
classes: earthquake, behavioral, structural, geologic and
geometric, according to the classification by McCalpin (2009),
Supplementary Datasheet S9. Where the fault trace was not
evident on the surface and was presumably covered, we
defined the segment as inferred.

Seismotectonic Parametrization
Seismotectonic fault parametrization was based on critical
synthesis of all available geologic, geodynamic, geodetic,
geophysical, geomorphic and seismicity data. We assigned
each individual fault and fault segment full seismotectonic
parameters (Table 1).

Every parameter is described with full argumentation for all
faults (in the parametrization table and explanatory report).Where
appropriate, parameters are defined with minimum, maximum
and best estimate values. The best estimate of average slip rate is
based on the evaluation of the amount and quality of direct and
indirect evidence and available data. Where such argumentation
is not possible due to a lack of data, the average was taken as the
best estimate. An example of fault parametrization attributes is
presented for the Idrija fault (Table 2).

Data Origin and Quality Designators
Quality of estimated parameters, which include fault depth,
strike, dip, rake, slip rate and maximum magnitude was
adapted from the SHARE database (Basili et al., 2013) and is
marked by the following designators: LD - Literature Data, OD -
Original Data, ER - Empirical Relationship, EJ - Expert
Judgement (Table 2). These quality designators make
assessment of quality of each parameter easier.

RESULTS

Fault Database
As of mid-2020 the first full version of the map and database is
considered complete and is available online at: tectonics.geo-zs.si.
It includes 96 individual faults and 240 individual fault segments.
Of the 96 faults in the database, 18 are confirmed active and 20
probably active (Figure 4). The remaining 58 are potentially
active and, by definition, do not show direct or indirect evidence
of activity. These may include incipient faults or older, exhumed
faults from past tectonic phases. Incipient faults may not have
accumulated sufficient offset to clearly show activity, while old,
exhumed faults may produce distinct geomorphic expression, but
no known direct or indirect evidence of activity.

We consider the database to be highly complete for active,
probably active and potentially active faults with surface traces
5 km long or longer in areas with hard bedrock (carbonates,
flysch, metamorphic and igneous rocks), including most of
western, northern and central Slovenia. In these areas, fault
traces are distinct and readily identifiable through geologic
mapping and geomorphic analysis, even in the relatively
limited areas of clastic rocks.

Areas with deep infill of Neogene clastic sediments and
sedimentary rocks, mostly including northeastern Slovenia and

to a lesser extent parts of central and southeastern Slovenia are
considered less complete. Neogene sediment thickness locally
exceeds 2 km in SE Slovenia and 6 km in NE Slovenia. While all
available data has been included, large amounts of deep
petroleum geophysical data remain publicly unavailable and
once included may result in future changes in the fault map
and database. Many faults in this environment are blind (e.g.
Artiče fault, Ljutomer fault). While blind faults with relatively
shallow fault tips (<1 km) may readily be detected at the surface
by their narrow fault propagation folds, blind faults with deeper
fault tips may produce very gentle fault propagation folds at the
surface and without high-quality deep geophysical data may
escape detection.

Challenges
The area of Slovenia is tectonically moderately active, and there are
numerous factors that make systematic identification, mapping
and parametrization of active faults comparatively difficult. The
main compounding factors are high slopemassmovement, erosion
and denudation rates, and the very complex tectonic history of the
region and resulting structural overprinting.

Slope Mass Movement, Erosion, Denudation
Large parts of Slovenia are highly susceptible to slope mass
movement processes, which are orders of magnitude larger
than expected tectonic movement (e.g. Komac and Ribičič,
2006; Komac, 2012; Žibret et al., 2012; Komac and Hribernik,
2015). Slope mass movement processes and erosion are likely to
obscure surface fault traces, particularly any relatively recent
geomorphic markers; this is particularly true in the clastic
rocks in parts of western, central and eastern Slovenia.

Slip Rates–Data Set Heterogeneity
The slip rate data set is highly heterogeneous. Various methods,
covering vastly different time spans are used to determine the slip
rate on individual faults. Time spans range from several years
(GNSS, PSInSAR, extensometer), to several decades (leveling
data), to thousands and tens of thousands of years
(paleoseismic, geomorphic, geologic) and even several million
years (geologic). Table 3 presents available data for the Idrija
fault, for which the largest dataset for slip rate evaluation was
available.

Data heterogeneity is the result of unharmonized data
obtained in various projects and works with vastly different
methods and goals. In general, a strongly harmonized effort,
simultaneously encompassing all faults will be required for a
more homogenous data set. This may involve short-term
geodetic slip rate determination, longer-term slip rate from
age dating of displaced surfaces or combination of both.
While a significant uncertainty in slip rates is acceptable
from a general scientific viewpoint, large uncertainties are
problematic when data is used for fault activity
parametrization in seismic hazard assessment.

Structural Overprinting
Structural overprinting during successive tectonic phases in
Mesozoic and Cenozoic have led to the presence of numerous
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partly overlapping and reactivated faults and fault systems. Reverse
faults in southeastern Slovenia have likely been active in the lower-
Neogene and post-Neogene (e.g. Tomljenović and Csontos, 2001).
Fortunately, some deep geophysical data is available in the area,
indicating a very small to negligible contribution of the lower-
Neogene phase (c.f. Gosar and Božiček, 2006; Gosar, 2008),
allowing good constraints on the activity of these fault. Reverse

faults in northeastern Slovenia are in most cases reactivated lower-
Neogene normal faults, connected to inverted sedimentary basins
(Fodor et al., 2002). Another area of very strong multiple structural
overprints is the Sava folds, with at least two major folding phases
and likely more. Paleostress analysis of faults in NW External
Dinarides of Slovenia indicates four successive tectonic phases in
which the faults were active (Žibret and Vrabec, 2016).

TABLE 1 | List of designators and seismotectonic parameters for each fault and fault segment in the database.

Fault/segment designators • Name
• Numerical designation

Fault/segment geometric parameters • Type
• Depth - geological (min/max/best estimate)
• Depth - seismological (min/max/best estimate)
• Strike (min/max, best estimate)
• Dip (min/max/best estimate)
• Fault length (along trace/end-to-end)
• Segment length (along trace/end-to-end)
• Segment type (structural/geometric/geologic/behavioral/earthquake)
• Fault area (min/max/best estimate)
• Segment area (min/max/best estimate)

Fault/segment kinematic and activity parameters • Slip rate (min/max/best estimate)
• Rake (min/max/best estimate)
• Fault maximum Mw based on fault length (best estimate, standard deviation)
• Fault maximum Mw based on fault area (best estimate, standard deviation)
• Segment maximum Mw based on fault length (best estimate, standard deviation)
• Segment maximum Mw based on fault area (best estimate, standard deviation)

TABLE 2 | Fault segment parametrization example (Idrija fault).

Fault name Idrija segment 4 [Idrija fault]

Fault designation MAF.SI-023/4
Fault type Dextral strike-slip
Min_depth [geo] 0 km
Max_depth [geo] NA
Max_depth 15 km
Strike [min/max/best estimate] 290/310/305°

Dip [min/max/best estimate] 70/90/85°

Rake [min/max/best estimate] 150/180/165/150°

Total fault length [along trace/end-to-end] 172/124 km
Segmentation type Geometric
Total segment length [along trace/end-to-end] 17/17 km
Total fault area [min/max/best estimate] 2580/2746/2590 km2

Total segment area [min/max/best estimate] 255/271/256 km2

Slip rate [min/max/best estimate] 0.06/2.0/1.0 mm/yr
Mmax fault [value ± stdev] 7.66 ± 0.28
Mmax segment [value ± stdev] 6.54 ± 0.28
Activity Active
Depth quality NA
Depth evidence NA
Strike quality OD, LD
Strike evidence Based on geologic and structural data Buser et al. (1967), Savič and Dozet (1985)
Dip quality OD, LD
Dip evidence Based on geomorphic, geologic and structural data Moulin et al. (2014)
Rake quality LD, EJ
Rake evidence Inferred from Rižnar et al. (2007), Moulin et al. (2014) and from regional structural and stress field data Heidbach et al. (2008)
Slip rate quality LD, EJ
Slip rate evidence Assumed from geomorphological, geodetic and structural data Milanič (2010), Gosar et al. (2011), Kastelic and Carafa

(2012), Moulin et al. (2014), Moulin et al. (2016)
Max mag quality ER
Max mag evidence Inferred from fault characteristics and empirical relationship by Wells and Coppersmith (1994)
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We may conclude from the surface data that a mapped fault is
favorably oriented for activity in the current stress field, however,
there is typically little data on the extent of the fault at depth.
Geophysical data is typically lacking in all areas except in the
Trieste gulf, Krško basin and in NE Slovenia. A fault with a clear
surface trace may be exhumed and/or truncated or offset at depth
by more recent faulting and thus inactive. Each fault requires
detailed geologic mapping, geomorphic analysis and where
possible also paleoseismic investigations. While in some cases,
particularly with late-Neogene and post-Neogene reverse faults in
thick clastic sediment successions, separation of individual tectonic
phases and constraining recent activity is fairly straightforward,
faults in zones with little or no young clastic sediments are much
less well constrained. Poorly constrained fault histories (kinematic
evolution through successive tectonic phases) reduce the
confidence and validity of long-term slip rates estimated from
offset geologicmarkers. It is likely thatmost potentially active faults
have comparatively little contribution to the seismic hazard, due to
their implied low slip rate (e.g. if slip rates were higher, the
probability of detection of fault’s probable or confirmed activity
would be higher). This is a major future challenge that will require
extensive and detailed work on individual faults.

Fault Systems
Adriatic Foreland Fault System
The Adriatic foreland fault system is characterized by NW-SE
striking thrusts and reverse faults, extending from northern Istria
and the Trieste gulf (NE Adriatic Sea) into the western Karst
region (Figure 5). The system includes one active (Palmanova-
Črni Kal thrust), three probably active (Kubed thrust, Hrastovlje
thrust, Socerb thrust) and five potentially active faults (Buje fault,

Buzet thrust, Sočerga-Lupoglav thrust, Skadanščina fault). The
longest faults are the Buje fault (73 km), the Buzet thrust
(75 km) and the Palmanova-Črni Kal thrust (81 km), all of
which run across the Istria peninsula into the Trieste gulf
and potentially into the southernmost part of the Friuli plain,
NE Italy. The longest faults are segmented by perpendicular,
NE-SW running subvertical strike-slip faults. The
comparatively short (<5 km) Sistiana and Monte Spaccato
strike-slip faults are probably active, as indicated by offset
late Quaternary strata on the Monte Spaccato fault (Carulli,
2011). These faults are interpreted as faults and imply activity of
thrust and reverse faults.

The westernmost faults (Buje fault, Buzet thrust) are very
shallow angle thrusts (approx. 15°), and the dip increases toward
the northeast. The easternmost fault in the system, the
Skadanščina fault is a steeply (60°) dipping, SW-vergent
reverse fault. The maximum depth of the fault system can be
tentatively estimated from geophysical data, as deep seismic
reflection data within the Trieste gulf suggest the faults are
listric, with a maximum depth of approximately 7 km (Busetti
et al., 2010; Carulli, 2011).

Assessment and quantification of fault activity within the
system is much more difficult. Evidence of recent activity
includes offset late Quaternary marine sediments along the
Palmanova-Črni Kal fault in the Trieste gulf (Busetti et al.,
2010). There is little additional quantitative data on slip rates
within the fault system. Rižnar et al. (2007) published an analysis
of leveling data across the fault system, which indicates large
ongoing vertical displacement rates totaling 2–3 mm/yr across
the system. We consider these values exceedingly high, with
implied total slip rates up to 5–8 mm/yr and thus not reliable.

FIGURE 4 | Map of active, probably active and potentially active faults in Slovenia and the immediate vicinity.
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There is little significant historic seismicity associated with this
fault system. The largest historic earthquake located in the SE part
of the system in the Croatian part of Istria is the Mw 5.6 1574
Lupoglav earthquake (CPTI Working Group, 2004; Rovida et al.,
2011).

Dinaric Fault System
The Dinaric fault system (DFS), characterized by dominant,
long NW-SE striking dextral strike-slip faults, extends from the
Karst region in SW Slovenia across much of western into central
Slovenia (Figures 6, 7). Within the DFS we have identified a
total of seven active faults (Raša fault, Raša West fault,
Predjama-Avče fault, Idrija fault, Ravne fault, Mišja dolina
fault, Žužemberk fault), four probably active faults (Divača
fault, Dražgoše fault, Ortnek fault, Dobrepolje fault) and 21
potentially active faults (Brestovica fault, Tomačevica fault,
Kobjeglava fault, Vipava fault, Bate fault, Golek fault,
Banjšice fault, Jesenovec fault, Zala fault, Podplanina fault,
Čeplez fault, Vrhinka fault, Borovnica fault, Rakitna fault,
Možice fault, Sorica fault, Ratitovec fault, Želimlje fault,
Pokljuka fault, Zasip fault, Kranj fault). The DFS is
dominated by two fault sets, centered on several large, active
regional faults: the western and the eastern fault sets.

The western fault set (Figure 6) is centered on three major
regional active faults: the Raša fault (87 km), the Predjama-Avče
fault (75 km) and the Idrija fault (124 km). The Raša fault is a
subvertical dextral strike-slip fault with an average estimated slip
rate of 0.7 mm/yr. The Predjama-Avče fault is a steeply NE-
dipping dextral transpressive fault, with an average estimated slip
rate of 0.7 mm/yr. The Idrija fault is the longest fault of the
system, a subvertical dextral strike-slip fault with an average
estimated slip rate of 1.0 mm/yr. Slip rates on all three faults were
determined through age dating of displaced surfaces (Moulin
et al., 2014, 2016) and long-term displacement of geologic
markers (Čar, 2010). Paleoseismic evidence has linked the
Idrija fault to the 1511 Mw 6.9 earthquake (Bavec et al., 2013).
Additionally, the Idrija fault is also the likely source of the
1926 Mw 5.8 Cerknica earthquake (Ribarič, 1982). Significant
events within the western fault set also include the 1998 Ms 5.7
Krn-Bovec earthquake and the 2004 Mw 5.2 Bovec earthquake on
the Ravne fault (Bajc et al., 2001; Kastelic, 2008). The Raša and
Predjama-Avče faults have not produced any significant historic
earthquakes, although the 1956 ML 5.1 Ilirska Bistrica earthquake
(Grünthal et al., 2013) might have been caused by the Raša fault
(Ribarič, 1982). There is evidence of the presence of another
active fault in this fault set, the Selce fault, located south of the

termination of the Predjama-Avče fault (Vičič et al., 2019); at this
time the total reliably known surface fault length is < 5 km
(Gospodarič, 1989; Šebela, 2005) precluding inclusion into the
database, however, the fault and surrounding area needs to be
further investigated in the future.

The eastern fault set (Figure 7) encompasses a number of long
active and probably active faults, including: the Mišja dolina fault
(52 km), the Ortnek fault (57 km), the Dobrepolje fault (65 km)
and the Žužemberk fault (79 km). It is noteworthy that the
surface traces of the first three faults are contained within a
corridor only 6 km wide. Average estimated slip rates across the
four faults are 0.45 mm/yr, 0.45 mm/yr, 0.45 mm/yr, and
0.50 mm/yr, respectively. The slip rate on the Mišja dolina
fault is estimated from offset Quaternary markers in
geophysical data (Atanackov, 2013), while the slip rate on the
Žužemberk fault is estimated from GNSS data (Vrabec et al.,
2011). Slip rates on the Ortnek and Dobrepolje faults are
estimated from the faults’ similarity to the other two faults.
No major historic seismicity has been conclusively attributed
to this fault set, however, the 1895 Mw 5.9–6.1 Ljubljana
earthquake has recently been tentatively linked to the Želimlje
or Ortnek faults (Tiberi et al., 2018).

The western fault set appears to define a corridor across which
a significant slip rate occurs, with approximately 2.5 mm/yr of
dextral strike slip across the 25 kmwide zone encompassed by the
three major faults. The eastern fault set appears to define another
corridor, approximately 15 km wide, across which approximately
1–2 mm/yr of dextral strike slip occurs. The rest of the DFS, both
to the west, in the central part between the two major fault sets
and to the east includes faults with low estimated fault rates
(Figure 8).

We currently consider the Raša West fault an individual fault,
distinct from the Raša fault due to the unclear potential
connection between the two faults. The NW part of the Raša
fault is relatively poorly constrained. The fault is well defined in
the carbonates of the Karst plateau, where it splays with the main
splay branches being the Kobjeglava and Tomačevica faults
(Jurkovšek, 2008). The fault then likely progresses into the
flysch and Quaternary lacustrine, alluvial and fluvial sediments
of the Vipava valley. The Raša West and Raša faults are less than
4 km apart at their closest points and will likely be merged into a
single fault pending further constraints on their geometries in the
Vipava valley.

In its NW part the DFS transitions into the generally E-W
striking reverse faults and thrusts of the Friuli region (Vrabec and
Fodor, 2006; Poli and Zanferrari, 2017; Poli and Zanferrari, 2018).

TABLE 3 | Available slip rate data for the Idrija fault.

Method Value (mm/yr) Remarks

PSInSAR 0.5 Horizontal displacement rate determined over a period of 8 years Milanič (2010)
Extensometer 0.24 (+0.30/

−0.08)
Measured on a single fault plane within the inner fault zone of the idrija fault over a period of 7 years Gosar et al.
(2009), Gosar et al. (2011)

Geomorphic 1.0–1.4 Measurement of displaced surfaces, age 150–300 kyr Moulin et al. (2014), Moulin et al. (2016)
Geologic 1.0 (+1.0/−0.6) Displaced geological markers (strata) over a period of 6 Myr Placer, (1982), Vrabec and Fodor (2006)
Forward geodynamic FEM
modeling

0.1 (+0.12/−0.04) Average slip rate value based on crustal properties and stress orientation Kastelic and Carafa (2012)
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The Gemona-Kobarid fault is the only large reverse fault that
pushes significantly into the area covered by the fault database. It
terminates against the Idrija Fault in NW Slovenia (Figure 4).
The fault is considered potentially active. The entire transitional
area indicates areas of distinct uplift (Milanič, 2010). The uplift is
currently not attributed to a specific structure or set of structures.
It may potentially indicate larger-scale reverse faulting or minor
pop-up structures within the transpressional transition area.
Vertical displacement rate data from PSInSAR does not rule
out local reactivation of structures in the South Alpine Thrust
Front (Milanič, 2010).

Periadriatic Fault System
The Periadriatic fault system (PAFS) is characterized by
dominant long, generally WNW-ESE striking dextral strike-
slip faults, relatively minor E-W striking thrusts and reverse
faults and SW-NE striking minor sinistral strike-slip faults
(Figure 9). In the PAFS we identified five active (Sava fault,
Vodice fault, Cerklje fault, Šoštanj fault, Labot (Lavantal) fault),
four probably active (Stol (Hochstuhl) fault, Periadriatic fault,
Celje fault, Velenje fault) and 12 potentially active faults (Srednji
vrh fault, Košuta fault, Zelenica fault, Gornji grad fault, Logarska
dolina fault, Menina fault, Olševa fault, Matkov kot fault,
Podolševa fault, Savinja fault, Vransko fault, Northern
Karavanke fault).

The dominant faults of the PAFS are the Periadriatic fault, the
Sava fault, the Šoštanj fault and the Labot fault (Figure 9). The
dextral strike-slip Sava fault is confirmed active, 150 km long,
with a geomorphic marker and age dating average estimated
slip rate of 1 mm/yr (Vrabec et al., 2006; Jamšek Rupnik et al.,

2012; Jamšek Rupnik, 2013). The dextral strike-slip Šoštanj
fault is also confirmed active by offsets of Quaternary strata
along the fault (Brezigar, 1985), with an estimated average slip
rate of 0.5 mm/yr. GNSS data on the Šoštanj fault is so far
inconclusive (Pavlovčič et al., 2005). The dextral strike-slip
Labot (Lavantal) fault is 201 km long, confirmed active by
GNSS measurements, with an average estimated slip rate of
0.75 mm/yr (Pavlovčič Prešeren et al., 2005). These major faults
form a dextral-strike slip system/corridor with an average slip
rate of ∼1–2 mm/yr.

Two minor reverse faults within the system have produced
fault scarps within the Quaternary landforms: the Cerklje and
Vodice faults (Verbič, 2006; Jamšek Rupnik et al., 2012, Jamšek
Rupnik et al., 2013). The Cerklje fault is related to a restraining
bend of the Sava fault (Vrabec, 2001), while the Vodice fault
occurs at the transition from PAFS to the Sava folds structural
style due east. Genetically, the Vodice fault is probably linked to
the Sava folds (Jamšek Rupnik, 2013), although its position south
of the Sava fault restraining bend and the Cerklje fault as part of it
may suggest a linkage with the PAFS as well.

No major historic earthquakes have been attributed to the
PAFS with certainty. The largest event to have been potentially
produced by the PAFS is the 1348 M 6.4–7.1 Villach/Carinthia/
Friuli earthquake (Stucchi et al., 2012). The earthquake caused
significant damage in western Slovenia, southern Austria
(Carinthia) and northeastern Italy (Friuli), including the two
large landslides. The 1690 Mw 6.5-6.6 Carinthia earthquake was
also potentially produced by a fault in the PAFS (e.g. Eisinger &
Gutdeutsch, 1994; CPTI Working Group, 2004; Rovida et al.,
2011). The 1857 Mw 5.1-5.2 Rosegg earthquake and the 1877 Mw

FIGURE 5 | Adriatic foreland fault system. The system comprises a thrust belt approximately 30 km wide. The dominant active fault is the Črni
Kal–Palmanova thrust.
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4.9–5.0 Valbruna earthquake (CPTI Working Group, 2004;
Rovida et al., 2011) may also have been caused by the PAFS.

Mid-Hungarian Fault System
The Mid-Hungarian fault system (MHFS) includes regional
dextral strike-slip and reverse faults, encompassing the
northern part of eastern Slovenia. The MHFS is the
northwesternmost part of the Mid-Hungarian Zone, extending
to its transition into the PAFS. The MHFS includes one probably
active fault (Ljutomer fault) and six potentially active faults
(Haloze North and South faults, Dravinja fault, Cerovec fault,
Mlinišče fault, and Donat fault) (Figure 9). All faults displace
thick sequences of Neogene and Quaternary marine and fluvial
clastic sedimentary rocks and sediments. Thus, geologic mapping
returns comparatively limited data and more emphasis is put on
geomorphic analysis and the very limited available 2D seismic
reflection profiles. Consequently, there is more uncertainty in
positional and kinematic parameters than with faults in western
and central Slovenia.

The northernmost faults in the MHFS are relatively steeply
dipping, north-vergent reverse faults, including: the probably
active Ljutomer fault and the potentially active Haloze North
and Haloze South faults. These faults have been interpreted as
reverse faulting along the northern edge of the broader
transpressive Donat fault zone (e.g. Fodor et al., 1998). The
most distinct of the three reverse faults is the Ljutomer fault, a

steeply (70°) southward dipping reverse fault on the northern
limb of the large Ormož-Selnica anticline. It is considered
probably active, with an estimated slip rate of 0.25 mm/yr. Its
probable activity is implied by the dog leg offset of the Mura
river. The northwestern part of the MHFS is defined by the
potentially active Haloze North and Haloze South reverse faults,
dipping southward at 50° and 65–75°, respectively. Estimated
slip rates are low, at 0.05 mm/yr for each fault, respectively. The
Boč mountain is interpreted as a pop-up structure at the
restraining bend between the Labot fault (PAFS) and the
Donat fault (MHFS).

The dominant fault in the (Slovenian part of) MHFS is the
Donat faut. The fault is dextral strike-slip to dextral transpressive
as evidenced by kinematic indicators (Fodor et al., 1998). It is
considered potentially active, with the slip rate estimated at
0.65 mm/yr, tentatively based on the assumed slip rate
continuity from the Labot and Šoštanj faults.

Historic seismicity in the MHFS is very limited. The 1838 Mw

4.5 Ormož Kog and 1839 Mw 4.8 Ormož Zavrč earthquakes are
tentatively attributed to the MHFS, however, the presumed
epicentral uncertainty is very large, precluding conclusive
attribution (Stucchi et al., 2012).

Sava Compressive Wedge and Balaton Fault System
The Sava compressive wedge (SCW) and Balaton fault system
(BFS) are part of a structurally complex zone, comprising diffuse

FIGURE 6 | Western fault set of the Dinaric fault system. The dominant faults are the Raša fault, the Predjama-Avče fault and the Idrija fault.
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structural transitions from neighboring fault systems and
tectonic zones. Motion vectors diverge across the wedge,
turning counterclockwise from the north in the western part
of the zone, and clockwise from the north in the eastern part of
the zone (Serpelloni et al., 2016). The main deformation
mechanism in the zone is N-S shortening with several
accommodating systems of faults and folds (Figure 10). The
SCW and the part of the BFS in Slovenia corresponds to the Sava
folds. The Sava folds comprise generally E-W to ENE-WSE
trending folds and associated thrusts and reverse faults (Placer,
1998).

Folding is confirmed to be ongoing in the SE part of the Sava
folds system (Tomljenović and Csontos, 2001). The major
Krško syncline is active, with an inferred long-term post-
Pontian vertical displacement rate of approximately
0.4 mm/yr. Many studies were carried out on the structure
of the Krško basin (e.g. Verbič, 2005; GeoZS, 2010; Cline et al.,
2016; Jamšek Rupnik et al., 2016; Poljak, 2017; Atanackov
et al., 2018; Bavec et al., 2018). The active 11-km long Artiče
blind reverse fault is associated with folding of the E part of the
north limb of the Krško syncline. Based on available data and
to the best of our knowledge the Artiče and North Medvednica
boundary faults are the only currently confirmed Quaternary
active reverse faults in the system (the North Medvednica
boundary fault is located in Croatia (Matoš et al., 2014)). No

definitive evidence of active folding or reverse faulting has
been found in the northern part of the Sava folds. This may
well be due to the fact that large parts of the area are
characterized by a thick succession of Neogene clastics,
highly susceptible to weathering, erosion and slope mass
movement processes, making identification of faults and
their recent activity difficult. We have so far identified a
number of short (<5 km) reverse fault and thrust fault
segments, however, further work is ongoing to identify
potentially related and additional structures. It is likely that
extensive work, including geomorphic analysis, geophysical
surveys and field mapping will be required to provide
additional data.

While reverse faulting and folding is active in the
southeastern part of the SCW with BFS (Matoš et al., 2014;
Markušić et al., 2020), other parts of the system are overprinted
by geometrically and kinematically different faults. In the
northern part the structural trends from the SCW transition
into the southern part of the PAFS. The nominal boundary is
Celje fault, which we attribute to the PAFS mainly for historic
reasons.

In the western part of the SCW there is an apparent
continuation of dextral strike-slip faults from the DFS, which
we consider to be diffusely delimited in the east by the Žužemberk
fault. This fault set includes a total of eight dextral strike-slip

FIGURE 7 | Eastern fault set of the Dinaric fault system and the dextral strike-slip faults of the Sava compressive wedge. The dominant faults are the Mišja dolina
fault, the Ortnek fault, the Dobrepolje fault and the Žužemberk fault.
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faults (Figure 10): one active (Toplice fault), three probably
(Stična fault, Zagorje fault, Hrastnik fault) and four potentially
active faults (Litija fault, Trebnje fault, Ponoviče fault, Dobovec
fault). The two longest faults in this fault set are the Toplice fault
(37 km) and the Hrastnik fault (49 km). Inferred slip rates are

very low on all faults, well below 0.1 mm/yr. Unlike the faults
of the DFS, these faults are generally shorter and highly
segmented. While these faults may be the diffuse tapering
out of the DFS to the east, they may also be at least in part
fortuitously aligned tear faults along presumed dominant E-W

FIGURE 8 | Dinaric fault system western and eastern sets indicating two corridors of comparatively high slip rates. The western fault set accommodates up to
˜

2.5 mm/yr of dextral strike slip, while the eastern fault set accommodates up to
˜

1–2 mm/yr of dextral strike slip. Slip rates on other faults within the system are
estimated to be an order of magnitude lower.

FIGURE 9 | Faults of the Periadriatic fault system (PAFS), the Mid-Hungarian fault system (MHFS) and the Raba extensional fault system. Numbered faults include:
1 – Srednji vrh fault, 2 – Zelenica fault, 3 –Olševa fault, 4 – Podolševa fault, 5 –Matkov Kot fault, 6 – Logarska dolina fault, 7 – Studenec fault, 8 – Javornik fault, 9 –Menina
fault, 10 – Vransko fault, 11 – Dravinja fault, 12 – Mlinišče fault.
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reverse faults and folds of the Sava folds, as interpreted in the E
part of the Sava folds (Tomljenović & Csontos, 2001). Further
work is needed on this.

The southeastern part of the SCW is characterized by faults of
the BFS: WSW-ENE striking sinistral strike-slip and generally E-W
striking reverse faults (Figure 10). The most active part of the
system is in Croatia, comprising the major Sveta Nedelja fault and
North Medvednica boundary fault. The Sveta Nedelja is a large,
28 km long, deep sinistral strike-slip fault with an estimated average
slip rate of 0.22 mm/yr (Herak et al., 2009; Šumanovac et al., 2009).
The North Medvednica boundary fault is a major reverse fault
(24 km, active, 0.20 mm/yr) (Tomljenović et al., 2008; Basili et al.,
2013; Matoš et al., 2014; van Gelder et al., 2015). To the north, in SE
Slovenia, the BFS comprises 4 faults: one active (Artiče fault), two
probably active (Orehovec fault, Orlica fault) and one potentially
active (Poštena vas fault). Slip rates on all four faults are
<0.1 mm/yr.

The SCW including BFS is characterized by significant historic
seismicity concentrated in its SE part (Ivančić et al., 2006; Herak
et al., 2009). The most recent earthquake in the region is the March
22, 2020 Mw 5.3 Zagreb earthquake, most likely produced by the
North Medvednica boundary fault (Markušić et al., 2020). The
largest event in the region, likely produced by theNorthMedvednica
boundary fault is the 1880 MW 6.0 Zagreb earthquake (Herak et al.,
2009; Stucchi et al., 2012). Further significant (M>∼5) events in the
vicinity include the earthquakes in 1775, 1837, 1880, 1889 and 1893
(Stucchi et al., 2012). In SE Slovenia the following significant events
have occurred: 1917M 5.7 (Imax �VIII) Brežice earthquake, 1924M
5.0 and 1928 M 4.8 Brežice earthquakes and the 2015 M 4.2 (Imax �
VII) Kostanjevica ob Krki earthquake (ARSO, 2020). TheNE part of
SCW is characterized by lesser seismicity; the largest historic
earthquake is the 1974 M 4.8 Kozjansko event (ARSO, 2020).
None of these events have been attributed a causative fault.

Raba Extensional Fault System
The Raba extensional fault system comprises a WSW-ENE
system of normal faults (Márton et al., 2002; Fodor et al.,
2011). The fault system formed during the early Neogene
rifting phase and some faults may have locally been
reactivated. Two faults in the database have broadly been
attributed to this system–the Lovrenc and Kungota faults in
NE Slovenia (Figure 9), however, both are considered
potentially active with no firm evidence of recent activity.

Slip Rates and Rate Distribution,
Comparison With Regional GNSS Data
We compare slip rate distribution in our fault database to the
most complete and most recent published analysis of regional
GNSS motion vectors (Serpelloni et al., 2016). There are
caveats to be addressed prior to comparison. While GNSS
motion vectors are derived from recent and ongoing motion,
most fault slip rates are obtained from longer-term data,
including offset geomorphic and geological markers. Three
distinct zones of ongoing displacement are evident in fault
data. The DFS accommodates a total of ∼3.5–4.5 mm/yr
dextral strike slip over a NW-SE oriented zone
approximately 65 km wide (Figure 11). The PAFS
accommodates approximately 1–2 mm/yr dextral strike slip,
while the SCW including BFS is tentatively interpreted to
accommodate approximately ∼0.5 mm/yr sinistral strike slip.
Reverse faults in the SE part of the SCW and BFS and
potentially over the entire system likely accommodate
significant N-S shortening, however, data is too sparse for a
reliable estimate.

GNSS-derived motion horizontal vectors across the DFS (in
a fixed Eurasian reference frame) are generally directed

FIGURE 10 | Dextral strike-slip faults within the Sava compressive wedge (SCW), faults of the Balaton fault system (BFS) and the Sava folds (from Placer, 1998):
1 - Pletovarje-Macelj anticline, 2 - Celje syncline, 3 - Motnik syncline, 4 - Trojane anticline, 5 - Laško syncline, 6 - Rudnica-Ivančica anticline, 7 - Planina-Desinice syncline,
8 - Litija anticline, 9 - Senovo syncline, 10 - Orlica anticline, 11 - Bizeljsko-Zagorje syncline, 12 - Brezina syncline, 13 - Marija Gorica anticline, 14 - Brdovec syncline.
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northward, with some minor deviations both to the east and
west (Serpelloni et al., 2016). The horizontal N-S motion
velocity diminishes from approximately 2.5 to 1.5 mm/yr
across the DFS western fault set, for an approximate
shortening rate of 1.0 mm/yr. This compares to a total
northward component of approximately 1.7 mm/yr that we
derive from the estimated slip rates across the DFS western
fault set. The slip rates across the three major faults of the
DFS western fault set are based on long-term offsets of
geologic and geomorphic markers and therefore indicate a
longer-term average (over several hundred kyr to several
Myr). On the other hand, the number of GNSS vectors
across the entire DFS is quite limited. A similar
consideration for the DFS eastern fault set produces a total
northward component of approximately 0.7–1.4 mm/yr from
the fault database. This compares to an approximate
0.5–1.0 mm/yr N-S shortening across the fault set
indicated by GNSS data.

The GNSS-derived eastward speed increases from
approximately 0.0–0.2 mm/yr to approximately 0.8 mm/yr
across the PAFS, for a total dextral strike-slip rate of
0.6–0.8 mm/yr. This compares to 1–2 mm/yr derived from
estimated fault slip rates. Part of the SCW that includes BFS
is characterized by sinistral transpressive movement, with
faults showing pure sinistral strike slip (e.g. Sveta Nedelja
fault) and reverse motion (North Medvednica boundary
fault). It appears the most active faults are at the southern
margin of the system, including the Sveta Nedelja fault and
the North Medvednica boundary fault. Slip rates appear to
diminish toward the north, however, data for these faults is
sparse.

CONCLUSIONS

We have compiled a new, state-of-the-art fault database for
Slovenia. For the first time we have systematically mapped,
characterized and parametrized all known active, probably
active and potentially active faults in Slovenia, with surface
fault traces >5 km. We have attributed individual faults to
well-defined fault systems, including the Adriatic foreland fault
system, the Dinaric fault system, the Periadriatic fault system, the
Mid-Hungarian fault system, the Sava compressive wedge and
Balaton fault system and the Raba extensional fault system. All
faults are fully geometrically and seismotectonically
parametrized. The format and parameters were optimized for
translation into a database of composite fault sesimogenic
sources. The current version of the fault database contains 96
faults and 241 segments and was compiled for the preparation of
the new seismic hazard map in Slovenia. Of the 96 faults in the
database, 18 are classified as active, 20 as probably active and 58 as
potentially active.

The largest and most active faults in Slovenia the regional
dextral-strike slip faults of the Dinaric fault system and the
Periadriatic fault system. The longest faults include the Idrija
fault (DFS, 124 km), the Sava fault (PAFS, 150 km), the Šoštanj
fault (PAFS, 89 km) and the Labot (Lavanttal) fault (PAFS, 180 km;
strongly segmented). The two fault systems also contain faults with
the highest slip rates, on the order of 0.5–1.0 mm/yr. Reverse faults
formed through inversion of Neogene and Quaternary
sedimentary basins and therefore typically occur in conjunction
with major folding. The systems in which reverse faults occur
include the Periadriatic fault system, the Mid-Hungarian fault
system, and the Sava compressive wedge and Balaton fault

FIGURE 11 | Approximate cumulative horizontal displacement/slip rates across the most active fault systems in Slovenia. The Dinaric fault system contains two
spatially well-constrained fault sets which concentrate most of the displacement.
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system. Their occurrence in clastic sediments and poorly lithified
rock, which are highly susceptible to weathering and erosion,
results in obscuration of fault traces and formation of blind
faults. The only significant and consistent exception to this are
the thrusts and reverse faults in the Adriatic foreland fault system
and the Vodice and Cerklje faults in the Ljubljana basin.

We have identified ‘corridors’ where large amounts of
deformation occur. The Periadriatic fault system
accommodates approximately 1–2 mm/yr of dextral strike slip.
The Dinaric fault system contains two distinct fault sets that likely
accommodate over 75–95% of the total of approximately
4.5–5.0 mm/yr of dextral strike slip across the fault system.
The western fault set accommodates approximately 2.5 mm/yr,
about 50–55% of the total dextral strike slip across the fault
system. The eastern fault set accommodates approximately
1–2 mm/yr of dextral strike slip, about 20–40% of the total
dextral strike slip across the fault system. Lesser, less well
constrained activity is noted across other fault systems. The
Adriatic foreland fault system is particularly poorly
constrained, with little available data. The Mid-Hungarian
fault system, the Sava compressive wedge and Balaton fault
system and the Raba extensional fault system also lack good
data on slip rates, however, total slip rates on the order of
∼0.5–1.0 mm/yr are inferred with some certainty.

We have identified several areas where currently unknown
active faults possibly or likely exist, however, their surface
expressions are exceedingly vague or the faults are blind.
These regions include the Sava folds, the region to the south
of the termination of the Avče-Predjama fault, the northern
part of the Ljubljana basin, southern Julian Alps and parts of
southern Slovenia. The Sava folds require additional extensive,
in-depth structural analysis to further constrain the presence,
geometry and potential activity of reverse faults and thrusts
associated with the formation of the folds. We expect that
additional faults from these zones may be added in future
versions of the database.

Reconnaissance geomorphic work on the national LiDAR
dataset has indicated a number of potential paleoseismological
investigation sites on multiple faults. At this time
paleoseismological data is available for only a handful of faults
and individual locations, insufficient to constrain past behavior of
investigated faults. A side product of the fault database is a set of
potential future paleoseismological investigation sites.

While the data for seismotectonic parameters has been
compiled using a constant set of criteria, there is significant
remaining heterogeneity. Slip rates are a particularly highly
heterogeneous dataset, with values determined over widely
ranging time spans. A significant discrepancy between
estimated slip rate values and values based on modeling has
been found (e.g. Kastelic and Carafa, 2012) and will need to be
addressed in the future. Systematic and methodologically
homogeneous nation-wide geodetic investigations will be
required to further homogenize the fault slip rate data set.

The fault database has been translated into a database of fault
seismogenic sources using the composite source approach, to
provide one of geologic inputs into the new seismic hazardmap of
Slovenia. Seismicity data was extensively used to constrain

geometries, kinematic and activity parameters of fault seismic
sources. The methodology and results will be the subject of a
future paper. Extensive cross-border harmonization of composite
seismic sources has been done where possible, however, the fault
map requires further cross-border harmonization. The database
is being updated regularly with newly published data and results
of ongoing research activities. The latest version of the fault
database is accessible online available at: tectonics.geo-zs.si.
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ARSO (2020). Močni potresi v preteklosti (Strong earthquakes in the past).
Available at: http://www.arso.gov.si/potresi/potresna%20aktivnost/Mo%c4%
8dni_potresi_v_preteklosti.pdf (in Slovenian, with English summary).
(Accessed April 20, 2020).
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Miocene-Pliocene tectonic evolution of the Slovenian Periadriatic fault:
implications for Alpine-Carpathian extrusion models. Tectonics 17 (5),
690–709. doi:10.1029/98tc01605

Fodor, L., Uhrin, A., Palotás, K., Selmeczi, I., Nádor, A., Tóth-Makk, Á., et al.
(2011). Geological conceptual model within the framework of project T-JAM.
Ljubljana, Budapest, Geological Survey of Slovenia, Magyar Állami Földtani
Intézet. Available at: https://issuu.com/t-jam/docs/geological_model (Accessed
December 7, 2020).

Galadini, F., Falcucci, E., Galli, P., Giaccio, B., Gori, S., Messina, P., et al. (2012).
Time intervals to assess active and capable faults for engineering practices in
Italy. Eng. Geol. 139–140, 50–65. doi:10.1016/j.enggeo.2012.03.012

Galadini, F., Poli, M. E., and Zanferrari, A. (2005). Seismogenic sources potentially
responsible for earthquakes withM≥ 6 in the eastern Southern Alps (Thiene-
Udine sector, NE Italy). Geophys. J. Int. 161, 739–762. doi:10.1111/j.1365-246x.
2005.02571.x

Ganas, A., Oikonomou, I. A., and Tsimi, C. (2013). NOAfaults: a digital database
for active faults in Greece. Bull. Geol. Soc. Greece 47, 518. doi:10.12681/bgsg.
11079

García-Mayordomo, J., Insua-Arévalo, J. M., Martínez-Díaz, J. J., Jiménez-Díaz, A.,
Martín-Banda, R., Martín-Alfageme, S., et al.QAFI Compilers Working Group

Frontiers in Earth Science | www.frontiersin.org May 2021 | Volume 9 | Article 60438818

Atanackov et al. Database of Active Faults in Slovenia

https://doi.org/10.1111/j.1365-246x.1987.tb01675.x
https://doi.org/10.1029/1999gl011071
http://www.arso.gov.si/potresi/potresna%20aktivnost/Mo%c4%8dni_potresi_v_preteklosti.pdf
http://www.arso.gov.si/potresi/potresna%20aktivnost/Mo%c4%8dni_potresi_v_preteklosti.pdf
https://doi.org/10.1029/2000gl011973
https://doi.org/10.1016/j.tecto.2007.04.014
https://doi.org/10.6092/INGV.IT-SHARE-EDSF
https://doi.org/10.6092/INGV.IT-SHARE-EDSF
http://www.sisfrance.net/
https://doi.org/10.1029/2009TC002491
https://doi.org/10.1016/j.jog.2008.01.004
https://doi.org/10.1016/j.jog.2008.01.004
https://doi.org/10.1016/j.tecto.2013.01.016
https://doi.org/10.1016/j.jog.2010.05.004
https://doi.org/10.6092/INGV.IT-CPTI04
https://doi.org/10.6092/INGV.IT-CPTI04
https://doi.org/10.1016/s0040-1951(98)00163-2
http://diss.rm.ingv.it/diss/
http://diss.rm.ingv.it/diss/
https://doi.org/10.1007/s10518-016-0041-2
https://doi.org/10.1007/s10518-016-0041-2
https://doi.org/10.1016/j.tecto.2005.05.003
https://doi.org/10.1029/98tc01605
https://issuu.com/t-jam/docs/geological_model
https://doi.org/10.1016/j.enggeo.2012.03.012
https://doi.org/10.1111/j.1365-246x.2005.02571.x
https://doi.org/10.1111/j.1365-246x.2005.02571.x
https://doi.org/10.12681/bgsg.11079
https://doi.org/10.12681/bgsg.11079
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


(2012). The Quaternary faults database of Iberia (QAFI v.2.0). J. Iberian Geol.
38 (1), 285–302. doi:10.5209/rev_jige.2012.v38.n1.39219

Georgescu, E. S., Borcia, I. S., Matei, C. L., Craifaleanu, I. G., Dragomir, C. S., Dobre,
D., et al. (2013). “The Skopje, Macedonia, earthquake of 1963 vs. Vrancea,
Romania, earthquake of 1977. Long-run impacts in earthquake engineering,” in
International Conference on Earthquake Engineering. 50 years from the Skopje
catastrophic earthquake, Skopje, Macedonia, July 1963.
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Poljak, M., Gosar, A., and Živčić, M. (2010). “Active tectonics in Slovenia” in
geology of the Adriatic area,” in International Geological Congress on the
Adriatic Area (ADRIA 2006), Urbino, 19-20 June 2006 (Bologna, Italy,
University of Bologna, Department of Earth and Geological-Environmental
Sciences), 15–24.
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