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The shape of a subducting slab varies as a function of trench motion. Two end-
members of subduction modes are geodynamically possible: roll-back mode
underneath neighboring plates and roll-over mode underneath the plate itself.
Whereas most of major slabs seem to roll back while the Pacific plate shows a slab
piling behavior down to ∼1,000 km depth under the Mariana trench, no clear evidence
of slab roll-over in nature has been reported so far. Here we show a possible roll-over
slab beneath the Caroline microplate, revealed from its three-dimensional seismic
velocity structure derived by analyzing teleseismic reverberating SS phases. We
suggest that slab roll-over is driven by at least two factors: 1) the overall buoyancy
and fragility of the Caroline microplate at the surface, induced by a thin hot mantle
plume that rises from depths ≥800 km; and 2) the pushing force of the Pacific plate
acting on the trailing edge of the Caroline plate.
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INTRODUCTION

Seismic tomographic studies have imaged various subduction patterns (e.g., Okino et al., 1989; Fukao
and Obayashi, 2013; French and Romanowicz, 2015; Hosseini et al., 2020). Whereas a slab with a
retreating trench is dominant for the Pacific plate going under the North American plate in the
north-eastern Japan arc (e.g., Lallemand et al., 2008; Fukao and Obayashi, 2013), a steep slab with a
slab piling geometry of recumbent folds is also possible, as below the advancing Mariana trench (e.g.,
Widiyantoro et al., 1999; Barklage et al., 2015). These observed subduction modes have motivated the
community of geodynamics to foster the interpretation of slab physics, with the aid of global and
regional numerical simulation and analogue laboratory experiments. Geodynamical modeling
studies, both numerical and experimental, show that the geometry of subducting slabs is closely
related to the motion of converging plates (Christensen, 1996; Schellart, 2011): the roll-back mode
occurs when trench moves oceanward (“retreats”), whereas the roll-over mode occurs when trench
moves landward (“advances”; Replumaz et al., 2004; Manea and Gurnis, 2007) (Schellart, 2008). It is
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also shown that slabs may not only roll back beneath neighboring
plates, as has been observed beneath the Mariana trench, but that
it could also roll over below themselves (Schellart, 2008).

One of the possible mechanisms for a slab to roll over is by a
large pushing force along the trailing edge of a subducting oceanic
plate (Schellart, 2005; Stegman et al., 2010a). This mechanism
may not apply to the major subducting plates on the Earth, given
that the pushing force at the trailing-edge of large, old oceanic
plates is normally much smaller than their gravity, which is a
principal engine of plate motions (e.g., Forsyth and Uyeda, 1975).
In addition, heavy, stiff, old subducting slabs may not achieve the
slab roll-over mode, which is likely to occur in buoyant and highly
deformable slabs (Stegman et al., 2010b). Hot plumes can
contribute to such pushing forces by providing heat under
oceanic plates, thereby making them more buoyant and
deformable. Microplates are thus worth exploring to better
understand the geodynamics of subducting slabs which may
exhibit roll-over mode.

In this paper, we explore the Caroline microplate as a good
candidate for slab roll-over mode. This oceanic microplate is
surrounded by three major old plates and fed by a plume. We
investigate the mode of subduction of this small plate by first
developing and applying a new seismological imaging technique
particularly adapted to the region of interest.We then propose the
geodynamical model to reconcile the seismological and tectonic
models.

BACKGROUND

Tectonic Setting of the Caroline Plate
The Caroline plate has a complex and discussed geologic history,
that includes tectonic rotations, protracted and recent
subduction, former rift jumping and abortion, young
spreading centers, plate boundaries of unknown geometry and
kinematics, and hotspot and volcanic activity (Gaina and Muller,
2007). This microplate is roughly hexagonal (approximately
1,800 km × 1,000 km) and is trapped among three major
converging plates (Figure 1): the Australian (south),
Philippine (west and north-west), and Pacific (east and north-
east) plates (Weissel and Anderson, 1978). The Philippine-
Caroline plate boundary, located in the west, consists of
convergent boundaries to the north, marked as the Yap and
Palau trenches, and the Ayu trough extensional plate boundary to
the south (Weissel and Anderson, 1978). The south and east
boundaries of the Caroline plate evolve in an obliquely and
rapidly converging plate boundary zone (Baldwin et al., 2012).
Tectonic accommodation seems to occur by lithospheric
shortening along the New Guinea, Manus, and Mussau
trenches. The Caroline plate is underthrusting beneath the
Indo-Australian and Pacific plates. To the north, its contact
with the Pacific plate is unclear but may be dominated by a
spreading center controlling the evolution of the Sorol trough
(Weissel and Anderson, 1978). The transition between this plate

FIGURE 1 | Tectonic setting of the Caroline plate. The lower-right inset shows the larger tectonic framework of the Caroline plate. Themain panel depicts the nature
of themain tectonic boundaries around the Caroline plate (Cooper and Taylor, 1987; Gaina andMuller, 2007; Baldwin et al., 2012). Ph, Pa, and InAu are the acronyms for
Philippine, Pacific, and Indo-Australian plates, respectively, the three major plates surrounding the Caroline Plate. WCT and KT are the West Caroline and Kiilsgaard
troughs, remnants of a former spreading center. CHT stands for Caroline Hotspot Track. The bathymetric shaded-relief visualization of the GEBCO 2014 grid is
shown as produced by NOAA/NCEI. Bathymetric depths and major morphologies are marked with equal-depth contours in kilometers.
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boundary and the Mussau trench is of complexity, potentially due
to its interaction with the Caroline hotspot track (CHT in
Figure 1; Gaina and Muller, 2007; Wu et al., 2016). The
dating of the CHT could be the trace of the Caroline plume
from the core-mantle boundary (CMB), which might have been a
source for the Caroline ridge, and probably the Sorol trough.

Subducting features of the Caroline plate are observable at its
southern plate boundaries, along the New Guinea and Manus
trenches. Although the lack of geodetic data hinders further
details, east-west trending magnetic anomalies within the
Caroline plate seafloor indicate southward plate motion
(Maus, 2009). A north-south volcanic ridge, called the
Eauripik rise, rises from the consistently flat seafloor
bathymetry at ∼4.5 km depth, while the seafloor shallows by
more than 2 km around the center of the Caroline plate (Figure 1;
Weissel and Anderson, 1978). The Eauripik rise has a relatively
constant width of ∼250 km in its northern and central sectors that
triples in its southern sector, as the ridge becomes shallower and
more distributed (Figure 1). The Eauripik rise disrupted the
north-south spreading center that originally formed this oceanic
microplate and defined the east and west Caroline basins during
the Oligocene (Weissel and Anderson, 1978; Gaina and Muller,
2007). This rise was once thought to be a dead divergent
boundary (Winterer et al., 1971). However, the magnetic
exploration and borehole analyses suggest that the Eauripik
rise may be related to magma that leaked through faults and
cracks when the plate was created (Weissel and Anderson, 1978;
Hegarty and Weissel, 1988). Another interpretation suggests a
link between the Eauripik rise and the tracks of the Manus plume
(Macpherson and Hall, 2001). Subsurface and seismic data
leading to high-resolution imaging can resolve the mantle
structure underlying this complex tectonic framework at
present, and help understanding potential links between
lithospheric and surface processes.

Previous Seismological Observations
Looking from the bottom of the mantle, global whole-mantle
waveform inversion studies indicate the existence of a plume with
a maximum size of 10° × 10° (French and Romanowicz, 2015;
Garnero et al., 2016). As imaged by these studies, the Caroline
plume is a vertical pile of low shear velocity (VS) rooted at the
western tip of the Pacific Large Low Shear Velocity Province.
Body-wave waveform inversion studies imaged the detailed
elastic and anelastic structure of the plume, suggesting that the
Caroline plume is iron rich at the base of mantle (at least until
∼1,000 km above the CMB), probably due to chemical interaction
with the CMB (Konishi et al., 2017; Deschamps et al., 2019;
Konishi et al., 2020). It is thus interesting, from the geodynamical
point of view as well, to trace this Caroline plume up to the
surface and to explore its link to the Caroline ridge.

The fine structure of the upper mantle and mantle transition
zone beneath the Caroline plate has not been imaged, for there is
not any dense array of seismometers nor seismicity around the
region except near its south-western boundary. Long-wavelength
global tomography models have overcome this difficulty and,
using all the seismic phases that sample any region of the globe,
have successfully shown a large high-velocity anomaly in the

transition zone beneath the Caroline plate (e.g., O’Neill et al.,
2005; French and Romanowicz, 2015). However, the detailed
structure within the region is still unrevealed. Several factors are
responsible for the lack of resolution: 1) previous studies use low-
frequency contents (shortest periods of 32–128 s, i.e. larger than
∼150 km) in their inversions and thus have a poor sensitivity in
resolving ∼100 km-scale structure; and 2) due to a heavy
regularization, smoothing scheme and data weighting factors,
to stabilize inversions for a number of parameters within the
whole Earth domain, it can bias the obtained results and broaden
the anomaly images (e.g., Bozdağ et al., 2016; Marjanović et al.,
2017). Global tomography can also prevent from imaging sharp
interfaces that can be observable from forward modeling (e.g., Ni
et al., 2005). This results in the difficulty to assess the error for
each single point in global tomographic models. In order to
overcome these limitations, we develop a Monte Carlo (MC)
inversion using SS–S differential traveltimes and waveforms,
specially designed for the purpose of exploration of the
interior of the upper mantle and the transition zone beneath
the Caroline plate. We apply it to a large dataset of waveforms
that sample the region of interest.

Given the distribution of teleseismic earthquakes
(Supplementary Figure S1), we provide the first three-
dimensional (3D) mantle structure to reveal slab roll-over
geometry beneath the Caroline plate and understand
subduction dynamics. On the basis of our model, we aim to
understand the structure and evolution of the Caroline plate,
which are affected by several major plates that collide and subduct
one beneath another. We will further focus on the following
questions with the aid of seismology and geodynamics: 1) which
mechanism is supplying the materials at the Caroline ridge and
what is the link between the hot iron-rich Caroline plume at the
mantle (e.g., O’Neill et al., 2005; Konishi et al., 2017; Deschamps
et al., 2019; Konishi et al., 2020)? and 2) how has the Eauripik rise
been formed at the center of the Caroline plate?

METHODS

Monte Carlo Inversions Using SS–S-phase
Double-Difference Traveltime and
Waveform Similarity
Teleseismic waveform data that sample only inside the upper
mantle and the mantle transition zone beneath the Caroline plate
will not provide enough information on its structure, given the
small number of seismic stations and earthquakes inside the
region. We thus specifically chose an SS seismic phase for
retrieving VS structure, for it reverberates at the surface of the
plate once between the source and the receiver. As the direct S and
SS phases sample similar regions at both the source and receiver
sides, the differential traveltime between their arrivals is mainly
due to the bouncing point of the SS phase. We aim to obtain
preferred 1D model(s) for the bouncing point region by using a
MC approach which retrieves as much robust information as
possible from the data and avoids biasing the inversion with a
priori information, such as initial models.
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We collected a dataset consisting of 2,540 transverse-
component waveforms from 482 teleseismic earthquakes
whose SS phase bounced within and around the Caroline
plate (Supplementary Figure S1). The collected events have
Mw 5.5–7.0 and focal depths of <75 km, and occurred in
2001–2015. We filtered the observed waveforms at 20–100 s,
and the data were quality checked. We retained only
waveforms with a signal-to-noise ratio exceeding 2.5 for S
and 1.5 for SS, and divided the dataset based on bouncing
points of the SS phase. We computed traveltime kernels for S
and SS arrival times of the data and their differences using
DSM Kernel Suite (Fuji et al., 2012; Fuji et al., 2016). For
epicentral distances of 50–90°, the sensitivity of SS phase is
focused inside a cylindrical column of a radius of 5° beneath
the bouncing point. The kernels show that SS phases exhibit
significant sensitivity to structure, indicating a possibility of
extracting information on localized inner structure of SS
bouncing point region (Supplementary Table S2). We note
that we cannot fully eliminate influences to SS traveltimes from
the source-side, receiver-side and lower mantle heterogeneities
even with the data covering a wide range of azimuths
(Supplementary Figure S1). We thus test statistical
robustness of our inversion a posteriori as a function of the
number of models chosen, that are represented as covariance
of our inverted models. We further note that we did not use
any partial derivatives or kernels during the inversions,
although both can be the indices for the determination of
an adequate binning of sub-regions and for that of frequency
ranges.

We then generated synthetic seismograms for a family of 1,000
1D models of VS with a ±4% anomaly in the depth range of
0–850 km for the Preliminary Reference Earth Model (PREM;
Dziewonski and Anderson, 1981), allowing discontinuities
anywhere. We fixed the number of layers to be 9, but the
velocity (and its gradient) of each layer can be changed
randomly (Supplementary Figure S2). We computed the
synthetic seismograms using the 1D direct solution method
(Geller and Ohminato, 1994; Geller and Takeuchi, 1995). The
MC inversion was aimed at finding a 1D model(s) for each sub-
region by minimizing the misfit function:

F(m) � 1
Nd

∑[
∣∣∣∣∣(Tobs

SS − Tsyn
SS ) − (Tobs

S − Tsyn
S )

∣∣∣∣∣ + α(1 − CCobs,syn
SS )],

(1)

where Tobs/syn
phase denotes the traveltimes of each phase for the

observed and synthetic phase waveforms (for a model m). The
first L1-norm term corresponds to the difference of SS–S
differential traveltimes between the synthetic and observed
data, denoted here as double-difference traveltime (DDTT).
We measured the differential traveltimes for S and SS phases
by cross-correlating the observed and synthetic seismograms.
CC denotes the cross-correlation coefficients, α is a weighting
factor that we set empirically to 5.0, and Nd is the number of
waveforms.

Looking at various epicentral distance seismograms has the
advantage that their sensitivity of SS phases with respect to each
depth differs from one to another, and thus results in a

quasi-orthogonal sensitivity, when using a large number of
waveforms (Konishi et al., 2014). Furthermore, our MC
method allows us to not depend on a priori information, or
an initial model, resulting in a global minimum search of the
misfit function (Eq. 1). As shown in the Results section, we also
evaluate the covariances for our preferred models, thereby
providing an index of confidence level of each model parameter.

Geodynamic Simulation
We conducted numerical simulations to constrain controlling
factors in the geometry of a subducting microplate. We
considered a 2D trench-normal cross section, as trench-
normal motion between converging plates is the primary
factor in the geometry of subducting slabs (e.g., Christensen,
1996; Torii and Yoshioka, 2007; Stegman et al., 2010a; Stegman
et al., 2010b; Schellart, 2011; Cizkova and Bina, 2015). We set up a
2D model of a subducting slab with an infinitely large width,
given that 3D simulations of subduction conclude that slab
behavior is sustained when their width is >1200 km, which is
the case for the Caroline plate (Stegman et al., 2010a). Our model
includes an overlying plate, a subducting microplate, and a
pushing plate in a whole-mantle domain (Supplementary
Figure S3). Each plate is decoupled by fracture zones
characterized by weak strength (e.g., Manea et al., 2014). In
addition, low-viscosity weak zones were set at the top-left and
top-right corners of our model domain to allow horizontal plate
motions. Each plate consists of overlying crustal and underlying
mantle rocks with their proper densities and heat generation rates
(e.g., Turcotte and Schubert, 2002). The model includes two
discontinuities associated with the olivine/wadsleyite and
ringwoodite/bridgmanite phase changes: the subducting
microplate acquires negative buoyancy at the 410 km depth
and positive buoyancy at the 660 km depth, resulting in slab
deformation.

We used basic equations and numerical solvers of previous
studies (Nakao et al., 2016; Nakao et al., 2018): mantle flows were
derived from a Stokes equation for an incompressible viscous
continuum with an infinite Prandtl number; and mantle
temperature was solved using the extended Boussinesq
approximation (see Supplementary Material text). Note that,
contrary to the previous studies, we excluded water transport of
the simulation for simplification. In order to solve mantle flows
along four model boundaries, free slip conditions are imposed,
except for the top of the pushing plate. Along the pushing plate
surface, a landward constant velocity (Vpush) is imposed instead.
We set a constant temperature of 0°C as boundary conditions
along the top boundary, whereas the insulating condition is
imposed at the bottom, right and left boundaries
(Supplementary Figure S3). We set initial conditions as
follows: 1) the overlying plate is 10 Myr old and 3,500 km in
length; 2) the subducting microplate is 10 or 50 Myr old and
2,000 km in length; 3) the pushing plate is 100 Myr old and
3,700 km in length; 4) the fracture zone is placed between the
overlying and the subducting plates; and 5) another fracture zone
is assigned between the subducting and the pushing plates
(Supplementary Figure S3). Lastly, in these models, we varied
the pushing velocity Vpush (3, 6, or 9 cm/yr) and the initial
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thermal age of the subducting microplate (10 or 50 Myr) as
variable parameters to examine subduction modes.

RESULTS

Individual DDTT values show that SS phases arrive much faster
than PREM prediction and S phases arrive as predicted by PREM
(Supplementary Figure S4A). The averaged DDTT over the
whole region is 7.6 s, implying the presence of a fast VS

anomaly beneath the Caroline plate, which is consistent with
global studies (e.g., O’Neill et al., 2005; French and Romanowicz,
2015). DDTT variations as a function of SS bouncing points are
relatively small (<2 s) at the southern and western plate
boundaries (Supplementary Figure S4B).

Our MC inversion outputs preferred depth-dependent VS

models for each sub-region, defined by the reverberating points
of SS phases. Figure 2 shows a final seismic velocity model
compiled from all preferred 1D models. We obtain error
estimates by means of the MC inversion scheme that directly
compares observed and synthetic data generated for 1,000
models. The final model shows high-velocity anomalies
throughout the upper mantle and the transition zone, which
are, again, consistent with the global models. However, more
detailed small-scale features are visible in our reconstructed 3D

model due to the shorter-period contents and our optimized
inversion scheme that maximized resolving power and
particularly targeted the inner structure beneath the SS
bouncing points.

Faster velocity features (1.6–2.2% faster than the PREM) are
clear, especially around the 200–750 km depths (Figure 2A,
Supplementary Figures S5–S7) and mostly concentrated
below the southern plate boundaries of Caroline (Figure 2A,
Supplementary Figures S5–S8). Below the northern plate
boundaries, fast VS features observed around the 200–850 km
depths can be also recovered from the best 10 and 30 models
(Supplementary Figures S9A, S10A, respectively). On the other
hand, a smaller-scale low-VS structure (0.5–1.1% slower than
PREM) is observed from bottom to top of our model domain
(0–850 km depths). Low VS features are more prominent at
shallower depths (0–200 km) and are dominant merely below
the Eauripik rise at 50 km depth (Figure 2B, Supplementary
Figures S5–S8, S9B, S10B). The standard deviations for both 10
and 30 preferred models are <1.5% beneath the Caroline plate,
supporting the confidence level of our model (Supplementary
Figures S11, S12).

Our 2D geodynamic simulation demonstrates that the
geometry of a subducting oceanic plate is critically dependent
on the magnitude of landward velocity (Vpush) and the age of the
slab (Figure 3). Subduction of a 50 Myr-old oceanic plate can lead

FIGURE 2 | Three-dimensional S-wave velocity (VS) structure beneath the Caroline plate down to 850 km depth with interpretation (arrows). The green perimeter at
the surface (0 km depth) indicates the Caroline plate boundaries. (A) The region in blue has VS 2.2 and 1.6% faster than PREM (Dziewonski and Anderson, 1981). (B) The
region in red has VS 1.1 and 0.5% slower than PREM. Our model suggests the presence of subducting and stagnant slabs (blue regions) from the neighboring plate
boundaries, and the plume (red regions) emerging from the base of the model domain (850 km depth) and extending to the surface. See Supplementary Figure
S5 for horizontal slices of the model and Supplementary Figures S6–S8 for vertical slices of the model. A green arrow in a panel (A) indicates the slab imaged with high
seismic velocities, and a magenta arrow in (B) indicates slow-velocity material.
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to a variety of slab geometries, depending on the Vpush in the
range for actual oceanic plate motions (Lallemand et al., 2008). A
small Vpush (3 cm/year) results in a slab-draping geometry with a
horizontal slab segment in the transition zone (Figure 3A),
similar to the Pacific slab geometry in north-eastern Japan
(e.g., Huang and Zhao, 2006). An intermediate Vpush (6 cm/
year) develops a draping geometry with recumbent folds
(Figure 3B), similar to that in the southern Izu–Bonin arc
(e.g., Huang and Zhao, 2006). A large Vpush (9 cm/year)
develops a slab piling geometry of recumbent folds at the
transition zone (Figure 3C), similar to the one in the Mariana
arc (Widiyantoro et al., 1999).

The transition between the above-mentioned slab
geometries is different for the case of a young, hot oceanic
plate. Subduction of a 10 Myr-old plate with a fast velocity
(Vpush � 3 cm/year) exhibits a draping geometry with
recumbent folds (Figure 3D). With intermediate to fast
velocities (Vpush � 6 and 9 cm/year), the 10 Myr-old plate
exhibits a roll-over geometry with a horizontal slab segment in
the transition zone, resulting in trench advance (Figures
3E,F). In this case, the oceanic plate is continuously
supplied to the converging plate boundary due to the large
pushing velocity, whereas the convergence velocity slows
down by the large thermal buoyancy of the subducting
slab. Consequently, the overlying plate is pushed backward,
resulting in the advancing trench and the roll-over geometry.

To sum up, our seismic model indicates possible roll-over slab
subductions from the southern boundary and feasibly also from
the northern boundary, as well as the presence of the plume-like
low-velocity anomalies extending from (at least) 800 km depth
beneath the Caroline plate. Our geodynamical simulations
further demonstrate that the roll-over subduction needs a
young, hot oceanic plate and relatively fast landward pushing
velocity.

DISCUSSION AND CONCLUSIONS

Our seismic model, derived from MC inversion of teleseismic SS
phases, shows a high VS feature in the upper mantle and transition
zone beneath the Caroline oceanic microplate. We observe a near-
vertically continuous high-velocity anomaly throughout the upper
mantle (Figure 2, Supplementary Figure S8, green arrow), and we
consider it as a subducting slab from the southern boundaries of the
Caroline plate. This “slab” seems to fall down vertically, deflect at
660 km discontinuity and advance backwards beneath the plate itself
in the transition zone. Meanwhile, geodynamical modeling predicts
that a young, hot oceanic plate with a fast pushing velocity can roll
over, and such a geometry is inferred from our seismicmodel. On this
basis, ourmodel could provide a rare observation of a case of roll-over
subduction due to the particular plate geometry surrounding the
Caroline plate. The geometry of subducted slabs depends critically on
the partitioning of the convergent velocity at the surface into its
subducting plate motion component and trench migration
component (Schellart, 2011), as confirmed here in this study.
Hence, the pushing force due to the Pacific plate motion may
have been enhanced, resulting in roll-over plate geometry. The
roll-over mode is uncommon in actual subduction zones but is
predicted to appear where 1) a subducting plate is very hot; and
2) the trailing edge of the subducting plate is vigorously pushed by
another oceanic plate.

Another notable feature in our seismic model is the slow-
velocity material that ascends from the bottom of the model space
and detours around the slabs, reaching the surface (Figure 2B,
magenta arrow). This slow-velocity feature might be the upper
end of the Caroline plume, coming either directly from the CMB
or rooted at some shallower depth. This plume may be
significantly less rigid than the subducting slabs and thus rise
upwards through the upper mantle. Its close proximity to the
Eauripik rise may indicate that the rise provides a magma

FIGURE 3 | Thermal structures simulated by six runs with different pushing velocities (Vpush) (from left to right, 3, 6, and 9 cm/year) and thermal ages of the
subducting microplate (50 Myr at top row and 10 Myr at bottom row). Grey dashed lines represent the 410 and 660 km depth boundaries. Thin yellow dashed lines are
stream functions of mantle flows (5 × 10–5 m2/s intervals). SeeSupplementary Figure S3 for a schematic illustration of the simulation andSupplementary Videos 1–6
for the six simulation results.
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pathway to the Caroline ridge. Furthermore, the large hot
material just beneath the Caroline plate can heat the plate
itself and can thus make the plate buoyant, causing the roll-
over regime to occur efficiently, as shown in Figures 3E,F. Or, it
might be achievable that the plume itself is advected with the
mantle flow and faster convection allows little time for the slab to
heat up (e.g., Steinberger and O’Connell, 1998).

Based on our seismic model (Figure 2) and the geodynamic
simulation results (Figure 3), we developed a schematic
interpretation (Figure 4, Supplementary Figure S13). The
Caroline plume rises upward from the deep mantle, detouring
around the cold and rigid bodies and perhaps feeding the
Caroline ridge (Supplementary Figure S13, magenta arrow).
The Caroline ridge, that spreads at higher rates (Muller et al.,
2008), causes the plate to move southward. The microplate is
probably pushed southward by Pacific plate and fed by the mantle
plumes, and subducts at its southern boundaries, possibly
resulting in a roll-over subduction mode beneath the
microplate itself. However, the shape of the slab depends on
the tectonic history and there are other possible scenarios that can
create the imaged slab shape (see Supplementary Material text).

To date, the active effect of mantle plumes on the subducting
slabs (e.g., Chang et al., 2016) and interactions with the mantle
and neighboring slabs (e.g., Kiraly et al., 2018) remain poorly
understood. Thus, the link between the plume from the CMB
and the complex features of the upper mantle structure beneath
the Caroline plate remain unclear. Hence, the ocean-bottom
geophysical data on the plate (e.g., “Pacific Array”; Forsyth and
Detrick, 2003; Kawakatsu et al., 2016) will help to better probe
the upper-mantle interaction between plumes and slabs. As we
showed in our models, an interplay between the upwelling
plume and the oceanic microplates can have features
uncommon to major plates, whose dynamics are not yet well
constrained.
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