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The term “disaster species” was a term originally conceived to describe marine
microfossils that exhibited profound abundances in the wake of a biological crisis. The
term was expanded in the 1990s to describe (as “disaster taxa”) opportunistic taxa that
dominated their biota numerically (“bloomed”) during the survival interval of a mass
extinction event. The Permo-Triassic tetrapod genus Lystrosaurus has been cited
regularly as a “disaster taxon” of the end-Permian mass extinction. A review of the
definitions that have been developed for disaster taxa, and data from recent
biostratigraphic and phylogenetic studies that include species of Lystrosaurus, leads to
the conclusion that the genus is not a “disaster taxon”. Further, the known biostratigraphy
and tree topologies of species of Lystrosaurus do not satisfy more recent definitions that
attribute diversification to disaster species. At most, species of Lystrosaurus that form the
informal “Lystrosaurus abundant zone” in the lower Katberg Formation, Lower Triassic of
South Africa, could be described as opportunistic species.
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EPIGRAPH

“There is an extinction, which is a disaster, and this taxon is abundant, so it must be a
disaster taxon”—Webb and Leighton (2011, p. 202).

INTRODUCTION

Five mass extinctions have punctuated the evolutionary history of metazoans. Broad-scale studies of
mass extinctions have yielded in rich nomenclature with which to identify and to describe the fates
and/or the roles of biota that have been subject to a mass extinction (Kauffman and Erwin, 1995;
Harries et al., 1996; Kauffman and Harries, 1996; Hallam and Wignall, 1997). Accordingly,
evolutionary biologists (Harries et al., 1996; Hallam and Wignall, 1997) have theorized of such
biological entities as “disaster species,” “disaster taxa,” “opportunistic taxa,” and “Lazarus taxa,” with
respect to successive “extinction,” “survival,” and “recovery” phases of an extinction event (Figure 1).

The end-Permian mass extinction (EPME) of ca. 252 Ma is widely regarded to be the most severe
of the “Big Five” extinctions. The diversities of late Permian marine and terrestrial organisms were
greatly impacted, with many groups becoming extinct (e.g., trilobites, eurypterids, gorgonopsian
synapsids, and pareiasaurian parareptiles), followed by a multi-million-year-long hiatus in coal
deposition and reef formation (Erwin, 1993, 2006; Jin et al., 2000; Benton, 2003; Benton and
Twitchett, 2003; Wignall, 2007). A major focus of research programs of the EPME has been to
determine whether the marine and terrestrial extinctions were synchronous (e.g. Twitchett et al.,
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2001; Ward et al., 2005; Shen et al., 2011; Gastaldo et al., 2020).
Pursuant to that goal, Smith and Botha (2005) began a long-term
collecting program in the Karoo Basin of South Africa to produce
a species-level resolution of the biostratigraphic ranges of
terrestrial vertebrates spanning the Permo-Triassic boundary
(PTB). Smith and Botha (2005) identified “extinction,”
“survivor,” and “recovery” faunas for PTB Karoo tetrapods,
which were recognized in successive publications (Botha and
Smith, 2006; Botha et al., 2007; Modesto and Botha-Brink, 2010),
and refined in their more recent work (Smith and Botha-Brink,
2014).

A taxon that has played a chief role in research of tetrapod
survivorship of the EPME is the anomodont synapsid genus
Lystrosaurus. Species of this genus have been described from
Asia (China and India), Europe (Russia), Africa (South Africa
and Zambia), and Antarctica (e.g. Young, 1946; Cluver, 1971;
Colbert, 1974; King, 1991; King and Jenkins, 1997; Ray, 2005;
Surkov et al., 2005). Lystrosaurus fossils are the most
commonly encountered vertebrate remains in lowermost
Triassic rocks of the Karoo Basin, South Africa; Groenewald
and Kitching (1995) estimated that 95% of the fossils from the
Lystrosaurus declivis Assemblage Zone of the Karoo Basin are
attributable to Lystrosaurus. As a consequence of this
remarkable abundance and co-occurrence with the EPME,
the genus Lystrosaurus is commonly described a “disaster
taxon” (Wignall, 2007; Adams, 2008; Sahney and Benton,
2008; Benton, 2011; Kammerer et al., 2013; Botha-Brink
et al., 2016; Brocklehurst et al., 2018).

The label of “disaster taxon” applied to Lystrosaurus—a
genus of herbivorous tetrapods—is quite remarkable given
the traditional application of this term to life of the past. The
designation “disaster taxa” (nb. plural) was introduced by
Copper (1994) to describe microbes, foraminiferans, and
bryozoans of varying ranks (e.g. genus to ordinal) that
became prolific in the wake of a biotic crisis. Hallam and
Wignall (1997, p. 13) described disaster taxa as “usually

long-ranged species of opportunists, whose presence in
swarm abundances is a sure sign of elevated
environmental stresses”. In the same work, they regarded
the Lystrosaurus Assemblage Zone of South Africa (sensu
Groenewald and Kitching 1995) as a “disaster-taxon
assemblage” (Hallam and Wignall, 1997, p. 111). That
description is the first to intimate, but not state
specifically, that Lystrosaurus is a disaster taxon. Hallam
and Wignall (1997) stated that the stratigraphic range of the
genus Lystrosaurus is relatively short, especially if compared
with that of the Capitanian–Anisian bivalve genus Claraia,
but the range of the former genus is similar to that estimated
for dinosaur genera (Dodson, 1990) and so may be
considered unremarkable for a tetrapod genus.
Accordingly, the recent branding of Lystrosaurus as a
disaster taxon appears to be based largely upon its
reported abundance and global distribution, and not the
stratigraphic/longevity perspective attached to the concept
(Hallam and Wignall, 1997; Rodland and Bottjer, 2001).
However, the abundance of the genus Lystrosaurus varies
in the basins where it has been found, and it is not known
from every basin that preserves an Early Triassic tetrapod
fauna (e.g. Dias-da-Silva et al., 2007; Dias-da-Silva et al.,
2017). A further complication for statements that
Lystrosaurus is a disaster taxon is that those works that
have done so have neither provided a definition for
“disaster taxon” nor cited a previously published
definition; where such definitions appear in the literature,
they vary from work to work.

In this paper I examine the basis, if any, for statements that the
genus Lystrosaurus is a disaster taxon. Recent advances in the
biostratigraphy of terrestrial vertebrates of the Karoo Basin of
South Africa, which yields the most abundant fossils of
Lystrosaurus (Botha and Smith, 2006; Botha and Smith, 2007;
Botha and Smith, 2020; Viglietti et al., 2015), allow an assessment
of the claim that Lystrosaurus is a disaster taxon.

FIGURE 1 | Hallam and Wignall (1997) generalized model showing the range of responses of species to mass extinction.
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DISCUSSION

Lystrosaurus as a “Disaster Taxon”
The term “disaster taxon” evolved from the earlier term
“disaster species”. The latter was first used by Percival and
Fischer (1977) to describe the calcareous nannoplankton that
appeared in bloom-like abundances in the earliest Tertiary
seas. The term was adopted by Kauffman (1984) and Harries
and Kauffman (1990) in their reviews of marine-life
survivorship of the end-Cretaceous mass extinction
(ECME). Schubert and Bottjer (1992) introduced the term
“disaster form” for Early Triassic stromatolites (nb. the term
“disaster form” reflects the nature of fossil stromatolites as
ichnotaxa). Finally, Copper (1994:3) described “. . .‘simpler’,
stress resistant disaster taxa at the genus to ordinal (or even
phylum) level” for marine invertebrates that bloomed in the
wake of reef collapse.

Subsequent considerations of “disaster taxa” concept evolved
in the context of anatomizing a mass extinction event into
extinction, survival, and recovery intervals, and restricting the
term “disaster taxon” to low-level taxa (i.e. genus and/or species).
Whereas Schubert and Bottjer (1992) and Schubert and Bottjer
(1995) regarded “disaster forms” as “long-ranging opportunistic
generalists that briefly proliferate in the aftermath of mass
extinctions,” Kauffman and Erwin (1995), Kauffman and
Harries (1996), and Harries et al. (1996) distinguished
“disaster species” (disaster taxa) from “opportunistic species.”
These categories of survivors were proposed to bloom
successively in the survival interval of a mass extinction event
(Figure 1); Kauffman and Harries (1996) suggested that disaster
species were probably “r-strategists,” i.e. short-lived species that
produce abundant offspring. Subsequently, Rodland and Bottjer
(2001) conflated these survivor concepts and defined “disaster
taxa” as “a subgroup of opportunistic taxa, characterised by long
evolutionary histories, that invade vacant ecospace during the
survival interval but which are forced into marginal settings
during later phases of the recovery.” This concept has been
embraced by many researchers (e.g., Petsios and Bottjer, 2016;
Song et al., 2016; Lucas, 2017).

The Rodland and Bottjer (2001) disaster-taxon concept does
not apply to the genus Lystrosaurus for several reasons. As
mentioned in the Introduction, Lystrosaurus does not exhibit a
remarkably long stratigraphic range compared to those known for
other tetrapod genera. The lowermost occurrence for the genus is
L.maccaigi at the boundary between theDicynodon-Theriognathus
(lower subzone) and Lystrosaurus maccaigi-Moschorhinus (upper
subzone) vertebrate subzones, respectively, of Viglietti (2020) of the
DaptocephalusAssemblage Zone (uppermost Balfour Formation of
South Africa; Changhsingian; Viglietti et al., 2017; Viglietti, 2020),
and the uppermost occurrence is L. declivis in the upper
Lystrosaurus declivis Assemblage Zone (uppermost Katberg
Formation of South Africa; Olenekian; Botha and Smith, 2007;
Botha and Smith, 2020). As the Lystrosaurus maccaigi-
Moschorhinus vertebrate subzone of the Daptocephalus
Assemblage Zone and the Lystrosaurus declivis Assemblage
Zone are contained entirely within the Changhsingian through

to the Olenekian stages, which totals 6.94Ma according to the
International Committee for Stratigraphy (2020), this indicates
that the genus ranged less than 7Ma. Tomy knowledge, no one has
gauged the longevity of non-mammalian synapsid genera, but
Dodson (1990) estimated that dinosaur genera ranged
5–10.5 Ma, and estimated that 7.7 Ma was a likely average.
Accordingly, the longevity of the genus Lystrosaurus seems
quite comparable. In addition, there is no evidence that the
youngest known representatives of the genus, L. declivis and L.
murrayi, were forced into marginal (ecologically suboptimal)
settings during later phases of the recovery: no herbivorous
tetrapods co-occur with L. declivis and L. murrayi in the upper
parts of their stratigraphic ranges in the Katberg Formation; the
highest occurrences of these species lie below the contact between
the Katberg Formation and the overlying Burgersdorp Formation,
the upper portion of which preserves the herbivorous/omnivorous
cynognathian Diademodon tetragonus (Hancox et al., 1995; Botha
and Smith, 2007). Accordingly, there is a brief hiatus in the ranges
of herbivorous tetrapods in the Karoo Basin of South Africa, so it is
not possible to state that L. declivis and L.murrayiwere forced into
marginal settings later during the later recovery phase.

The primary impetus for regarding Lystrosaurus as a disaster
taxon is its renowned abundance. However, Lystrosaurus fossils
are not remarkably abundant outside of the Karoo Basin of South
Africa, where they were estimated by Groenewald and Kitching
(1995) to comprise 19 out of every 20 fossils found in the
Lystrosaurus declivis Assemblage Zone. This estimate, of
course, is drawn from recollection of those researchers’
traditional field collecting at Lystrosaurus AZ localities, which
predated the precise logging of later field workers (Ward et al.,
2005; Smith and Botha, 2005; Botha and Smith, 2006; Botha and
Smith, 2007; Botha-Brink et al., 2014; Botha et al., 2019). More
recent field and collection assessments indicate that the
Groenewald and Kitching (1995) figure is inflated, and that
Lystrosaurus specimens actually comprise ca. 73% of the
vertebrate fossils known from the Lystrosaurus declivis AZ
(Smith et al., 2012). Smith and Botha (2005) suggested that
the “over abundance” of Lystrosaurus specimens (implied by
Groenewald and Kitching, 1995), particularly “monospecific
bonebeds” in the lower Katberg Formation, was a taphonomic
bias resulting from the concentration of these dicynodonts at
lowland floodplain “waterholes,” which dried up periodically.
They subsequently recognized a “Lystrosaurus abundant zone” in
the lower Katberg Formation, which looks appreciably like a post-
extinction “bloom” (Botha and Smith, 2006; Figure 7). However,
this “Lystrosaurus abundant zone” lies ca. 50 m above the
Permian-Triassic boundary and falls within Smith and Botha
(2005) “recovery fauna,” a stratigraphic observation at odds with
the general concept that disaster taxa bloom in the immediate
aftermath of a mass extinction, a.k.a. the survivor interval
(Kauffman and Erwin, 1995; Harries et al., 1996; Kauffman
and Harries, 1996; Rodland and Bottjer, 2001). Accordingly,
even though recent biostratigraphic work suggests that
Lystrosaurus fossils form an anomalously abundant interval,
this interval does not coincide with the expected survival
interval of the EPME.
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To conclude this section, the genus Lystrosaurus fails to
meet all of the criteria that have been established for a disaster
taxon (sensu Harries et al., 1996; Rodland and Bottjer, 2001). I
suspect that any attempt to apply the term “disaster taxon” to any
taxon above the species level, particularly a speciose group of
organisms such as Lystrosaurus, is problematic, because there is
always the possibility of attributing qualities of a subset of species
to the entire group.

Does the Genus Lystrosaurus Include Any
Disaster Species?
As noted above, Smith and Botha (2005) informally recognized a
“Lystrosaurus abundant zone” for L. declivis and L.murrayi in the
lower Katberg Formation of South Africa. This putative
“Lystrosaurus abundant zone” could be equated to the blooms
that characterize the distribution profiles of disaster and
opportunistic species of Kauffman and Harries (1996,
Figure 1) and Harries et al. (1996, Figures 5, 6). However, the
Smith and Botha (2005) identification of “extinction,” “survivor,”
and “recovery” faunas among the Permo-Triassic tetrapods of the
Karoo Basin is not compatible with the “extinction,” “survivor,”
and “recovery” intervals of mass extinctions that were
reconstructed in the 1990s (Kauffman and Erwin, 1995;
Harries et al., 1996; Kauffman and Harries, 1996), in that the
tetrapod faunas of Smith and Botha (2005) overlap in time

whereas the mass-extinction intervals of Kauffman and his
colleagues are discrete time units. The “extinction,” “survivor,”
and “recovery” faunas of Smith and Botha (2005) suggest that the
“extinction,” “survivor,” and “recovery” intervals theorized in the
1990s for mass extinctions are not a realistic reconstruction of
biotic responses during and immediately after a mass extinction
event. The Smith and Botha (2005) recognition of overlapping
“extinction,” “survivor,” and “recovery” faunas for PTB tetrapods
are echoed in the conclusions of Lindstrom and McLoughlin
(2007) and Hochuli et al. (2010) for PTB plants in eastern
Pangaea and north-central Laurasia, respectively.

The sparse vertebrate paleontology literature that touches
upon disaster species has eschewed the association of disaster
species with a particular substage of a mass extinction. Benton
(2003, p. 303), for example, defined disaster species as “forms that
are able to radiate soon after a crisis.”More recently, Benton et al.
(2014) define disaster species as “a species that survives and
diversifies in post-extinction conditions, but disappears without
giving rise to major components of the longer-term ecosystem.”A
fundamental problem with both of these definitions is that the
terms “diversifies” and “radiate” imply that a disaster species
undergoes additive speciation in “post-extinction conditions.”
Neither definition applies to any of the species of Lystrosaurus
because stratigraphic calibration of the currently accepted tree
topologies for the genus (Figure 2) demonstrate clearly that
speciation events in this genus occurred before the PTB; there

FIGURE 2 | Lystrosaurid diversity across the Permo-Triassic boundary with stratigraphic data from Botha and Smith (2006), Smith and Botha-Brink (2014), Botha
et al. (2019), Smith et al. (2020), and Viglietti et al. (2020), based on the leading tree topologies for the genus Lystrosaurus. (A) Topology 1 in which Lystrosaurus murrayi
and L. declivus form a grade (e.g. Kammerer et al., 2013; Kammerer and Smith 2017; Cox and Angielczyk, 2015). (B) Topology 2 in which L. murrayi and L. declivus are
sister taxa (Kammerer, 2019a; Kammerer, 2019b; Kammerer et al., 2019; Olroyd et al., 2017). Dicynodon and Kannemeyeriiformes are outgroups. Stratigraphic
ranges of survivor/recovery taxa in medium green and extinction taxa in orange. Thick bars are known stratigraphic ranges; ghost lineages and ghost taxa are indicated
by diagonal hatching; relationships indicated by thin black branches. Light green field represents “Lystrosaurus abundant zone” of Botha and Smith (2006). Lystrosaurid
tree topologies from Angielczyk et al. (2013), Kammerer and Smith (2017), Kammerer (2019a), Kammerer (2019b), and Kammerer et al. (2019). Abbreviations: Anis,
Anisian; CAZ, Cynognathus Assemblage Zone; Chx, Changhsingian; DAZ, Daptocephalus Assemblage Zone; EAZ, Endothiodon Assemblage Zone; Ind, Induan; KAZ,
Cistecephalus Assemblage Zone; KB, Karoo biozones; LAZ, Lystrosaurus declivis Assemblage Zone; Olen, Olenekian; Wuc, Wuchiapingian.
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is no compelling evidence for any post-extinction speciation
within the genus Lystrosaurus.

To conclude this section, none of the species of Lystrosaurusmeet
the recent definitions for disaster species (Benton, 2003; Benton et al.,
2014). Previously published definitions that associate disaster species
with a critical time period (viz. “survival phase”) are called into
question by recent studies that reconstruct overlapping extinction,
survivor, and recovery biotas, and their utility is now doubtful, at
least for continental biotas. Tetrapods such as L. declivis and L.
murrayi that exhibit anomalously high post-extinction numbers
could be identified, at most, as opportunistic species.

CONCLUSION

The dicynodont genus Lystrosaurus is commonly described as a
disaster taxon in the recent literature on the end-Permian
extinction event. However, those works that specifically
describe Lystrosaurus as a disaster taxon neither refer to, nor
provide, a definition of the term, and this problem is exacerbated
by the numerous definitions that have appeared in the literature.
The current phylogenetic and stratigraphic information available
for species of Lystrosaurus fails to satisfy any of the published
definitions for the term “disaster taxon,” leading to the conclusion
that the term, at present, is too subjective and thus has
questionable utility for studies of tetrapod survivorship of
mass extinctions.

The concept of disaster species appears to be valid for many
marine forms (e.g., Song et al., 2016), but those identified so far
are suspension feeders (foraminifera, brachiopods, and bivalves).
Their benthic marine ecology is very different from that of late
Permian and Early Triassic Karoo tetrapods, which formed
terrestrial vertebrate ecosystems of modern aspect (Sues and
Reisz, 1998), where large numbers of herbivores support a
relatively smaller number of carnivores (i.e. primary consumer

biomass dwarfs that of secondary and higher consumers). In the
case of the Lystrosaurus declivis Assemblage Zone fauna, L.
murrayi and L. declivis comprised the “large number of
herbivores” of the Karoo terrestrial vertebrate ecosystem, in
lieu of that formed by a greater taxonomic diversity of
herbivorous tetrapods recorded for the preceding late Permian
Daptocephalus Assemblage Zone.
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