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During the last two decades, space geodesy allowed mapping accurately rupture areas, slip
distribution, and seismic coupling by obtaining refined inversion models and greatly improving
the study of great megathrust earthquakes. A better understanding of these phenomena
involving large areas of hundreds of square kilometers came from the last gravity satellite
mission that allowed detecting mass transfer through the Earth interior. In this work, we
performed directmodeling of satellite GOCE (Gravity Field andSteady-State OceanCirculation
Explorer) derived gravity gradients up to degree/order N � 200 of the harmonic expansion and
then corrected this by the effect of topography. Cutting off the model up to this degree/order
allows inferringmass heterogeneities located at an approximate depth of 31 km, just along the
plate interface where most (but not all) significant slip occurs. Then, we compared the vertical
gravity gradient to well-constrained coseismic slip models for three of the last major
earthquakes along the Sunda interface. We analyzed seismic rupture behavior for recent
and for historical earthquakes along this subduction margin and the relationship of the degree
of interseismic coupling using the gravity signal. From this, we found that strong slip patches
occurred along minima gravity gradient lobes and that the maximum vertical displacements
were related quantitatively to the gravity-derived signal. The degree of interseismic coupling
also presents a good correspondence to the vertical gravity gradient, showing an inverse
relationship, with low degrees of coupling over regions of relatively higher density. This along-
strike segmentation of the gravity signal agrees with the along-strike seismic segmentation
observed from recent and historical earthquakes. The thermally controlled down-dip ending of
the locked fault zone along central Sumatra also presented an inverse relationship with the
density structure along the forearc inferred using our modeling. From this work, we inferred
different mass heterogeneities related to persistent tectonic features along themegathrust and
along the marine forearc, which may control strain accumulation and release along the
megathrust. Combining these data with geodetical and seismological data could possibly
delimit and monitor areas with a higher potential seismic hazard around the world.
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INTRODUCTION

Numerous major to great earthquakes had affected the Sunda
subduction system in the past, with some giant events in the last
decades from Southern Sumatra to the Andaman Islands. This
region is characterized by lateral variations of the convergence
rate and obliquity that occur gradually (Chlieh et al., 2008) as the
Indo and Australian plates are thrust beneath the Sunda plate.
This work divided this subduction zone into four main segments
according to the historical earthquakes that affected the margin.
Along the Northern section occurred the great Mw � 9.15
2004 Sumatra-Andaman earthquake, one of the four largest
earthquakes recorded in instrumental times and the largest of
the last 40 years (Lay et al., 2005; Stein and Okal, 2005;
Klingelhoefer et al., 2010). This segment ranges from the
Simeulue Is. located at 2.5° N to the Andaman Is. to the North
(Figures 1, 2). The Nias segment is located between Simeulue Is.
and the Batu Islands; this central segment broke during the Mw �
8.6 2005 event (Briggs et al., 2006; Hsu et al., 2006; Konca et al.,
2007) and previously in 1861 (∼Mw 8.5, Newcomb and McCann,
1987). To the South of this area, the central Sumatra margin
beneath the Mentawai Islands (Figures 1, 2) had many major
earthquakes in the past (Figures 1–3), e.g., in 1797 (Mw � 8.78.9),
1833 (Mw � 8.9–9.1), and 1861 (Newcomb and McCann, 1987;
Zachariasen et al., 1999; Sieh et al., 2004; Natawidjaja et al., 2006)
and even recently in 2007 with a Mw � 8.4. The last segment is
located to the South of Enggano Is. Only moderate earthquakes
have been reported, such as the 2000 Mw � 7.9 Enggano Is.
earthquake (Abercrombie et al., 2003).

Different hypotheses have been proposed about the variables
governing heterogeneous seismic behavior along the megathrust
(e.g., thermal structure, subducting sediments and high oceanic
features, and the forearc structure’s variable weight). These
proposals were tested and studied through different methods and
databases without any general conclusive result, leaving numerous
open questions. One of them is the degree of interaction between the
forearc density structure along the megathrust and seismic rupture
behavior. From the early works of Song and Simons (2003) and
Wells et al. (2003), it is expected that strong negative gravity
anomalies between the coast and the trench correlate
geographically to maximum coseismic slip for giant earthquakes.

The last authors proposed that large coseismic slip is
associated with forearc gravity lows related to active basins
and enhanced subduction erosion. Later, Llenos and Mc Guire
(2007) related negative gravity variations to high-shear traction
on the interplate thrust, associated with an increase in the
effective coefficient of friction. The different variables
governing this relationship have been proposed; e.g., changes
of vertical stress loading due to forearc density structure produce
lateral variations of shear strength, as stated by other authors (e.g.,
Sobiesak et al., 2007; Tassara 2010; among others).

Gravity modeling has proven to be useful for mapping the
structure, geometry, and seismic segmentation of the interplate
megathrust (e.g., Llenos and Mc Guire, 2007; Sobiesiak et al.,
2007; Tassara, 2010; Alvarez et al., 2014; Alvarez et al., 2019a) and
also for observing mass variations inside the Earth after great
earthquakes. The Sumatra-Andaman earthquake has become one

of the most studied from satellite gravimetry, particularly from
the GRACE (Gravity Recovery and Climate Experiment) mission.
Coseismic and postseismic gravity changes detected from this
mission allowed for detecting deformation and a crustal dilatation
resulting from this earthquake (e.g., Han et al., 2006; Chen et al.,
2007; Panet et al., 2007).

We explore the seismic structure along the Sunda subduction
zone from the GO_CONS_GCF_2_DIR_R6 satellite GOCE
(Gravity Field and Steady-State Ocean Circulation Explorer)
derived model (Bruinsma et al., 2014), as we made previously for
the SouthAmerican subductionmargin (seeAlvarez et al., 2019a and
references therein). Then we compare the vertical gravity gradient to
coseismic slip models for recent earthquakes, rupture areas for
historical earthquakes, and the degree of interseismic coupling
and the thermal structure along a portion of this margin.

MAPPING ASPERITIES ALONG THE
MEGATHRUST FROM THE VERTICAL
GRAVITY GRADIENT (TZZ)
Despite the numerous studies carried out based on the mass
changes detected by satellite gravimetry, the behavior of the
rupture during the earthquake based on satellite-derived
gradient data had not been addressed until the recent works of
Alvarez et al. (2019a) and Alvarez et al. (2019b) and references
therein. Following the pioneering works from Song and Simons
(2003) andWells et al. (2003), we found that minimum lobes in the
negative vertical gravity gradient Tzz (the second vertical derivative
of the anomalous potential) from GOCE present an inverse
relationship with maximum slip areas during great megathrust
earthquakes. This quantity (Tzz) offers a better spatial resolution
than the gravity anomaly for mapping shallower mass anomalies
(e.g., Li, 2001; Braitenberg et al., 2011; Alvarez et al., 2012).

In a recent review, Alvarez et al. (2019a) and references therein
highlighted this relationship, mapping asperities and barriers (Lay
et al., 1982), and showing how the gravity signal could also explain
the directivity effect for some of these events (seismic asperities are
interpreted as the site where the maximum seismic moment is
released during large interplate earthquakes). They also proposed
that the density structure (derived from GOCE satellite data at long
wavelengths) affects the forearc region’s seismic behavior, mainly for
these large-magnitude events.

Other works (e.g., Hicks et al., 2014) pointed out a moderate
positive correlation between gravity and seismic velocity Vp
from a seismic tomography in the lower forearc for the 2010
Maule earthquake. This relationship was also observed by
Alvarez et al. (2019a) using GOCE derived vertical gradient
(Tzz) at a spatial resolution of 80 km, corresponding to the
maximum degree and order of the spherical harmonic
expansion N � 250 and with Z � 25 km. In previous work,
Sobiesak et al. (2007) found along the Northern Chilean margin
that seismic b-value was correlated with geologic structures
mapped by isostatic residual gravity anomalies. Now, we explore
these relationships along the Sunda subduction zone, one of the
regions of most significant interest on a global scale for the study
of great megathrust earthquakes.
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METHODOLOGY

Satellite Data and Gravity Derivatives
For calculation of the gravity derivatives, we used the satellite
GOCE static model GO_CONS_GCF_2_DIR_R6 (Bruinsma et al.,

2014), which is a full combination of data from GOCE-SGG
(Satellite Gravity Gradiometer), GOCE-SST (Satellite-to-Satellite
Tracking), GRACE (Gravity Recovery and Climatic Experiment),
and LAGEOS (Laser GEOdynamics Satellite). The disturbing
potential (T) is derived by subtracting the reference ellipsoid’s

FIGURE 1 | Relief map of the Australian, Indian, and Sunda plates from ETOPO1 (Amante and Eakins, 2009) with main bathymetric features. Orange dot and
dashed line indicate the main faults as the Sumatran, Andaman, and Mentawi fault system (MFS). In this region, the Indian plate subducts obliquely beneath the Eurasian
plate along the Sunda subduction zone at an approximate rate convergence of 39 mm/yr Chlieh et al. (2008). White arrows in the Andaman Sea indicate the Andaman
Sea Spreading Center (ASSC). Plates rate convergence is from Chlieh et al. (2008), plate ages (white solid lines) are from Müller et al. (2008), red triangles indicate
the volcanic arc (Siebert and Simkin, 2002), and white dashed lines indicate the Wharton fossil ridge and the investigator fracture zone (Fz). Circles indicate earthquakes
with Mw > 7.5 from 2000 A.D (from USGS); the upper color bar indicates earthquake depth.
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normal potential field (WGS84) from the observed potential. We
calculated the disturbing potential by direct modeling from the
spherical harmonic coefficients (Janak and Sprlak, 2006) of the
GOCE mentioned above model. Then the vertical gravity gradient
(Tzz) was obtained on a regular grid of 0.05° grid cell size as the
second radial derivative of T (Rummel et al., 2011):

Tzz � z2T
zr2

[1 Eötvös � 10− 4mGal
m

] (1)

Tzz is expressed in Eötvös and represents a better theoretical
resolution than the gravity vector itself for detecting crustal
density variations (Li, 2001) (mainly shallower structures with
high-density contrast), allowing determination of the edges of
anomalous masses with better detail and accuracy. The gravity
disturbance presents a spread signal highlighting deeper sources
(Braitenberg et al., 2011; Alvarez et al., 2012).

Topographic Correction
To remove the correlation of the satellite-derived gravity signal
with topographic masses, Tzz was reduced by the topographic

effect. This correction allows highlighting the different (and
unknown) density contrasts within the crust.

The topographic contribution calculation requires
discretization of a digital elevation model (ETOPO1, Amante
and Eakins, 2009) using spherical prisms of constant density
(Grombein et al., 2013). Using a spherical approximation, the
Earth’s curvature was taken into account, avoiding considerable
errors over the large study region. Then, the effect generated by
the topographic masses on the gravity field and over its
derivatives was calculated following Newton’s law of universal
gravitation.

We performed the topography contribution calculation to Tzz
using the Tesseroids Phyton package from Uieda et al. (2016).
Densities used are mean standard values of 2,670 kg/m3 for
masses above sea level and 1,030 kg/cm3 for seawater. The
calculation height selected is of 3,000 m to ensure that all
values are above the topography. Before satellite data
reduction, the topographic effect contribution was filtered
using a 4th order Butterworth filter at 133 km wavelength to
compare to satellite data at similar wavelengths.

FIGURE 2 | Topography corrected vertical gravity gradient obtained fromGOCE satellite-onlymodel GO_CONS_GCF_2_DIR_R5 (Bruinsma et al., 2013) up toN � 200. (A)
Slip distribution (red solid line) for theMw � 8.8 2010Maule earthquake (Moreno et al., 2012), the −5 Eötvös contour (thick black line) roughly coincides with the seismogenic zone
along the forearc. The −10 Eötvös contour coincides with the location of maximum slip lobes. Solid white arrows indicate a narrowing of the Tzz minima contours, which
corresponds to main slip limits along strike (Alvarez et al., 2014; Alvarez et al., 2019b). Nazca-South American plates convergence (black arrow) is from DeMets et al. (2010).
(B) Slip distribution for the Mw � 8.4 2001 Arequipa earthquake (Chlieh et al., 2011). The +5 Eötvös contour (thick black line) depicts higher densities to the NW and SE of the
epicenter along the forearc (Alvarez et al., 2015; Alvarez et al., 2019a). A low Tzz anomaly to the SSE of the epicenter connects to the maximum slip, following the rupture
propagation in the Southward direction (blankwhite arrow). Nazca-SouthAmerican plates convergence (white arrow) is fromKendrick et al. (2003). (C)Historical ruptures along the
Ecuador-Colombiamargin (Alvarez et al., 2017b; Alvarez et al., 2019b). Red star indicates the epicenter’s location and the Perú-Chilean trench is indicatedwith a gray dashed line.
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Tzz Harmonic Decomposition From
Spherical Coefficients
In previous works, we found that, by limiting the harmonic expansion
to degree and order N � 200, we reached an exploration depth of
approximately 30 km. At this exploring depth, where the shallow
portion of the plate interface (megathrust) is located, we found the best
correlation between slip distribution and Tzz.

The harmonic decomposition from spherical coefficients is
based on Featherstone (1997), who performed a spectral
analysis of the geoid and gravity anomalies and found that
limiting the degree/order allows decomposition of the
gravimetric signal as causative mass depth increases. By
deriving a similar equation (Eq. 2) (see Alvarez et al., 2017a
and references therein) the depth (Zl) of a causative mass was

related to a determined degree of the spherical harmonic
expansion (N) for the Tzz:

TABLE 1 | Approximated depth (Zl) of a causative mass for a determined degree of
the spherical harmonic expansion for Tzz and corresponding spatial
resolution (Alvarez et al., 2017a).

Degree/Order N Spatial resolution λ/2 = πR/Nmax

[Km]
Zl[Km] for Tzz
(Hc = 3 km)

300 67 21
250 80 25
200 100 31
150 133 41
100 200 61

FIGURE 3 | Topography corrected vertical gravity gradient (Tzz) obtained from GOCE model GO_CONS_GCF_2_DIR_R6 up to N � 200 (Bruinsma et al., 2014).
The forebulge presents a high gravity gradient signal while lower to negative values are observed along the outer forearc, to the Northwest is clearly depicted the
Andaman Sea Spreading Center (ASSC). Historical great earthquakes are indicated with gray double-arrows. The dimensions of the approximate rupture areas for four
of the last great earthquakes along the Sumatra-Andaman margin are indicated with dashed lines. Stars indicate epicenter location of the Mw � 9.15
2004 Sumatra-Andaman earthquake (yellow), the Mw � 8.6 2005 Nias–Simeulue earthquake (orange), the Mw � 7.9 2007 Kepulauan-Mentawai earthquake (red), and
the Mw � 7.9 2000 Southern Sumatra earthquake (green). Rectangles indicate the location of Figures 5, 6, and 8. IFz: investigator fracture zone, WR: Wharton ridge.
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Zl � (RE + Hc)(N − 1)
(N + 2)(N + 1) , (2)

where, for an Earth’s radius RE of approximately 6,371 km, Tzz
calculation height HC of 3,000m, and a degree/order of the
harmonic expansion N � 200, we obtained an exploration depth of
approximately 31 km. Table 1 shows the depth Zl and corresponding
spatial resolution for different degrees/orders of the harmonic

expansion. Higher orders are associated with shallower sources (low
Zl), while low orders are related to deeper mass anomalies (higher Zl).

RESULTS AND DISCUSSION

From the early 2000A.D., more than ten earthquakes withMw> 7.5
affected the Sumatra-Andaman margin, four of them with Mw > 8

FIGURE 4 | (A) Topography corrected vertical gravity gradient (Tzz) obtained fromGOCEmodel GO_CONS_GCF_2_DIR_R6 up to N � 200 (Bruinsma et al., 2014).
Slab depths of 10 km and 50 km from Slab 2.0 of Hayes (2018) are plotted with red dashed lines. (B) Slip model for the Mw � 9.15 2004 Sumatra-Andaman earthquake
(Chlieh et al., 2007). (C) Latitudinal profile along the Tzz signal (blue) and along the slip model (red), letters indicate the location of asperities where slip is enhanced. Note
that maximum slip coincides with minimum Tzz and vice versa. The red dashed line indicates a “high-wavelength” component of the slip. Letters A to F indicate the
location of different seismic asperities where a high amount of energy and minor short-period seismic radiation were released.
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(two offshore in the region of the Indian Ocean) and one of the four
Mw > 9.0 registered. Some of these events have been extensively
studied and accurately modeled from different datasets with widely
distributed seismic and GPS networks along the margin and with
sea bottom sensors resulting in well-constrained slip models (e.g.,
Abercrombie et al., 2003; Briggs et al., 2006; Chlieh et al., 2007;
Konca et al., 2007; Konca et al., 2008). Some works also found
meaningful mass redistribution from gravity changes detected by
the GRACE satellite (Han et al., 2006; Chen et al., 2007; Panet et al.,
2007). In this work, we analyze the rupture propagation pattern for
some of these events and its relation with the distribution of crustal
mass heterogeneities from satellite GOCE derived data.

At first glance over the gradient signal (Figure 2), we can
highlight the positive effect of the Australian and Indian

oceanic plates, which is enhanced at the forebulge (outer
rise), reaching more than +10 Eötvös. Between 0° and 2.5° N
it is important to highlight an anomalous region where the
positive expression of the forebulge presents an abnormal
behavior compared to other regions along the margin
(i.e., presents an inflection toward the Simeulue and Nias
Islands). In this region, Franke et al. (2008) observed (based
on marine geophysical data acquired offshore Simeulue in
2006) that the top of the oceanic crust presents a significant
deepening toward the SE and suggested that the segmentation
of the margin at this latitude is caused by a ridge currently
undergoing subduction.

To the South of this (Figures 2, 4), the high positive signal
along the forebulge is segmented at the collision points of the
Wharton fossil ridge and at the investigator Fz. Relatively higher
values in Tzz lobes (>+15 Eötvös) are observed along the outer
rise, not only offshore Simeulue and Nias Islands but at the
offshore of Batu, Siberut, and Pagai Islands (Mentawi Is.).
Henstock et al. (2016) had already identified different regions
of positive residual gravity, namely, 1° offshore Nias beneath the
accretionary prism (that corresponds to an area of active uplift:
Cook et al., 2014); 2° offshore the Batu Islands (reported as a series
of positive residuals immediately adjacent to the location of the
extinct WFR: Liu et al., 1983); and 3° offshore Siberut (where
positive residuals were found aligned with fracture zones in the
subducting plate).

Another first-order gravity signature is observed (Figures 2, 5)
at the Andaman Sea Spreading Center (ASSC) where two highly
positive lobes (with more than +20 Eötvös) indicate a shallower
mantle over the divergent plate boundary. Along the trench, the
high forebulge gravity rapidly decreases, representing the
deepening of the slab, to a negative gradient signal beneath
the forearc.

The negative gravity gradient signal along the marine forearc
(or between the trench and the coastline along Sumatra) may be
in response to lower density material along the accretionary wedge,
the deep-sea terrace, marginal basins, and high sediment thickness
along the trench, which cannot be differentiated at this spatial
resolution without other constraints. This low gravity signal
appears to be segmented along strike (Figure 2), with lower
values to the North of the Nicobar Is. (<−25 Eötvös),
intermediate values between 6° N and −1° S (−5 to −15 Eötvös),
and low values in the region of Mentawi Islands to the South
(−20 Eötvös approximately). An across-strike segmentation is
observed to the North and South of the Mw � 9.15 2004
earthquake and the NE of the Mentawi fault zone (Figures 4–6).

Along the Southern region (Figures 2, 6), the Mentawi fault
zone (MFZ, Diament et al., 1992) can be mapped lying to the East
of the outer arc ridge (along the center of the marine forearc) and
can be mapped to the North up to the Nias Island where it
intersects with other faults that can be tracked following the Tzz
contours. Inland, the right-lateral Sumatran Fault System can be
observed following Tzz minima over the active volcanic arc.

Along the Sumatra-Andaman region, historical and recent
earthquake ruptures coincide with the along-strike segmentation
of the gradient signal over the marine forearc (Figure 2), as
observed in previous works along the South American active

FIGURE 5 | Slip model for the Mw � 9.15 2004 Sumatra-Andaman
earthquake (Chlieh et al., 2007) superimposed to the topography corrected
Vertical Gravity Gradient (Tzz) obtained from GOCE model
GO_CONS_GCF_2_DIR_R6 up to N � 200 (Bruinsma et al., 2014). The
dashed white line indicates the location of regions that behaved as seismic
energy attenuators; white arrows indicate the existence of a seismic barrier
that arrested rupture propagation. Historical great earthquakes are indicated
with gray double-arrows.
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margin (Alvarez et al., 2019a). In the next section, we will
compare results derived from satellite GOCE with the slip
models of the Mw � 9.15 2004 Sumatra-Andaman earthquake,
the Mw � 8.6 2005 Nias–Simeulue earthquake, the Mw � 7.9
2007 Kepulauan-Mentawai earthquake, and the Mw � 7.9 2000
Southern Sumatra earthquake (Figure 2).

The Mw = 9.15 2004 Sumatra-Andaman
Earthquake
On December 26, 2004, the NW Sumatra margin was affected
by a giant earthquake that initiated to the North of the
Simeulue Island (Figures 1, 7) at an approximate depth of
30 km with an estimated magnitude of Mw ∼ 9.15 (Ammon
et al., 2005; Lay et al., 2005; Vigny et al., 2005; Chlieh et al.,
2007). Rupture extended along the trench from Northern
Sumatra to the Andaman Islands; different slip models
showed three distinct peaks, reaching up to approximately
20 m, at about 4° N, 7° N, and 9° N (Bilham et al., 2005; Chlieh
et al., 2007; Dewey et al., 2007). The seismic rupture was the
longest ever recorded (∼515 s), making it difficult to constrain
some seismic characteristics using seismological methods. The
coseismic slip model from Chlieh et al. (2007), derived from
geodetic observations, conciliates the spatial distribution of
slip along ∼1,500 km (and width of ∼150 km) with the total

released moment of 6.7–7.0 × 1,022 Nm, being one of the most
robust, reliable, and better constrained for this earthquake.
This model is roughly similar to that estimated from
seismological data by Ammon et al. (2005), consistent with
the latitudinal seismic moment released and T-waves from
Guilbert et al. (2005) and with body waves from Ni et al.
(2005).

Earthquake Rupture Behavior From Tzz
The topography corrected vertical gravity gradient calculated up
to N � 200 (Figure 8A) in the region of the Sumatra-Andaman
earthquake presents a first-order anticorrelation with the rupture
model of Chlieh et al. (2007) (Figure 8B) along the marine
forearc. The along-strike segmentation of Tzz (relative maxima)
coincides with minimum vertical displacements, while maximum
slip patches (A to F) agree with relative minima Tzz (Figure 8C).
The slip model shows high-frequency components close to the
epicenter that cannot be solved by the long-wavelength
characteristic of the GOCE signal. Despite this, assuming a
“higher wavelength” trend for slip distribution (dashed line in
Figure 8A), the relationship above explained is maintained (high
slip over low Tzz). When superimposing the slip model to the Tzz
(Figure 5), a slight lateral shift is observed between both
quantities. This is interpreted as the positive effect of the
subducting plate over the gradient signal masking the low Tzz

FIGURE 6 | Slip model (dashed orange contours) for theMw � 8.6 2005 Simeulue-Nias earthquake (Briggs et al., 2006) superimposed to the topography corrected
vertical gravity gradient (Tzz) obtained fromGOCEmodel GO_CONS_GCF_2_DIR_R6 up to N � 200 (Bruinsma et al., 2014). The dashed white line indicates the location
of regions that behaved as seismic energy attenuators; white arrows indicate the existence of a seismic barrier that arrested rupture propagation. The great historical
earthquake of 1861 is indicated with gray double-arrows (Newcomb and McCann, 1987).
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trend observed along the marine forearc. From the next
subsection onwards, we will make a detailed analysis of the
above explained.

Northern Directivity
The Sumatra-Andaman earthquake was initiated at ∼3° N with an
initially rapid rupture followed by an important slip propagating
in the Northward direction to the Andaman Islands at decreasing
speed, with little or no slip to South of the epicenter (Banerjee
et al., 2005; Lay et al., 2005; Chlieh et al., 2007). The strong
unilateral rupture in one preferential direction is known as
directivity and has been observed for many great earthquakes
(McGuire et al., 2002), including the Mw � 9.6 1960 Valdivia
earthquake.

The epicenter for the Sumatra-Andaman earthquake
nucleated close to a relatively higher Tzz anomaly (Figure 5),
in a region where the Tzz signal shows a narrowing to the South of
the epicenter (white arrows in Figure 5) over the Simeulue Island.
On the contrary, to the NE of the epicenter is observed a relative
lower gradient signal where the first maxima slip patch occurred.
Further North, in the vicinity of the Nicobar Islands the minima
Tzz obtained along this portion of the Sunda margin are located,
where maximum slip patches occurred, both in size and in
amplitude. The low Tzz trend bounded by the −5 Eötvös
(thick black contour in Figure 5), connecting the hypocenter
location (30 km) to the maximum slip patches in the North, could
be indicative of first-order structural or compositional
characteristics that favored directivity in this direction. This
behavior was also observed by means of Tzz for the 1960
Mw � 9.6 Valdivia (Alvarez et al., 2014), 2001 Mw � 8.4

Arequipa, and 2014 Mw � 8.2 Illapel earthquakes (Alvarez
et al., 2014; Alvarez et al., 2015; Alvarez et al., 2019a).

Asperities Identification From Tzz
As explained in section 4.1, the latitudinal variation of
geodetic moment from Chlieh et al. (2007) shows three
distinct peaks, at about 4° N, 7° N, and 9° N. These peaks
(A, C, and D in Figure 8B) coincide with the latitudinal
variation of the energy radiated by T-waves from Guilbert
et al. (2005) and are also consistent with the three distinct
bursts of energy of high-frequency diffracted body waves as
observed by Ni et al. (2005). These heterogeneities along the
interplate megathrust that concentrate high seismic moment
release and slip and a high-stress drop are known as asperities,
as proposed in the model of Lay and Kanamori (1981) and Lay
et al. (1982) and more recently in Lay et al. (2012).

Particularly, the region along the central portion of the
megathrust where large earthquakes and high slip occur is
named domain B in the model above mentioned. The along-
strike segmentation of the vertical gravity gradient (Figure 8)
shows different lobes of minimum negative values in
agreement with those regions of minor short-period seismic
radiation described as large and relatively uniform regions
with unstable sliding frictional properties. Quantitatively, the
region between 6.5° and 10° N (Figure 8C) where a high
amount of energy (with more than +15 m of slip) was
released coincides with the region where minimum mean
negative Tzz (<−25 Eötvös) is obtained (C and D in
Figure 8A). In general, the amount of slip at each asperity
(A to F in Figure 8) presents a quantitative relationship (i.e., in

FIGURE 7 | Cumulative uplift (solid orange contours) from Briggs et al. (2006), recorded after the 2004 Sumatra-Andaman and the 2005 Simeulue-Nias
earthquakes, superimposed to the topography corrected vertical gravity gradient (Tzz) obtained from GOCE model GO_CONS_GCF_2_DIR_R6 up to N � 200
(Bruinsma et al., 2014). White arrows indicate the existence of a seismic barrier that arrested rupture propagation. Note the saddle structure of the cumulative uplift (in cm)
that seems to replicate the gravimetric structure, coinciding the minimum in the center of the Island with the local maxima in Tzz interpreted as a seismic barrier to
rupture propagation.
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the amount of amplitude) to the amplitude of the Tzz signal
(see Figure 8C).

Seismic Segmentation and Seismic Barrier at the
Simeulue Island
Earthquake magnitude and location are controlled to a high
degree by segmentation along convergent margins. These
segment boundaries have been mapped along the Chilean
margin based on the vertical gravity gradient (Alvarez et al.,
2014) and are related to relative positive values in the Tzz (see
Figure 7). In work mentioned above, we mapped and
differentiated two kinds of segment boundaries (first-order
attenuators or barriers and second-order attenuators) based on
the limits of different rupture zones (recent and historical ones),
the entrance of high oceanic features (e.g., seamounts, aseismic
ridges, and fracture zones), and the Tzz. A second-order
attenuator differs from a barrier because ruptures across them
present a certain overlap, thus indicating a degree of blockage
rather than a barrier to rupture propagation. The vertical gravity
gradient signal shows higher relative values at the location of
second-order attenuators (i.e., a gradual transition between high
and low along strike). On the other hand, higher Tzz values or

regions where the narrowing of the general trend of low Tzz
anomaly along the outer forearc is significant, which in turn are
related to the subduction of high oceanic features, were identified
as first-order attenuators or barriers.

The 2004 Sumatra-Andaman earthquake terminated abruptly
along a common boundary with the 2005 Nias earthquake over
the Simuelue Island (Figure 2). In this region, the Tzz signal
shows an important narrowing of the −5 Eötvös contour (white
arrows in Figure 5), indicating the probable location of a seismic
barrier. Franke et al. (2008) found a ridge on the subducting Indo-
Australian oceanic crust masked by the sedimentary cover in the
trench from joint modeling of wide-angle and reflection seismic
data, proposing that it may exert control on margin
segmentation. The ridge was interpreted in that work as a
fracture zone on the subducting oceanic plate, with most likely
trend NNE–SSW beneath Simeulue Island, in agreement with the
trend and location observed in the Tzz signal (white arrows in
Figure 5).

To the North of the epicenter location (between 4.5° N and 5°

N), on the western side of Sumatran coast, a relative high Tzz
(>−5 Eötvös) coincides with an important narrowing of the slip
distribution model, indicating the existence of heterogeneity

FIGURE 8 | Cumulative slip model (dashed orange contours) for the September 2007 sequence (Konca et al., 2008) superimposed to the topography corrected
vertical gravity gradient (Tzz) obtained from GOCE model GO_CONS_GCF_2_DIR_R6 up to N = 200 (Bruinsma et al., 2014). Stars indicate epicenter location for each
event: Mw = 8.4 (orange), Mw = 7.9 (green). The Enggano 2000 Mw = 7.9 earthquake (yellow star) ruptured to the South as indicated by the aftershock activity (orange
circles are from Pan et al. (2001) and gray circles are from USGS database). The dashed yellow rectangle shows the approximate rupture area (Abercrombie et al.,
2003). The dashed white line indicates the location of regions that behaved as seismic energy attenuators; white arrows indicate the existence of a seismic barrier that
arrested rupture propagation. Historical great earthquakes of 1833 and 1797 are indicated with gray double-arrows (Newcomb andMcCann 1987; Natawidjaja et al., 2006).
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that acted as a seismic attenuator. To the North up to the
Andaman Islands, each narrowing of the gradient signal
(dashed white lines in Figure 5) indicates different second-
order barriers to seismic energy, which agree with amplitude
attenuation in the slip model from Chlieh et al. (2007).
Historical earthquake rupture areas are comprised of these
second-order barriers, as previously observed along the
Southern Chilean margin (Alvarez et al., 2014).

The 2005 Nias–Simeulue Mw = 8.6
Earthquake
On March 28, 2005, the Sunda megathrust ruptured offshore
Northern Sumatra, along the Simeulue-Nias segment, as a result
of a Mw � 8.6 earthquake, with hypocenter location at
approximately 32 km depth close to the Banyak Island
(Figure 4). This earthquake occurred three months before the
great Sumatra-Andaman earthquake in 2004, causing widespread
destruction and many humans loss (about 2,000), including a
moderate Tsunami. McCloskey et al. (2005) explained that this
earthquake might have been a consequence of increased Coulomb
failure stress induced by the Sumatra-Andaman earthquake. The
rupture took place along a 400 km gap between great ruptures in
2004 and 1797 (Figure 2) and propagated bilaterally with two
high slip patches: one to the Northwest of the epicenter beneath
Simeulue Island and one Southeast beneath Nias Island,
respectively (Nalbant et al., 2005; Briggs et al., 2006; Konca
et al., 2007). Geodetic measurements of surface deformation
(coral and CGPS data) revealed about 8 m to more than 11 m
of fault slip under those islands and a notorious decrease of slip to
the trench (Briggs et al., 2006).

The approximate rupture area of the Mw 8.3-8, February 5,
1861, earthquake extended from the equator to the Banyak
Islands as reported by Newcomb and McCann (1987, based on
field data and tsunami reports) roughly coincident with the
Southern patch of the 2005 Nias earthquake.

Earthquake Rupture Behavior From Tzz
The Simeulue-Nias 2005 earthquake nucleated over a Tzz
minimum (<−15 Eötvös) close to the Banyak Island and
propagated bilaterally to the NW and to the S-SE (yellow
arrows in Figure 4). In this way, the 2010 Mw � 8.8 Maule
earthquake nucleated close to a minima Tzz lobe (located along
the marine forearc, see Figure 7) and propagated bilaterally (e.g.,
Moreno et al., 2012). Briggs et al. (2006) proposed that the
structure and division of the 2005 rupture suggest the
possibility that the megathrust has a tear or kink between
Simeulue and Nias Islands. Moreover, Konca et al. (2007)
reported that the region between the two maximum slip
patches (at the hypocentral location) appears to be coincident
with a local geological disruption of the forearc (i.e., a structural
break) in the vicinity of the Banyak Islands (based on Sieh and
Natawidjaja, 2000, and Karig et al., 1980). The low spatial
resolution of the model developed up to N � 200 hinders to
infer or identify these structures. However, the minima
mentioned above (<−15 Eötvös) in the topography corrected
vertical gravity gradient, calculated up to N � 200, present an

elongation in both directions of rupture propagation
(highlighted in the −11 Eötvös contour) having a more
pronounced shape (like a tear) in the Southern one
(Figure 4). Particularly, in this direction occurred the highest
slip under Nias Island. Rupture models (Briggs et al., 2006;
Konka et al., 2007) indicate a smaller slip patch (∼5 m) between
the Nias and Batu Islands in agreement with the relative minima
lobe of Tzz (<−11 Eötvös contour).

Up-Dip and Down-Dip Limits of the Seismogenic Zone
Briggs et al. (2006) reported that most of the moment (95%) was
concentrated between depths of about 14–35 km, while slip values
were highest at depths of about 25 km and decreased gradually
both up-dip and down-dip. During the 2004 earthquake most of
the slip occurred along Tzz minima stripe over the marine forearc
(see the −7 Eötvös black thick contour of Figure 4). Joint inversion
of geodetic and seismological data shows that the coseismic slip of
the 2005 Simeulue-Nias earthquake decays significantly up-dip
before it reaches the trench at two locations: ∼0° N and ∼1.5° N
(Briggs et al., 2006; Konca et al., 2007). The last authors (Konca
et al., 2007) explained that the rupture propagation was impeded
when it reached the accretionary prism resulting in a small amount
of slip toward the trench. The Tzz signal shows an important bulge
penetrating inland between 0° N and 2.5° N (Tzz maxima lobe of
> +15 Eötvös). This high in the gravity signal could be indicative of
structural heterogeneities that acted as a barrier to seismic
propagation toward the trench and consequently limiting the
size of the Tsunami associated with this earthquake. As
mentioned in section 4, in this region, a significant deepening
of the top of the oceanic crust toward the SE was observed by
Franke et al. (2008), suggesting that the margin’s segmentation at
these latitudes is related to a ridge currently undergoing
subduction.

Regarding the down-dip limit of the seismogenic zone, different
authors explained that seismic slip decreases landward across a
strong gravity gradient generally observed along the coastline (e.g.,
Bassett and Watts, 2015a; Bassett and Watts, 2015b). This gravity
high could be related to the landward edge of the forearc basins and
deep-sea terrace (Wells et al., 2003), to the thermal structure
(Grevemeyer and Tiwari, 2006; Kopp, 2013 as well as to the
forearc morphology (Krabbenhoeft et al., 2010).

In this work, instead of a highly positive gradient as observed
along the South American margin (see Figure 7), we can observe
that the Tzz signal becomesmore positive (−5 Eötvös contour) to the
NE of the Mentawi Fz (Figures 2, 4) along the center of the marine
forearc (Diament et al., 1992). Simoes et al. (2004) found that at these
latitudes the forearcMoho intersects with the subduction interface at
a distance of 110 km from the trench and a depth of 30 km (based on
bathymetry from Sandwell and Smith, 1997, seismic refraction data,
Kieckhefer et al., 1980, and seismicity, Engdhal et al., 1998). Thus, the
−5 Eötvös contour could be interpreted as indicative of structural
heterogeneities related to the expression of the forearc Moho at this
distance from the trench.

Asperities Identification From Tzz
Joint inversions of geodetic measurements and seismological
data revealed that this earthquake ruptured along two main
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asperities generating a fault slip in the order of 10 m under the
Simeulue and Nias Islands, a slip deficiency around the
hypocenter, and no significant slip near the trench (Briggs
et al., 2006; Konca et al., 2007). Although, for this event, it is
not possible to establish a clear relationship between maximum
slip patches and minima Tzz lobes as that of Sumatra-Andaman

(Figure 4), slip also occurred over minimum Tzz. The smaller
patch near Southern Simeulue (of about 8 m) was “comprised”
between the −7.5 Eötvös contour, whereas the most significant
patch under Northern Nias (with a maximum slip of about
15 m) occurred inside the −12 Eötvös contour. For this patch,
the 10 m contour of slip occurred inside the −7.5 Eötvös
contour, as what occurred for the southernmost smaller
patch between Nias and Batu Islands.

On April 6, 2010, a shallow thrust fault earthquake with Mw �
7.8 occurred at 2.383°N 97.048°E (31.0 km depth) to the North of
the Banyak Is.; with an approximate rupture area of about 80 ×
60 km that appears to have occurred within the rupture zone of
the M � 8.6 earthquake of March 2005 (Hayes et al., 2017). The
rupture that occurred predominantly surrounding and up-dip of
the hypocenter matches the minima Tzz lobe of −15 Eötvös
around the Banyak Is. (and between Simeulue and Nias Islands).

Seismic Barriers and Attenuators
Seismic segmentation along strike agrees with the Tzz signal
morphology. Three segments can be identified: an important
narrowing of the gradient signal at the Northern termination of
the 2005 rupture (white arrows in Figure 4) and a narrowing of
the signal to the South of the Nias Is. and others and at the
latitudes of the Batu Is., coincident with the approximate
Northern limit of the major 1797 earthquake.

Seismic Barrier at Simeulue Island
In Section 4.1.5, we explained that the 2004 and 2005 earthquakes
terminated abruptly along a common boundary over the Simuelue
Island in a region where the Tzz signal shows an important
narrowing of the −5 Eötvös contour (white arrows in Figures 4,
5, 9) indicating the probable location of a seismic barrier. Briggs et al.
(2006) made dense coral measurements on the coasts of Simeulue
Island and found that summing uplifts from 2004 (up to ∼1.5 m on
the Northwestern flank) and 2005 (up to ∼1.6 m on the Southeast)
earthquakes reveal a 70-km-long saddle-shaped depression (orange
contour lines in Figure 9) centered on the island (uplift at the center
was only 0.5 m). As slip on the megathrust beneath central Simeulue
was appreciably less than it was to the Northwest and Southeast, the
last authors interpreted that the Simeulue saddle reflects a section of
the megathrust that in general slips aseismically or fails in smaller
earthquakes, probably this section being a barrier to trench-parallel
propagation of large ruptures. It is remarkable to note that although
there is a slight gap between uplift (from coral measurements) and
the vertical gravity gradient, the latter reflects well the saddle
structure. Gravity signal, in general, reflects structural
heterogeneities mainly related to density variations, which
reinforces the hypothesis of a structural cause for the 2004/2005
coincident rupture terminations as observed by Briggs et al. (2006)
and Franke et al. (2008).

Southern Nias Is. Attenuator
Henstock et al. (2016) identified a 3 km basement high on the
downgoing plate probably originated at the Wharton fossil ridge
at the approximate location of the Southern termination of the
2005 rupture from multichannel seismic and gravity data. The
last authors explained that where Wharton fossil ridge (WFR)

FIGURE 9 | Approximate rupture areas for recent (Konca et al., 2008)
and historical earthquakes (Sieh et al., 2008) superimposed to the topography
corrected vertical gravity gradient (Tzz) obtained from GOCE model
GO_CONS_GCF_2_DIR_R6 up to N � 200 (Bruinsma et al., 2014).
Dashed white line indicates the location of regions that behaved as seismic
energy attenuators; white arrows indicate the existence of a seismic barrier
that arrested rupture propagation.
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intersects the 97° E Fz, basement shallows by ∼3 km, forming a
bathymetric high on the Southern (inside) corner. At these
latitudes, we observed that the expression of the forearc bulge
presents a landward inflection (black dashed line in Figure 4),
with the negative Tzz contours “comprised” along the marine
forearc and the slip distribution showing an attenuation at these
latitudes. The former authors suggested that the basement high
causes a fundamental segment boundary within the subduction
zone, which behaved aseismically over the data set period and
produced a locally strong plate boundary that stops large
earthquake rupture. Moreover, Graindorge et al. (2008)
explained that, at these latitudes, the upper plate deformation
is strongly influenced by the structure of the lower plate (based on
multibeam bathymetry data), which is characterized by North-
South trending lineaments from the fossil Wharton spreading
center.

The Seismic Barrier at the Offshore of
Batu Is
Offshore of the Batu Is. an interruption of the −11 Eötvös contour
is highlighted (solid black contour in Figure 4) at the Southern
termination of the 5 m of slip contour. At these latitudes, the
investigator fracture zone (IFZ) intersects the margin beneath the
Batu Islands zone (offshore MW Siberut Figure 2), with a section
of the relict WFR intersecting the margin offshore the Batu
Islands (Liu et al., 1983; Henstock et al., 2016). The region
that marks the Southern termination of the 2005 earthquake is
limited to the Northwest by the great rupture of 1861 and to the
Southeast by the giant earthquake rupture of 1797 (Figure 2).
Briggs et al. (2006) exposed that the reasons for lateral variations
in the mode of failure along this segment of the megathrust are
unclear, explaining that abrupt lateral variations of temperature
along the plate interface are improbable. This led them to propose
either that variation in the mode of slip along strike may result
from lithologic or pore pressure variations or that structural
complexities in the Batu Islands patch may have inhibited
thoroughgoing rupture during the 2004 and 2005 giant
earthquakes. Our results reinforce the hypothesis of these
authors of a structural cause for the 2005 Southern rupture
termination. Deformation related to the subduction of the
investigator fracture zone beneath the Batu Islands zone left is
imprinted on the gravimetric signal (Figure 4) as observed
previously along the Chilean margin for other Fz’s that acted
as seismic barriers to rupture propagation (e.g., the Mocha Fz.
that acted as a barrier to the 2010MauleMw � 8.8 earthquake and
for the 1960 Valdivia Mw � 9.6 earthquake).

The 2007 Mw = 8.4 South Pagai Is.
Earthquake and the 2000 Mw = 7.9 Enggano
Is. Earthquake at SW of Sumatra
On September 12, 2007, two earthquakes stroke off the west coast
of Southern Sumatra (Figure 6) in the region of the Mentawi
Islands (Konca et al., 2008; Lorito et al., 2008; Lubis et al., 2013).
The first earthquake, with a magnitude Mw � 8.4, occurred about
130 km SW of Bengkulu and generated a tsunami of a moderate

intensity (Borrero et al., 2009; Fujii and Satake, 2008). Twelve
hours later, a second earthquake with Mw � 7.9 occurred near the
SW Sumatra coast at the latitude of the Pagai Is. which also
generated a small tsunami. Source models of the Mw � 8.4 main
shock show a unilateral rupture that propagated to the Northwest
of the epicenter (Konca et al., 2008; Lorito et al., 2008).

Konca et al. (2008) calculated a cumulative slip model
including the Mw � 8.4 and Mw � 7.9 earthquakes and then
calculated each rupture area separately (by using, conveniently
as appropriate, GPS measurements, teleseismic data,
Interferometric Synthetic Aperture Radar (InSAR), field
measurements of coral uplift, and seismological records). The
cumulative slip model shows two main slip peak areas (Figure 6),
located on South Pagai Island with a maximum slip of 8 m and
around Mega Island with 5 m local maxima. Another minor slip
patch of about 2.5 m was obtained beneath Sipora Island.

Other authors (Lubis et al., 2013) found a similar coseismic
slip distribution (from inversion of GPS and coral data),
although with somewhat lower aptitudes. On the contrary,
Lorito et al. (2008) found a maximum slip patch of 10 m
(100 km long × 50 km wide), located about 100 km
Northwest from the epicenter (by inversion of the tsunami
waveforms). The 2007 sequence occurred in the region of the
1797 (M ∼ 8.8) and 1833 (Mw ∼ 9.0) historical earthquakes
(Newcomb and McCann, 1987; Natawidjaja et al., 2006).
Coseismic slip models showed that recent ruptures were
much smaller than during those previous events, indicating
that joint rupture did not cover the whole area of the 1833 event,
thus anticipating that some slip has still to occur (Konca et al.,
2008; Lorito et al., 2008).

On June 4, 2000, an intraslab strike-slip earthquake, known
as Enggano earthquake (Figure 6), occurred with an estimated
Mw � 7.9 at the Southern edge of the rupture area of the 1833
subduction earthquake (Pan et al., 2001; Abercrombie et al.,
2003), about 110 km off the west coast of Bengkulu. The first
strike-slip event (there was no tsunami reported following the
earthquake) occurred at approximately 50 km depth within the
subducting Australian plate and triggered a thrust subevent on
the megathrust and ruptured SE away from the 1833 earthquake
to the Enggano Is. where most of the losses occurred, as reported
by Pan et al. (2001). Most aftershocks for this sequence were
located to the SE of the main shock epicenter, coinciding with the
inferred rupture area of the second subevent and extending
approximately 150 km along the subduction interface
(Abercrombie et al., 2003). Nerveless, the aftershocks also
extend to the North of the main shock epicenter over 50 km
along the first subevent’s preferred fault plane, as explained by the
last authors.

Earthquakes Rupture From Tzz (Directivity Effect)
The topography corrected vertical gravity gradient calculated up
to N � 200 (Figure 6) in the region between 0° and 7° S can be
separated into two regions or main lobes along the marine forearc
following the −15 Eötvös contour, with a region relatively more
positive between both lobes (at about 5° S). A first-order
anticorrelation can be observed between the Tzz signal and
recent earthquake ruptures (Abercrombie et al., 2003; Konca
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et al., 2008) and to historical ones (1797 and 1833). The along-
strike segmentation of Tzz (relative maxima) coincides with
ruptures ending (Figures 3, 6), while maximum slip patches
agree with relative minima Tzz. As observed in previous sections,
the directivity effect can be observed when earthquakes nucleated
close to a region with a relative higher Tzz signal (i.e., a narrowing
in the contours) with seismic energy propagating off this
attenuator/barrier to a region with a Tzz minima (e.g.,
<−15 Eötvös lobes). This rupture behavior was also observed
by means of Tzz signal for the 1960 Valdivia, 2001 Arequipa, and
2016 Illapel earthquakes (Alvarez et al., 2014; Alvarez et al.,
2019a).

Asperities Identification From Tzz
The coseismic slip of the 2007 MW 8.4 South Pagai Is.
earthquake had two (Konca et al., 2008) or three major
asperities (Lubis et al., 2013) to the NW of the epicenter
(Lorito et al., 2008 found only a major slip patch in this
direction). The first two mentioned models agree in a high
slip patch close to the epicenter whose location coincides with a
minima Tzz lobe (A in Figure 6); additionally, in Southwest of
Pagai Is. the maximum slip occurred just over the minima Tzz
lobe (B) in this region (between 0° to −5° S). The afterslip
distribution for this earthquake after 15 months (corrected by
poroelastic and viscoelastic response modeling) from Lubis et al.
(2013) shows a maximum centered at the Pagai Islands to the
trench, while aftershocks distribution (M > 4.0) during this
time-lapse reached the South of Siberut Is. This relationship
between aftershocks distribution and location of Tzz lobes
contours was also observed for the 2015 Mw � 8.3 Illapel
earthquake (Alvarez et al., 2017a) and for the 2016 Musine
Mw � 7.8 earthquake (Alvarez et al., 2017b).

The 2007 earthquake sequence ruptured along distinct
asperities (i.e., patches with a locally large slip that had
remained locked in the interseismic period) but reached only a
portion of the area ruptured in 1833 (Konca et al., 2008); see
Figures 3, 6. The last authors proposed that the 2007 sequence
consisted of several separated asperities (in time and space) that
really did not cooperate and that this probably was due to the
action of nonpermanent barriers (i.e., areas with locally lower
prestress that resulted from the occurrence of past earthquakes).
They found a narrow zone beneath North Pagai Island that may
have acted as a barrier in 2007 (although probably not a
permanent barrier) because it had a locally lower stress level
before the earthquake. The GOCE satellite-derived gravity
model’s high spatial resolution hinders to infer if the
−20 Eötvös lobe beneath Pagai Islands is actually composed of
two or more asperities separated by a barrier (probably not
permanent as proposed by Konca et al., 2008).

When considering the historical ruptures from Sieh et al.
(2008) we can observe (Figure 3) that the minima Tzz lobe of
−17.5 Eötvös (B) under Sipora and Pagai Islands (between the
second-order barriers/attenuators) coincides to the North with
the 1,606 and 1,833 rupture areas ending, while to the South it
agrees with the 1,685 and the 1,380 ruptures termination. This
high wavelength lobe of minima Tzz is probably indicating the
existence of a large region comprised of different main asperities.

Moreover, the −20 Eötvös lobe under Pagai Is. coincides with the
margin section that always broke through the successive
earthquakes along the timeline, marking the Southern
termination of the 1,797 earthquake. The historical rupture of
1,833 comprised both main asperities A and B (Figure 3), while
the 1,797 and 1,685 historical earthquakes occurred along a
region of relative minima Tzz from Batu Is. to the South,
including the asperity delimited by the −17.5 Eötvös contour
(asperity B in Figure 3).

Along-Strike Seismic Segmentation: Barriers and
Attenuators
Along-strike seismic segmentation can be inferred from the study
of repeated break of the plate interface along the timeline from
historical earthquakes. The section of the Sunda megathrust
between 0° and −5° S has generated almost repeated sequences
of great megathrust earthquakes (Figure 3) approximately every
two hundred years for at least the past 700 years as reported by
Sieh et al. (2008), from corals records of the Mentawai Islands.

To the North, around the Batu Islands, the Tzz shows a
narrowing and an interruption of the −11 Eötvös contour.
This region, which marks the Southern termination of the
2005 Nias–Simeulue Mw � 8.6 earthquake (section 4.2) and
the Northern termination of the 1,797 and the 1,685 historical
earthquakes, behaved as a seismic barrier. In previous works
(Alvarez et al., 2014; Alvarez et al., 2015; Alvarez et al., 2017a;
Alvarez et al., 2017b; Alvarez et al., 2018; Alvarez et al., 2019a), we
named these regions (where the along-strike limit for different
ruptures coincides with local relative maxima in Tzz) first-order
barriers. In the Southern portion of this region of the Sumatran
margin, we propose the existence of another first-order barrier
(white arrows in Figures 3, 6) that separates the rupture of the
2007 earthquake and the historical rupture of 1833 to the North
from the 2000 Enggano earthquake to the South.

The region between these two first-order barriers (delimited
by important narrowing of the Tzz signal or relative maxima
interposed along strike) presents a low Tzz trend between them
which is also segmented by second-order barriers or attenuators
(defined by minor values/amplitude of Tzz contours) that
indicate the existence of different seismic asperities along
strike. The second-order barriers (white dashed lines in
Figures 3, 6) locations mapped by beans of Tzz agree with
seismic segmentation from historical ruptures (Sieh et al.,
2008) along this portion of the Sunda megathrust.

What remains to be solved (probably through marine data or a
global gravity model with higher spatial resolution as EIGEN-
6c4) is the existence or not of a barrier that would separate the
islands of Pagai North and South, indicating a heterogeneity that
acted as a limit for the 2007 rupture and also to the historical one
of 1,350. However, it is difficult to expect a relative higher Tzz (in
a shorter wavelength signal, i.e., more resolution) located just in
the middle of the minimum Tzz lobe (<−20 Eötvös) under the
islands of Pagai. In this regard, Konca et al. (2008) explained that
the sequence of 2007 essentially ruptured a set of asperities which
did not cooperate efficiently (by triggering each other through
static and dynamic interactions) because of the intervening
barriers that were most likely not permanent, acting on the

Frontiers in Earth Science | www.frontiersin.org February 2021 | Volume 8 | Article 58139614

Álvarez et al. Megathrust Structure From GOCE Data

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles#articles


coast of North Pagai more like a ‘barrier’ during the coseismic slip
in 2007. The last authors proposed that the presence of
nonpermanent barriers due to the stress distribution leftover
from previous ruptures is probably the major factor introducing
irregularity, as observed in dynamic fault models (Ben-Zion and
Rice, 1993; Cochard and Madariaga. 1996).

The 2007 earthquake did not reach the 1833 earthquake extent
(Figures 3, 6), showing in its rupture behavior certain
characteristics somewhat abnormal on its Northern slip patch
termination. The rupture did not agree with the Tzz signal,
differing from the degree of interseismic coupling from Chlieh
et al. (2008). Neither the slip-predictable nor the time predictable
models applied to this earthquake (Konca et al., 2008).
Presumably, in this portion of the megathrust between North
and South Pagai Is., instead of being permanent features, seismic
asperities move from one rupture to another within the area that
is locked in the interseismic period as proposed by Konca et al.
(2008).

Tzz, Seismic Behavior, and Seismic Coupling
Throughout the previous sections, we have observed a
correlation between the along-strike segmentation of the
Tzz (by direct modeling of the Earth gravity field) and the
seismic segmentation along the plate interface (considering
recent and historical earthquakes). Geodetic (1991–2004) and
paleogeodetic (1962–2000) measurements of interseismic
deformation from Chlieh et al. (2008) revealed that the
plate interface is partially or fully locked at shallower
depths along the Sumatran portion of the Sunda subduction
zone. Patches of high coupling, along this heterogeneous
pattern of coupling from the last authors (Figure 10),
present a high correlation with the rupture areas of large
megathrust earthquakes (particularly when the locked fault
zone is up to about 175 km wide). The last authors explained
that these strongly coupled patches are roughly coincident
with asperities that ruptured during great events, whereas the
sections of narrow locking and low coupling have not
produced great earthquakes (Mw > 8.0). Similar results can
be found in Prawirodirdjo et al. (2010); these authors also
found that coupling along the plate boundary is high
throughout this region with lower coupling patches to the
North of Batu Is. and around Enggano Is.

In a recent work, Metois et al. (2016) found that, for the recent
Mw > 8 events over the Chilean margin (from 38° to 18° S),
coseismic asperities correlate well with highly coupled segments,
while low coupling zones behaved as barriers and stopped the
ruptures (by analyzing interseismic coupling variations on the
subduction interface based on GPS networks). From comparing
the results of the last authors to our maps of Tzz along the Chilean
margin, we found that relative low Tzz anomalies correlate to
regions with higher slip and a high degree of coupling. On the

FIGURE 10 | Topography corrected vertical gravity gradient (Tzz)
obtained from GOCE model GO_CONS_GCF_2_DIR_R6 up to N � 200
(Bruinsma et al., 2014) with color palette inverted. In the right lower corner is
plotted the interseismic locking degree from Chlieh et al. (2008): a value
of 1 corresponds to full locking while 0 corresponds to creeping at the long-

(Continued )

FIGURE 10 | term plate convergence. Note the correspondence between
highly coupled segments (red) with regions of relative minima Tzz (orange-to-
red) indicated with double red arrows. Regions with intermediate to close to
zero coupling agree with regions of relative higher Tzz (green segments).
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other hand, relative higher Tzz coincident to areas with lower
coupling interposed along-strike mostly coincided with barriers
to rupture propagation (Metois et al., 2016; Alvarez et al., 2014;
Alvarez et al., 2017a; Alvarez et al., 2017b).

In this subsection, we will analyze the results obtained from
direct modeling of the vertical gravity gradient with respect to the
degree of seismic coupling from Chlieh et al. (2008) and to
seismic behavior in the Sumatra region.

Banyak-Nias Strong Coupling Patch
The region comprised between the Banyak Is. and the Nias Is. to
the South of it, which ruptured during the 2005 Mw � 8.7
Nias–Simeulue earthquake (Figure 4), coincides well with the
wide patch of high coupling from Chlieh et al. (2008). This patch
of high interseismic plate coupling presents a similar pattern
when compared to the −10 Eötvös Tzz contour, with a maximum
(of coupling) around Banyak Is. and Northern Nias Is.
(−15 Eötvös), and a narrowing of Tzz in the Southern
direction as what occurs with the predominantly decoupled
equatorial patch.

Batu and North Enggano Low Coupling
Patches
Around the Batu Is. and near the equator coupling is lower
(Figure 10), with a narrow locked fault zone at the Northern edge
of this Island (with coupling ratios close to zero at depths >35 km
and a coupling ratio less than 0.6 at shallower depths, see Chlieh
et al., 2008). In this area only moderate earthquakes have
occurred with Mw < 8.0 (last rupture in 1935 with a
magnitude 7.7), in the past few centuries (Sieh et al., 1999;
Rivera et al., 2002; Natawidjaja et al., 2004; Konca et al.,
2008), and none of the great historical earthquakes (Figure 3)
ruptured significantly across this region from the South (in 1797
and 1833) or from the North (in 1861).

The Tzz (Figure 10) shows significant relative higher values
(∼5 Eötvös higher) in the region between Southern Nias Is. and
Northern Siberut Is., differentiating from the regions to the North
and South where the gradient is smaller and where the
earthquakes of higher magnitude occurred. Chlieh et al. (2008)
located a region of low interseismic coupling above the subducting
investigator Fz. and a well-defined nest of seismicity within the
downgoing slab (Fauzi et al., 1996; Prawirodirdjo et al., 1997). In
recent works along the Chilean margin (Alvarez et al., 2014;
Alvarez et al., 2017a; Alvarez et al., 2017b; Alvarez et al.,
2019b), we identified these regions (where the subduction of
high oceanic features intercepts the plate interface) with low
coupling and high rates of low-to-moderate seismicity with
seismic barriers/attenuator to seismic energy propagation by
means of higher relative values of the Tzz across the margin.
Nalbant et al. (2013) explained that the 1935 earthquake patch has
been slipping during the past century at about half the rate at which
the plate is moving and that has accumulated strains and hence
stresses on the Batu Is. patch are probably low. These authors also
mentioned that recent paleogeodetic studies show that the
megathrust is slipping aseismically at plate convergence rate
both above and below this narrow patch.

Mentawi Strong Coupling Patch
Along the Mentawi region, from Siberut Is. to the latitude of
Bengkulu, Chlieh et al. (2008) found that the interplate region is
under strong coupling (Figure 10). According to Natawidjaja
et al. (2007), coupling beneath the Mentawai Is. has been high for
at least the past 40 years. Great historical earthquakes with wide
rupture areas as the 1797 and 1833 affected this region of the
Sunda megathrust. More recently, the Southern portion was
shocked by the Mw � 8.4 and Mw � 7.9 earthquakes of
September 2007 as early explained in this section. In this
region, we found that there is a good correspondence between
low Tzz lobes and strong coupling patches, mainly under Pagai
and Sipora Islands (Figure 10).

To the North and South of this segment, a narrowing of the
locked patch and a diminishment of the coupling ratio
indicating weakly coupled regions (∼40% beneath the Batu
Is.) correspond to the along-strike edges of the different
ruptures previously analyzed. The gravity signal reflects
structural and compositional heterogeneities along the
megathrust, with low Tzz lobes being related to seismic
asperities (Alvarez et al., 2019b), whereas interposed relative
maxima are related to seismic barriers to rupture propagation
(Alvarez et al., 2014). There is a high correspondence between
these permanent barriers inferred from direct gravity
modeling and those mapped from the modeling of
interseismic strain (Figure 10). This agrees with the
hypothesis that they are persistent segment boundary zones
that influence the lateral extent of megathrust ruptures (as low
coupling causes continuous strain release) that may be related
to the subduction of HOF’s (Chlieh et al., 2008; Konca et al.,
2008). Similar results were found along the Chilean margin,
where the subduction of different HOF’s (aseismic ridges,
seamounts, Fz’s) coincides with patches of a lower degree of
coupling and higher relative Tzz and that has acted as seismic
barriers for the recent earthquakes and also for historical ones
(Sparkes et al., 2010; Contreras-Reyes and Carrizo 2011;
Alvarez et al., 2014, Alvarez et al., 2019b; Metois et al., 2016).

South Enggano Intermediate Coupling
Patch
The megathrust in the area of Enggano Is. and near Bengkulu
(Figure 10) is only slightly coupled (although from sparse GPS
data in the mentioned area: see Chlieh et al., 2008) and coincides
with a region of relative higher Tzz (>−15 Eötvös). This region
presented in the last 15 years an intense seismic activity
(Abercrombie et al., 2003) and had many major but no giant
earthquakes. The most recent occurred in 2000 with an Mw � 7.9
earthquake (Abercrombie et al., 2003) and ruptured to the South
where the coupling is intermediate and a low Tzz lobe is located to
the South of Enggano Is (Figure 10). Chlieh et al. (2008)
explained that the cause of the low coupling obtained to the
South of Pagai Is. is enigmatic and does not appear to be related to
a subducted fracture zone or the thermal structure. In this work,
we propose that a plausible explanation is a rheological
heterogeneity or a structural complexity along the megathrust
that can be mapped by its density contrast by means of Tzz.
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The Correlation Between Coupling and Tzz
As above explained in this section, Chlieh et al. (2008) found a
strong correlation between historical great earthquakes and
patches of the megathrust that are currently strongly coupled,
suggesting that asperities are persistent features under the largest
outer arc islands, caused by intrinsic local properties of the
megathrust (reinforced by the fact that the pattern of coupling
in the Mentawai Islands is remarkably similar before and after the
two great earthquakes of December 2004 and March 2005). This
is opposed to the hypothesis that the seismic moment release is
generally highest beneath forearc basins proposed by (Song and
Simons, 2003; Wells et al., 2003) as in this region basins are
located between the Mentawi Fz and the coastal line. In this work,
we found from direct modeling of GOCE satellite data (with a
greatly improved resolution) that negative Tzz lobes (Figures 3
and 6) agree with rupture areas under the Mentawi Islands,
i.e., along the accretionary wedge instead of over the basins
(which are located to the East). Our results (low Tzz lobes in
correspondence with highly coupled segments) agree with the
proposal of Chlieh et al. (2008), who observed that the most
strongly coupled patches and seismic asperities correlate with the
largest outer arc islands.

Tzz and the Up/Down-Dip Limits of the Seismogenic
Zone
The down-dip limit of the seismogenic zonemay be controlled (in
a first-order) either by the thermal structure (due to a transition
to dislocation creep at high temperatures: Scholz, 1990; Hyndman
andWang, 1993; Hyndman and Peacock, 2003) or by lithological
variations, as the presence of a highly serpentinized mantle wedge
allows megathrust creeping (i.e., the intersection of the
megathrust with the forearc Moho may coincide with the
change from stick-slip to aseismic stable sliding, e.g., Reinen
et al. (1991); Hyndman et al. (1997); Oleskevich et al. (1999).
Different authors found that, along the Sumatran margin, the
megathrust extends significantly deeper than the continental
Moho (which have shallow depths 22–30 km, e.g., Kieckhefer
et al. (1980) and Simoes et al., 2004), opposing the hypothesis that
the Moho is the down-dip limit in this region (Chlieh et al., 2008;
Klingerhoefer et al., 2010). Variations in the down-dip locking
depth over this region seems to be predominantly controlled by
along-strike variations in temperature, with the 350–450°C
isotherms (located 210 and 250 km from the trench axis at the
North of Simeulue Is., Klingerhoefer et al., 2010) and the
300–400°C isotherms (located at 210 and 250 km from the
trench axis, respectively, along the Mentawi region, Chlieh
et al., 2008) coincident with the down-dip limit of the
seismogenic zone (Figure 11). The vertical gravity gradient
presents a notable contrast across strike in the Mentawi
region, indicating higher densities landward, coinciding the
approximate location of the −5 Eötvös contour (thick black
contour in Figure 11) with the 350°C isotherm (from Chlieh
et al., 2008). The last authors observed an increase in depth of
locking between the equator and 4° S consistent with the
isotherms trend and with the Southward increase in
convergence rate. They explained that, together, the lateral
variations of these two parameters partially explain the

Southward increase of the down-dip edge of the locked fault
zone from the Batu Islands, where it is 35 km deep to South Pagai
Island, where it reaches a depth of about 55 km. The density
structure along the marine forearc obtained by direct modeling of
the satellite GOCE derived gravity model is consistent with these
results, with the limit of the locked fault zone (yellow dashed line
in Figure 11) coincident with the −5 Eötvös contour, which
presents an interruption between Padang and Bengkulu
indicating lower densities over the marine forearc in this
region were locking reaching the coastline.

Similar results were found along the South American margin,
where the −5 Eötvös contour was indicated as the down-dip limit
of the seismogenic zone for the Maule 2010 earthquake (Alvarez
et al., 2019b) and for the Musine 2017 earthquake (Alvarez et al.,
2017b). In both cases, the trend of low-density values observed
along themarine forearc presented an entry under the continental
forearc in correspondence with coseismic slip models for the
events mentioned above (see Figure 7).

The Up-Dip Limit and Tsunami-Genesis From Tzz
The up-dip limit in this region has also been successfully mapped
(Figure 11) based on the thermal modeling. Its position has been
located at ∼30 ± 10 km from the trench and around the 100–150°C
isotherms (which is in good agreement with the aftershocks with a
shallow thrustingmechanism in this zone (Engdahl et al., 2007; Chlieh
et al., 2008; Hippchen and Hyndman, 2008). The Tzz presents a high
gradient positive oceanward at the approximate location of the 100°C
isotherm that could be indicative of the up-dip ending of the
seismogenic zone (minor to zero Tzz along the marine forearc is
related to the seismogenic zone and minima Tzz lobes to seismic
asperities).

A higher positive Tzz signal (>+15 Eötvös) is observed
(Figure 11) along the outer rise along the Mentawi Islands and
along the Simeulue-Nias regionwhere the 2005Nias–SimeulueMw�
8.6 earthquake, the 2007MW8.4 South Pagai Is. Earthquake, and the
2000 Mw � 7.9 Enggano Is. earthquake occurred. These three events
(even though the latter is related to an intraslab strike-slip
mechanism) that present a highly positive Tzz oceanward
(Figure 11) only presented moderate tsunamis. A similar pattern
is observed for theMw� 8.4 Arequipa 2001 earthquake (also with a>
+15 Eövos Tzz oceanward) which neither presented a severe tsunami.

On the other hand, the Mw � 9.15 2004 Sumatra-Andaman
earthquake that presented a tsunami of great proportions
occurred in a region where the Tzz signal is lower along the
forebulge (see the +10 Eötvös contour in Figure 8). The 2010
Mw � 8.8 Maule earthquake (which also generated a destructive
tsunami) presents a similar pattern as the Tzz signal along the
outer rise is limited by the +10 Eötvös contour (see Figure 7A).
Further North, the Mw � 8.2 Illapel earthquake, which generated
a moderate but destructive tsunami, occurred against an
inflection of this contour of +15 Eövos over the forebulge.

If this pattern is maintained on a global scale, it would be
possible to determine if the density structure around the trench
area could also have some influence on tsunami-genesis. It is
plausible that where there is a lower density along this region, the
rupture could reach the shallow and tsunamigenic portion of the
megathrust (Lay et al., 2011; Lay et al., 2012), and thus a lower
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density structure of the forebulge would facilitate greater vertical
seafloor displacements.

CONCLUSION

The correspondence between strong coupled patches along the
interseismic period, maxima slip patches during earthquakes
occurrence, and low Tzz lobes implies that the density structure
could be reflecting either structural or rheological heterogeneities
(i.e., asperities) of the megathrust along the marine forearc, having
a strong influence on seismic rupture behavior. Thus, by mapping
regions with a general trend of low Tzz, we could infer the
approximate along-strike length of the rupture (mainly for
large-magnitude events due to the low spatial resolution of
satellite only models) identifying seismic asperities where slip is
enhanced by means of minima Tzz lobes. The heterogeneous
distribution of Tzz could also be reflecting rheological changes

due to slight variations in the thermal structure, particularly along
the down-dip edge of the locked fault zone.

Furthermore, the along-strike seismic segmentation along the
continental forearc inferred from recent and historical rupture
patterns could also be characterized by means of relative higher
Tzz (identified as barriers) as observed along the Chilean margin
in previous works. These barriers that inhibit the lateral
propagation of great earthquake ruptures agree with narrower
coupling over periods of time higher than one or two hundred
years. Minor lateral variations in the Tzz signal are reflecting mass
heterogeneities that contributed to the lateral variations in
seismic behavior. Across-strike seismic barriers could be
identified in those portions of the margin where the Tzz
contours are narrowed or with a relative higher Tzz (this
permanently creeping barriers should favor some regularity
and similarity of earthquakes).

When an earthquake nucleates close to a relatively higher Tzz
rupture propagates following a directivity effect toward minima

FIGURE 11 | Topography corrected vertical gravity gradient (Tzz) obtained from GOCE model GO_CONS_GCF_2_DIR_R6 up to N � 200 (Bruinsma et al., 2014).
Superimposed: isotherms (blue dot and dashed line) and down-dip limit (yellow dashed line) of the locked fault zone from the forward model F-f of Chlieh et al. (2008).
Slab depths from Slab 2.0 of Hayes (2018) are plotted with red dashed lines. Note the correspondence between the −5 Eötvös contour and the approximate location of
the 350°C isotherm that marks the limit of the seismogenic zone in this region and with the down-dip limit of the locked zone. The up-dip limit of the seismogenic
zone can be identified by the high gradient indicated by the +15 Eötvös contour.
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Tzz lobes (and toward lower mean values of the Tzz signal along
the margin). On the contrary, when earthquake nucleates close to a
minima Tzz lobe, rupture presents a bilateral rupture propagation.

By calculating the topography corrected vertical gravity
gradient up to degree/order N � 200 of the harmonic
expansion (from Earth gravity field models) it could be
possible to map coastal regions with a higher seismic risk
along subduction margins.
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