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The Tibetan Plateau (TP) has numerous glaciers that provide water for more than one-
third of the world’s population. Reconstructing past temperature change on the TP
provides a valuable context for assessing the current and possible future status of
glaciers. However, the quantitative paleotemperature records since the last
deglaciation on the TP are sparse. Moreover, existing records have revealed a
conflicting Holocene temperature variation patterns on the northeastern and
western TP. Quantitative temperature records on the central TP would be essential
for a better understanding of the spatiotemporal complexity of temperature variation.
In this study, we report the temperature record from the sedimentary record of lake
Linggo Co on the central TP since the last deglaciation using branched glycerol dialkyl
glycerol tetraethers based proxy. Our results indicate that the paleoclimate during the
last deglaciation on the central TP was characterized by large fluctuations in
temperature. The mean annual temperature of lake Linggo Co remained low during
the early Holocene (11.7–10 ka BP) and gradually increased to 4°C at 8.3 ka, rapidly
declining to −2°C on average toward the present day. Solar radiation, continental
glacier feedback, as well as atmosphere circulation play a major role in the distribution
of sensitive and latent heat, thus affecting the Holocene temperature variability of the
TP. Discrepancies in published records on the TP can result from a seasonal bias of
the proxies and spatial differences due to topography-boundary effect. Our results
suggest that the seasonal bias of proxies, the spatiotemporal difference should be
taken into consideration before regional or global synthesis of paleotemperature
records.
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INTRODUCTION

The Tibetan Plateau (TP) is the world’s highest and largest plateau,
which has numerous glaciers that provide water for more than one-
third of the world’s population (Qiu, 2008). During the last few
decades, glaciers on the TP have experienced rapid and
pronounced changes (Yao et al., 2019; Immerzeel et al., 2020),
increasing concern about water management and geohazards
(Kääb et al., 2018; Veh et al., 2020). The significant changes in
glaciers, on one hand, can be attributed to changing precipitation
patterns (Yao et al., 2012). For example, in the western TP, glacier
advanced due to the climatic influence of the mid-latitude
westerlies, whereas glaciers in the southern and eastern TP have
retreated because of the decreased influence of monsoonal
precipitation (Yao et al., 2012). Additionally, temperature plays
a critical role in the stability of glaciers (Bolch et al., 2012; Jacob
et al., 2012; Neckel et al., 2014). Meteorological observations and
climate modeling results have revealed that temperature variations
at higher elevations are more significant than that at lower
elevations (Bradley et al., 2006; Liu et al., 2009). Reconstructing
past temperature change on the TP provides a valuable context for
assessing the current and possible future status of glaciers.

Numerous papers have comprehensively discussed the interplay
between Asian summer monsoon (ASM) and westerlies and the
associated paleoclimate change on the TP and surrounding regions
at various time scales (Dykoski et al., 2005; Herzschuh, 2006; Chen
et al., 2008; Wang et al., 2010; An et al., 2012). However, the
quantitative paleotemperature records since the last deglaciation on
the TP are sparse. Moreover, existing records have revealed a
conflicting Holocene temperature variation patterns on the
northeastern and western TP (Herzschuh et al., 2006; Lu et al.,
2011; Ma et al., 2014; Hou et al., 2016; Li et al., 2017). An early-to-
middle Holocene temperature optimum has been widely reported
using pollen data (Herzschuh et al., 2006; Lu et al., 2011; Ma et al.,
2014). Similarly, two alkenone-based temperature records from
Lake Qinghai, on the northeastern TP, reveal a cooling trend
from the early to the middle Holocene (Wang Z. et al., 2015;
Hou et al., 2016), whereas a warm and wet early Holocene and cool
and dry middle Holocene have been reported for Aweng Co on the
western TP (Li et al., 2017). Quantitative temperature records on the
Central TP would be essential for a better understanding of the
spatiotemporal complexity of temperature variation.

Glycerol dialkyl glycerol tetraethers (GDGTs) are membrane
lipids that can be synthesized by both archaea [isoprenoid GDGTs
(iGDGTs)] and bacteria [branched GDGTs (bGDGTs)] (Schouten
et al., 2013). These GDGTs are ubiquitous in marine and terrestrial
environments (Schouten et al., 2013). For iGDGTs, TEX86

[tetraether index of 86 carbon atoms (Schouten et al., 2002)]
has been demonstrated to positively correlate with temperature
growth in incubation experiments (Wuchter, 2004; Schouten et al.,
2007), oceans (Schouten et al., 2002; Kim et al., 2008; Kim et al.,
2010), and in some large lakes (Powers et al., 2004; Blaga et al.,
2008; Powers et al., 2010). For the TP, Wang et al. (2012) reported
that there was aminor influence of terrestrial input on TEX86 in the
deepest parts of lake Qinghai. Günther et al. (2014) investigated
GDGTs in nine lake areas on the TP, suggesting that TEX86 still
seems relatively suitable for lake water reconstruction.

As regards bGDGTs, Weijers et al. (2007b) found that the
cyclization ratio of bGDGTs (CBT) vary with soil pH, whereas
the degree of methylation of bGDGTs (MBT) is significantly
correlated with soil pH and mean annual air temperature (MAT)
based on a survey of global soils. Therefore, the MBT/CBT and its
modified version (e.g. MBT′/CBT) proxies have the potential to
reconstruct paleotemperature variation (Weijers et al., 2007b; Peterse
et al., 2012). With the improvement of analytical methods, a series of
6-methyl bGDGTs, which are co-eluted with 5-methyl bGDGTs,
were identified (De Jonge et al., 2013). The newly defined MBT5ME′
proxy is no longer related to soil pH, and significantly improve the
correlation with MAT (De Jonge et al., 2014). To date, MBT/CBT,
MBT′/CBT and MBT5ME′ proxies have been widely used for
continental paleotemperature reconstruction (Weijers et al., 2007a;
Schouten et al., 2008; Bendle et al., 2010; Zhao et al., 2017; Lu et al.,
2019). The lacustrine bGDGTs were initially thought to be derived
from soil input, allowing the application of bGDGTs based proxies in
lake sediment (Hopmans et al., 2004; Blaga et al., 2008). Later, more
andmore studies revealed the in situ production of bGDGTs inwater
column or sediment (Sinninghe Damsté et al., 2009; Tierney and
Russell, 2009; Pearson et al., 2011). Nevertheless, the distribution of
bGDGTs in lake surface sediment has still been found to be strongly
correlated with temperature (Sun et al., 2011; Günther et al., 2014;
Foster et al., 2016; Dang et al., 2018; Russel et al., 2018). Subsequently,
lake specific transfer functions at regional scale have beenwidely used
in reconstructing past temperature change (Günther et al., 2015; Li
et al., 2017; Feng et al., 2019).

In this study, we present a GDGTs-inferred, paleotemperature
record since the last deglaciation from lake Linggo Co on the
central TP. Combining with previous published δD records from
the same sediment core (He et al., 2017), we are aiming to
reconstruct the paleoclimate variation of the central TP, to
discuss the factors that contribute to the spatiotemporal
difference of temperature variation on the TP, which is
important for regional or global paleotemperature synthesis.

MATERIALS AND METHODS

Field Sampling and Age Determination
Lake Linggo Co (88°35′E, 33°51′N) is a closed basin lake in the
western slope of the Puruogangri Glacier on the central TP
(Figure 1A; Lei et al., 2012). The lake is mainly fed by glacier
meltwater and precipitation, with a surface area of ∼100 km2 (Lei
et al., 2012).

The in situ observation at the Shuanghumeteorological station
(∼100 km southwest of lake Linggo Co) from October 2011 to
September 2013 demonstrates that the mean annual temperature
measured is −3.9°C, with a July average temperature of about 7°C,
down to average temperature of approximately −15°C in January
(Ma et al., 2015). The total annual precipitation is 282.7 mm, with
70–80% of rainfall occurring in summer (Li et al., 2006). The lake
is ice covered from December to March (Pan et al., 2012).

A 987-cm-long sediment core (LGC 2011-3) was collected from
the lake center at a water depth of 60 m using a UVITEC piston corer
in 2011 (Figure 1B; He et al., 2017). The chronology of LGC 2011-3
was constructed based on 210Pb measurement taken from the upper
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15 cm of the sediment core, AMS 14C measurements of 27 total
organic carbon and two plantmacrofossils samples, as well as optically
stimulated luminescence (OSL) dating (He et al., 2017). The age-depth
model of LGC 2011-3 has been discussed by Hou et al. (2017).

Briefly, the average accumulative rate was 0.092 cm/a in the
top 15 cm of the core based on 210Pb results (Hou et al., 2017).
The reservoir ages were calculated based on 14C age differences
between the plant macrofossils and linearly fitted ages of bulk
sediment samples from 350 to 950 cm (Hou et al., 2017). At a
depth of 614 cm the difference was 1,788 years, and at a depth of
763 cm, the difference was 1,435 years (Hou et al., 2017).
Therefore, we used the mean value for the two reservoir ages
(1,611 years) as an average reservoir age throughout the sediment
core (Hou et al., 2017). This study only focuses on the record
below 350 cm (∼4 ka BP) which have convincing chronologic
controls from both 14C and OSL dating results (Hou et al., 2017).
The significant correlation of the lake Linggo Co records with
region records and Indian monsoon records support the
chronology at lake Linggo Co (He et al., 2017; Hou et al., 2017).

Glycerol Dialkyl Glycerol Tetraethers
Analysis
GDGTs in lake sediments were extracted, as described in Wang
et al. (2016). Samples weighing about 5 g were ultrasonically
extracted with dichloromethane (DCM) and methanol (9:1,

3 min × 15 min). The total extract was chromatographed using
an activated Al2O3 column (for 2 h at 150°C). Apolar fraction was
eluted by hexane:dichloromethane (9:1), and the polar fraction
containing the GDGTs was eluted by DCM:methanol (1:1, three
column volumes). After evaporation of the solvents, the polar
fraction was redissolved in the mixture of hexane:isopropanol (99:
1). The dissolved polar fraction was finally filtered through a 0.45
μmpolytetrafluoroethylene (PTFE) filter attached to a 1 ml syringe.

GDGT composition was analyzed on high performance liquid
chromatography/atmospheric pressure chemical ionization-mass
spectrometry (HPLC-APCI-MS, Agilent 1260 HPLC, MS: 6100) at
the Institute of Tibetan Plateau Research, Chinese Academy of
Sciences (ITPCAS). Separation was achieved using the Grace
Prevail Cyano (150 mm × 2.1 mm, 3 μm), maintained at 40°C.
The injection volume was 20 μl. GDGTs were eluted with 90% A and
10% D for 5 min, followed by a linear gradient to 18% D in 45 min,
where A is hexane (Hex) and D is Hex:isopropanol (IPA) � 9:1.
Detection was conducted using APCI-MS. The experimental
conditions were as follows: the nebulizer pressure was 60 psi, the
vaporizer temperature 400°C, the flow rate of drying gas 6 L/min and
the temperature 200°C, the capillary voltage (VCap) 3,600 V, and the
corona 5.5 μA. GDGTs were detected using selected ion monitoring.

After the separation of 5- and 6-methyl bGDGTs (De Jonge
et al., 2014), fifteen samples were reanalyzed based on the updated
method, as described by Feng et al. (2019). The polar fractions

FIGURE 1 | Location of lake Linggo Co and other records mentioned in the text. (A) Lake Linggo Co and Puruogangri ice sheet. (B) Bathymetry map of lake Linggo
Co. Numbers stand for water depth, in meters. Solid circle shows the coring site. (C) Other records discussed in text. The dashed line indicates the northern most
boundary of Asian summer monsoon (redrawn from Tian et al., 2007).
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were redissolved in 300 μl n-hexane:ethyl acetate (EtOA) (84:16,
v/v), and the injection volume was 20 μl. Separation of 5- and 6-
methyl brGDGTs isomers was done using three Hypersil Gold
Silica LC columns in sequence (each 100 mm × 2.1 mm, 1.9 μm;
Thermo Fisher Scientific, United States), maintained at 40°C.
GDGTs were eluted isocratically with 84% A and 16% B for the
first 5 min, where A � n-hexane and B � ethyl acetate, followed by
a linear gradient change to 82% A and 18% B from 5 to 65 min
and then to 100% B for 21 min, followed by 100% B for 4 min to
wash the column and then back to 84% A and 16% B to
equilibrate the column. The flow rate was 0.2 ml/min
throughout the test. Detection was conducted using positive
ion APCI of the eluent. The APCI-MS conditions were as
follows: the nebulizer pressure was 60 psi, the vaporizer
temperature 400°C, the drying gas flow rate 6 L/min and
temperature 200°C, the VCap 3,500 V, and the corona 5 μA.
Quantification of GDGT compounds was achieved by integrating
the areas of the [M + H]+ peaks and comparing these with an
external standard curve composed of known GDGTs.

Glycerol Dialkyl Glycerol Tetraethers-Based
Proxy Calculation
The MBT and CBT indices were calculated as follows:

MBT � Ia + Ib + Ic
Ia + Ib + Ic + IIa + IIb + IIc + IIIa + IIIb + IIIc

(1)

after Weijers et al. (2007b).

MBT′ � Ia + Ib + Ic
Ia + Ib + Ic + IIa + IIb + IIc + IIIa

(2)

after Peterse et al. (2012).

CBT � −log Ib + IIb
Ia + IIa

(3)

after Weijers et al. (2007b).
After the separation of 5- and 6-methyl bGDGTs, MBT5ME′

was calculated as

MBT′5ΜΕ � Ia + Ib + Ic
Ia + Ib + Ic + IIa + IIb + IIc + IIIa

MBT′6ME � Ia + Ib + Ic
Ia + Ib + Ic + IIa′ + IIb′ + IIc′ + IIIa′

after De Jonge et al. (2014).
The Branched and Isoprenoid Tetraether (BIT) index was

calculated according to

BIT � Ia + IIa + IIIa
Ia + IIa + IIIa + Cren

after Hopmans et al. (2004).

%Tetra � ∑ tetramethylated bGDGTs � [Ia] + [Ib] + [Ic]
%Penta � ∑ pentamethylated bGDGTs � [IIa] + [IIb] + [IIc]
%Hexa � ∑ hexamethylated bGDGTs � [IIIa] + [IIIb] + [IIIc]

after Sinninghe Damsté (2016).

TEX86 was calculated using the following the equation:

TEX86 � GDGT − 2 + GDGT − 3 + Cren′
GDGT − 1 + GDGT − 2 + GDGT − 3 + Cren′

after Schouten et al. (2002).
The methane index (MI) was calculated using the following:

MI � GDGT − 1 + GDGT − 2 + GDGT − 3
GDGT − 1 + GDGT − 2 + GDGT − 3 + Cren + Cren′

after Zhang et al. (2011).
The %Cren′ values were calculated as follows:

%Cren′ � Cren′
GDGT − 0 + GDGT − 1 + GDGT − 2 + GDGT − 3 + Cren + Cren′

after Wang H. et al. (2015).

RESULTS

Relative Concentrations of Glycerol Dialkyl
Glycerol Tetraethers
Five iGDGTs and nine bGDGTs were detected in all the sediment
samples (Figure 2). The concentrations of Crenarchaeol′ were
below the detection limit for most samples. Hexamethylated,
pentamethylated, and tetramethylated brGDGTs constitute 33,
38, and 29% of the major brGDGTs on average (Figure 3). A
remarkable feature of the GDGTs records is the large differences
in the distributions between the last deglaciation and the
Holocene.

During the last deglaciation, the bGDGTs and iGDGTs
consist of 72.8 and 27.2% of the total GDGTs respectively
(Figure 2). The domination of bGDGTs leads to high BIT
values (from 0.45 to 0.95, Figure 4A). Large fluctuations are
also observed in MBT′ (as well as in MBT5ME′, and MBT6ME′),
CBT, and TEX86 [Figures 4B–D]. During the Holocene, the
domination of Crenarchaeol (48.5% of total GDGTs on average,
Figure 2) leads to low BIT values (0.04–0.20), except for an
interval between 7.6 and 8.9 ka BP (0.07–0.61, Figure 4A). All
the indexes (MBT′, CBT and TEX86) sharply decrease at ∼7.6 ka
BP (Figures 4B–D).

Glycerol Dialkyl Glycerol
Tetraethers-Induced Temperature Variation
Most of the MBT′/CBT calibration functions for the TP [e.g.,
Günther et al. (2014); Wang et al. (2016)] revealed a similar trend
in the sedimentary record from lake Linggo Co. Therefore, we use
the equation:

MAT � −3.84 + 9.84 × CBT + 5.92 ×MBT′ (4)

after Günther et al. (2014), which incorporates a similar
composition of bGDGTs to that of lake Linggo Co (Figure 3)
and produces temperature values close to those of the
instrumental data.

All the equations based on MBT6ME′ (Dang, 2017) and
MBT5ME′ [e.g., the equation in Russell et al. (2018) based on
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lake sediments in East Africa and the equation in De Jonge et al.
(2014) based on global soil] have similar trends in lake Linggo Co.
Considering that the composition of GDGTs in Russell et al.
(2018) is close to that of lake Linggo Co (Figure 3), we used the
equation after Russell et al. (2018):

MAT � −1.21 + 32.42 ×MBT′5ME

Due to the lack of a TEX86-inferred temperature equation for
the TP, the global lake calibration equation was used after Powers
et al. (2010):

FIGURE 2 | Bar plot showing the fractional abundance (expressed as a percentage of the total) of glycerol dialkyl glycerol tetraethers (GDGTs) in LGC 2011-3
(without the separation of 5- and 6-methyl bGDGTs). Blue bars represent the samples of all the samples, orange bars stand for the samples during the Holocene, gray
bars stand for the samples during the last deglaciation. The raw data can be found in Supplementary Material.

FIGURE 3 | Ternary diagram showing the fractional abundances of tetra-, penta-, and hexamethylated bGDGTs of global soil (Crampton-Flood et al., 2020), global
peat (Naafs et al., 2017), lake sediments of the Tibetan Plateau (Günther et al., 2014), East Africa (Russell et al., 2018), and LGC 2011-3 samples (this study).
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LST � 55.231 × TEX86 − 13.955

The MBT′/CBT-induced temperature range is from −4.7 to
5.9°C during the last deglaciation, with the coldest period at ∼14
ka BP. The average temperature of the early Holocene is ∼3°C,
which is ∼1.2°C higher than that of the middle-to-late Holocene
(Figure 4E). The MBT5ME′- and TEX86-induced temperature
exhibits similar variation and larger fluctuations compared with
that of MBT′/CBT (Figures 4F,G).

DISCUSSION

Provenance of Glycerol Dialkyl Glycerol
Tetraethers
Since bGDGTs are membrane lipids produced by bacteria,
sources of bGDGTs in lake sediments can be diverse,
comprising, for example, soils (Weijers et al., 2007b), peats
(Weijers et al., 2006; Naafs et al., 2017), and aquatic

environments (Zhu et al., 2011; Buckles et al., 2014; Sinninghe
Damsté, 2016). Therefore, the provenance of bGDGTs should be
assessed before using bGDGTs in paleotemperature
reconstruction (Yang et al., 2013; Zell et al., 2013; De Jonge
et al., 2015; Warden et al., 2016). It has been reported that the
ternary diagram of tetra-, penta-, and hexa-methylated bGDGTs
can separate bGDGTs from soils by input from land (e.g., by
riverine transport) or by aquatic (in situ) production (Sinninghe
Damsté, 2016). For lake Linggo Co, all samples are distinguished
with global soil (Crampton-Flood et al., 2020) or peat samples
(Naafs et al., 2017) (Figure 3), implying that the bGDGTs are
produced in situ in the water column. Previous studies have
found bGDGTs in soil, suspend paniculated matter in the river
and settling particulate matter in traps all year round (Weijers
et al., 2011; Loomis et al., 2014; Cao M. et al., 2018). Thus, the
reconstructed MAT represents the annual mean temperature of
lake water.

As regards iGDGTs, it should address that iGDGTs are
derived predominantly from thaumarchaeota living in the
water column before using as a lacustrine paleotemperature
proxy (Sinninghe Damsté et al., 2012). Using the approach of
Sinninghe Damsté et al. (2012) and Wang H. et al. (2015), we
critically excluded two samples at 775 and 845 cm that had
GDGT-0/Cren > 2, MI > 0.24, or %Cren′ isomer > 2 for the LGC-
2011 record.

The MBT′/CBT-inferred temperature of the surface sediment
is −2.5°C, with a root mean square error of prediction of 1.2°C in
the transfer function (Günther et al., 2014). The reconstructed
temperature fits well with the instrumental mean annual
temperature of −3.7°C (Ma et al., 2015). An annual lake water
temperature below zero has also been observed at Dagze Co on
the central TP (Wang et al., 2014). The MBT5ME′- and TEX86-
induced temperature at lake Linggo Co is clearly overestimated
(Figures 4F,G); this may be due to the application of the global
and east Africa lake calibration functions, rather than a regional
function suitable for the TP which has not yet been proposed.
Thus, the MBT5ME′- and TEX86-referred temperatures should be
considered tendencies rather than absolute values (Günther
et al., 2015). Considering that the MBT′/CBT record has the
highest resolution, our study was mainly based on the MBT′/
CBT record.

Climate Change on the Central Tibetan
Plateau Since the Last Deglaciation
It is widely reported that sedimentary leaf waxes (e.g., n-alkanes,
n-fatty acids) record hydrogen isotopes in precipitation (Sachse
et al., 2004, 2006; Hou et al., 2008; Sachse et al., 2012).
Meteorological observations on the TP have revealed that
precipitation in the monsoon domain is more depleted in
isotope composition than in the westerly jet domain (Yao
et al., 2013). A strong ASM would deliver more monsoonal
precipitation which is depleted in δ18O (as well as δD). In
contrast, a weak ASM would give rise to a greater moisture
delivered by the local recycle or westerly jet which is less depleted
in δ18O (δD) (Tian et al., 2007; Yao et al., 2013). Therefore, the
n-fatty acid δD records of lake Linggo Co represent the amount
of monsoonal precipitation (He et al., 2017; Hou et al., 2017).

FIGURE 4 | Variation in glycerol dialkyl glycerol tetraethers (GDGTs)-
based proxies of lake Linggo Co record. (A) Branched and Isoprenoid
Tetraether (BIT) index, (B)modified methylation index of branched tetraethers
(MBT′, black) and its modified index (MBT5ME′, purple; MBT6ME′, red),
(C) cyclization ratio of bGDGTs (CBT), (D) tetraether index of 86 carbon atoms
(TEX86), (E) MBT′/CBT-induced temperature according to Günther et al.
(2014), (F) MBT5ME′-induced temperature according to Russell et al. (2018),
and (G) TEX86-inferred temperature after Powers et al. (2010).
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Combining the MBT′/CBT-induced temperature with δD
records of lake Linggo Co, we can reconstruct the paleoclimate
fluctuations of the central TP since the last deglaciation.

The Last Deglaciation
The last deglaciation was characterized by large fluctuations in
temperature (from −4.7 to 5.9°C) and the domination of local
recycled moisture. The coldest periods occurred at ∼14 ka BP.
The temperature increased by ∼6°C from 13.5 to 12.5 ka BP, likely
corresponding to the Bølling–Allerød (BA) warming period
(Grootes et al., 1993; Shakun et al., 2012). Following the BA
warming period, temperature and δD returned to those values of
cold and dry conditions, coincident in timing with a Younger
Dryas (YD) event. All these events (BA and YD) in lake Linggo
Co appear to be nearly synchronous with other records in
Monsoonal Asia [e.g., the δ18O record in Dongge cave
(Dykoski et al., 2005), Figure 5A] and high latitude records in
northern hemisphere [e.g., the δ18O record of GISP2 (Stuiver and
Grootes, 2000), Figure 5I]. For the TP, the UK′37-inferred

temperature in Lake Qinghai (Hou et al., 2016; Figure 5H)
also have the same trend.

Global climatemodeling has demonstrated that the growth of ice
sheet and the decrease of North Atlantic sea surface temperature
during the Last Glacial Maximum give rise to an increase in the
latitudinal temperature gradient and southward migration of the
westerlies (COHMAP members, 1988; Kutzbach et al., 1993; Jiang
et al., 2015). Therefore, the westerly jet may have dominated during
the last deglaciation, transferring the climatic signal from a high
northern latitude to the TP. On the other hand, due to the long
distance from oceanic moisture source, the ASM can hardly reach
the central TP (An et al., 1991). The strong westerlies and weak
ASM contribute to the cold and dry climate on the TP.

The Holocene
During the Holocene, the MAT from lake Linggo Co remains low
prior to 10 ka BP and gradually increases to 4°C at 8.3 ka BP
(Figure 6A), which have around 2,000 years delay relative to the
peak of summer insolation (Figure 6G). The peak annual
temperature at ∼8.3 ka BP is followed by a rapid decline in
temperature to −2°C, on average, to the present day. This trend
is closely associated withmonsoonal precipitation variation inferred
by the δD record from the same core (Figure 6B). The significant
correlation between monsoonal precipitation and temperature
implies the importance of latent heat to the energy budget on

FIGURE 5 | Comparison between lake Linggo Co temperature records
and other records for the Tibetan Plateau. (A) δ18O record in Dongge Cave
(Dykoski et al., 2005), (B) weighted hydrogen isotope value of long chain n-fatty
acids of lake Linggo Co (He et al., 2017), (C) MBT′/CBT-induced
temperature records of lake Linggo Co (this study), (D) δ18O record of
Puruogangri ice core (Thompson et al., 2006), (E) δD of C29 n-alkanes in Paru
Co (Bird et al., 2014), (F) total organic matter concentration of Serling Co (Zhu
et al., 2019), (G)MBT′/CBT-induced temperature record in Aweng Co (Li et al.,
2017), (H) alkenone-based temperature records for Lake Qinghai (Hou et al.,
2016), and (I) δ18O record of GISP2 (Stuiver and Grootes, 2000). Gray bars
represent widely reported periods like the Younger–Dryas and BA warm period.

FIGURE 6 | Comparison between lake Linggo Co Holocene
temperature variation records and other records in monsoonal Asian. (A)
MBT′/CBT-induced temperature records of lake Linggo Co (this study), (B)
weighted hydrogen isotope value of long chain n-fatty acids of lake
Linggo Co (He et al., 2017), (C) percentage ofGlobigerina bulloides from Hole
ABP-25, 02, from the northeastern Arabian Sea (Gupta et al., 2011), (D) δD
record from the Bay of Bengal (SO188–342KL, Contreras-Rosales et al.,
2014), (E) δ18O record in Soreq Cave (Bar-Matthews and Ayalon, 1997), (F) Ti
from Cariaco basin (Haug et al., 2001), and (G) June insolation at 30 N (Berger
and Loutre, 1991). Gray bars represent the disappearance of the
Fennoscandian (I) and Laurentide (II) ice sheets according to Carlson (2008).
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the TP, which is evidenced by modern observation (Shi and Liang,
2014; Li et al., 2015). During the pre-monsoon period, the sensible
heat flux is the major energy source of the TP (Shi and Liang, 2014;
Li et al., 2015). Whereas in the monsoon season, the water vapor, in
form of monsoonal precipitation, transfer the energy from low
latitude to the TP (An et al., 2015), the released latent heat flux is
even greater than the sensible heat flux (Li et al., 2015).

At the beginning of the early Holocene (∼11.5 ka BP), summer
insolation in the Northern Hemisphere reaches a maximum
(Berger and Loutre, 1991) (Figure 6G), resulting in an increase
in sensitive heat in summer. Many records for the TP [e.g., Aweng
Co in western TP (Li et al., 2017) and Lake Qinghai in northeastern
TP (Hou et al., 2016), Figures 5G,H] show an increase in
temperature in the early Holocene. The summer temperature
increase is also evidenced in the high lake level of lake Linggo
Co in the early Holocene based on OSL dating results from the
paleo-shore sand samples (Pan et al., 2012). As monsoonal
precipitation is limited during this period (He et al., 2017), the
increased lake water level most likely originated from the
accelerated melting of the Puruogangri ice sheet in response to
increasing summer temperature. Notably, the winter insolation
was weak during this period. The cooling effect of the Puruogangri
ice sheet and the weak winter insolationmay have compensated for
the strong summer insolation; meanwhile, limited latent heat from
monsoonal precipitation caused a rise in the relatively low
temperature during 11.7–10 ka BP in lake Linggo Co.

As the continental ice sheets and glaciers continuously
retreated (Kurt et al., 2014), the Interhemispheric Thermal
Gradients gradually increased, driving the mean latitudinal
position of the Intertropical convergence zone (ITCZ)
northward (Kutzbach et al., 1993; Renssen et al., 2009). The
monsoonal precipitation arrived at lake Linggo Co until ∼10 ka
BP, released more latent heat and raised the temperature. At ∼7.8
ka BP, the disappearance of the Laurentide ice sheet (Carlson,
2008) led to the interhemispheric thermal gradients reaching a
maximum (Figure 6). Consequently, the ITCZ expanded to the
furthest northward position (Schneider et al., 2014). The latent
heat from monsoonal precipitation also reached a maximum,
leading to a thermal maximum on the central TP (Figures 6B,C).

After ∼7.8 ka BP, the summer insolation began to decrease
(Berger and Loutre, 1991). Latent heat associated with monsoonal
precipitation gradually decreased, resulting in southward
migration of the ITCZ. Moreover, the weak ISM may give rise
to a short summer season (Chiang et al., 2015), shortening the
period for heat exchange between lake water and atmosphere.
Therefore, the bGDGTs-derived lake water temperature is closer
to that in cold season. The westerlies may also have become
strengthened during this period. For example, the lake level at
Accesa in the Mediterranean increased during the middle
Holocene, in response to a northward migration of westerlies
as latitudinal temperature gradient decreased (Magny et al.,
2013). The strong westerlies suppressed moisture supply (as
well as latent heat supply) to the TP (Bothe et al., 2010),
giving rise to a decrease in MAT in lake Linggo Co during the
middle Holocene. The δ18O record of the Puruogangri ice core
(Figure 5D), which represents temperature, also shows cooling
after the middle Holocene (Thompson et al., 2006).

The late arrival of ASM at ∼10 ka BP and its early retreat
during the middle Holocene is also evidenced in other records of
the TP interior. For example, the δD record from Paru Co
(Figure 5E) indicates that maximal monsoonal precipitation
occurs between 10.1 and 5.2 ka BP (Bird et al., 2014). The
TOC record in Serling Co (Figure 5F) also suggests a thermal
maximum between 10.5 and 7.6 ka BP (Zhu et al., 2019). For the
TP, the weakening of monsoon intensity after the middle
Holocene is preserved in many records in east and south Asia:
for example, the percentage of Globigerina bulloides from Hole
ABP-25, 02, in the northeastern Arabian Sea (Figure 6C; Gupta
et al., 2011), the δD record from SO188–342KL in the Bay of
Bengal (Figure 6D; Contreras-Rosales et al., 2014), the δ18O
record in Soreq cave (Figure 6E; Bar-Matthews and Ayalon,
1997), and the concentration of Ti in the Cariaco basin
(Figure 6F; Haug et al., 2001).

The Spatiotemporal Patterns of Holocene
Temperature Variation of the Tibetan
Plateau
Holocene temperature variations have attracted much attention in
recent years (Marcott et al., 2013; Liu Z. et al., 2014; Marsicek et al.,
2018; Hou et al., 2019; Lin et al., 2019; Park et al., 2019; Kaufman
et al., 2020). Marcott et al. (2013) compiled 73 quantitative
temperature records worldwide and retrieved a pattern of early
Holocene (10–5 ka BP)warmth followed by 0.7°C of cooling through
themiddle to the late Holocene (<5 ka BP). However, based on three
different transient climatemodels forced by orbital-driven insolation
variations, greenhouse gases, and continental ice sheets and the
associated meltwater fluxes, Liu Z. et al. (2014) reported a gradual
Holocene warming with an absence of late Holocene cooling. Liu Z.
et al. (2014) further suggested that the model-data inconsistency
could result from the seasonality of the current temperature proxies
and the inadequacy of current climate models.

Apparently, the Holocene temperature variation of lake Linggo
Co differs from previously published pollen assemblage
(Herzschuh et al., 2006; Lu et al., 2011; Ma et al., 2014) and
alkenone-based temperature records for the TP. For example,
Herzschuh et al. (2006) revealed a general cooling trend
throughout the Holocene based on pollen data from Zigetang
Co, on the central TP. Two recent alkenone-based temperature
records also suggest a cooling trend from the early to the middle
Holocene for Lake Qinghai, northeastern TP (Wang Z. et al., 2015;
Hou et al., 2016). Many factors may contribute to this discrepancy.

Seasonal bias of the proxy is part of the reason of this
discrepancy. For alkenones, the temperature of the growing
season of haptophytes can influence the ratios of unsaturated
compounds; thus, UK37 reflects warm season temperatures at
high altitudes and cool season temperatures at low latitudes
(Schneider et al., 2010). Therefore, the alkenone-based
temperature records from lake Qinghai were mainly interpreted
as summer temperature (Hou et al., 2016). For pollen assemblages,
it has the potential to reconstruct both seasonal and annual mean
temperature (e.g., Davis et al., 2003). The quality of reconstructed
temperature (as well as precipitation) strongly depends on the
choice of pollen-climate calibration sets (Cao X. et al., 2018).
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Considering the harsh environment in cold season on the TP, the
pollen record on the TP may have a more sensitive response to
summer temperature, which is also evidenced in the study from
southeast Idaho, United States (Lundeen and Brunelle, 2016). With
respect to bGDGTs, the seasonal bias of the proxy is still
controversial (Weijers et al., 2011; Loomis et al., 2014; Cao M.
et al., 2018). Some authors suggest there is no apparent seasonal bias
due to the following: 1) bGDGTs are produced in soil, in riverine
suspended particulate matter, and in particulate matter settled in
traps all year round (Weijers et al., 2011; Cao M. et al., 2018); 2) the
turnover time of ∼20 years for bGDGTs can smooth monthly
variation (Weijers et al., 2011). Some authors argue that the flux of
bGDGTs in sediments is highest during spring and fall isothermal
mixing, potentially biasing paleotemperature reconstruction toward
mixing season temperatures (Loomis et al., 2014). Dang et al. (2018)
found a seasonal bias toward warmmonths in the Chinese lakes for
cold regions. For lake Linggo Co, as discussed above, most of the
bGDGTs are in situ produced in the water column or the sediment
likely all year round. Therefore, the bGDGTs derived temperature is
annual mean temperature of lake water. In any case, the seasonal
bias of the proxies associated with their difference in biosynthesis
way required caution treatment before regional or global synthesis
of paleotemperature records.

The discrepancy between lake Linggo Co and other records on
TPmay also result from the spatial complexity due to the interplay
of westerlies and ASM on the TP. Liu X. J. et al. (2014) proposed
that a climate threshold existed for the penetration of Asian
monsoon rainfall into the TP. Evidence for this hypothesis can
be found in the different responses of the interior and the edge of
the TP to paleoclimate change. At the Pleistocene-Holocene
boundary, the margin of the TP served as a barrier to a
strengthening and landward-encroaching monsoon system.
Therefore, a lake on the edge of the TP (such as Lake Qinghai
on the northeastern TP and Bangong and Aweng Co on the
western TP) possesses evidence of an increase in temperature and
monsoonal precipitation, with no apparent lag in the summer
insolation maximum. While lake Linggo Co and Paru Co, in the
interior of TP, receive the monsoonal precipitation and latent heat
till ∼10 ka BP. During the middle Holocene, lake Linggo Co, at the
northern-most boundary of ASM, captured the signal of ASM
weakening (as well as that of the strengthening of westerlies), while
the northeastern and western TP were still under the influence of
ASM. The spatiotemporal complex of temperature variation in the
TP suggests the importance of having widely distributed site-
specific paleotemperature data before regional or global synthesis.

CONCLUSIONS

We report a quantitative mean annual temperature record since
the last deglaciation, based on bGDGTs in lake Linggo Co from

the central TP. Similar trends in bGDGTs- and iGDGTs-
reconstructed temperature give confidence in this record. Our
results indicate that the paleoclimate during the last deglaciation
on the central TP was characterized by large fluctuations in
temperature with the domination of local recycled moisture.
The mean annual temperature of lake Linggo Co remained low
during the early Holocene (11.7–10 ka BP), gradually increase to
4°C at 8.3 ka BP, and then rapidly decreased to −2°C toward the
present. Solar radiation, continental glacier feedback, as well as
atmosphere circulation play a major role in the distribution of
sensitive and latent heat, thus affecting Holocene temperature
variability on the TP. The discrepancies between lake Linggo Co
and previous published Holocene temperature records can result
from a seasonal bias of the proxy, and spatial complexity on the
TP, resulting in a boundary effect. Our results suggest the seasonal
bias of the proxy, spatiotemporal differences of temperature
variation should be taken into consideration before regional or
global synthesis of paleotemperature records.
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