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Recent climate change has induced widespread soil thawing and permafrost degradation
in the Tibetan Plateau. Significant advances have been made in better characterizing
Tibetan Plateau soil freeze/thaw dynamics, and their interaction with local-scale
ecohydrological processes. However, factors such as sparse networks of in-situ sites
and short observational period still limit our understanding of the Tibetan Plateau
permafrost. Satellite-based optical and infrared remote sensing can provide information
on land surface conditions at high spatial resolution, allowing for better representation of
spatial heterogeneity in the Tibetan Plateau and further infer the related permafrost states.
Being able to operate at “all-weather” conditions, microwave remote sensing has been
widely used to retrieve surface soil moisture, freeze/thaw state, and surface deformation,
that are critical to understand the Tibetan Plateau permafrost state and changes. However,
coarse resolution (>10 km) of current passive microwave sensors can add large
uncertainties to the above retrievals in the Tibetan Plateau area with high topographic
relief. In addition, current microwave remote sensing methods are limited to detections in
the upper soil layer within a few centimetres. On the other hand, algorithms that can link
surface properties and soil freeze/thaw indices to permafrost properties at regional scale
still need improvements. For example, most methods using InSAR (interferometric
synthetic aperture radar) derived surface deformation to estimate active layer thickness
either ignore the effects of vertical variability of soil water content and soil properties, or use
site-specific soil moisture profiles. This can introduce non-negligible errors when upscaled
to the broader Tibetan Plateau area. Integrating satellite remote sensing retrievals with
process models will allow for more accurate representation of Tibetan Plateau permafrost
conditions. However, such applications are still limiting due to a number of factors,
including large uncertainties in current satellite products in the Tibetan Plateau area,
and mismatch between model input data needs and information provided by current
satellite sensors. Novel approaches to combine diverse datasets with models through
model initialization, parameterization and data assimilation are needed to address the
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above challenges. Finally, we call for expansion of local-scale observational network, to
obtain more information on deep soil temperature and moisture, soil organic carbon
content, and ground ice content.
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INTRODUCTION

The Tibetan Plateau has an average elevation of 4,000 m and
encompasses an area of approximately 2.5 × 106 km2 (Figure 1).
It is the home to ∼100,000 km2 of glaciers (Yao et al., 2012) and
possesses the largest alpine permafrost area in the world (Ran
et al., 2018; Cheng et al., 2019). The Tibetan Plateau is also the
headwater of many major Asian rivers including the Yangtze,
Yellow, Mekong, Indus, and Ganges (Immerzeel et al., 2010). Due
to its vast domain and high elevation, the Tibetan Plateau is
extremely sensitive to climate change and has a profound
influence on the regional climate (Duan and Wu, 2005).

Long-term in-situ surface meteorology measurements show
that the Tibetan Plateau has been experiencing a significant
warming trend since 1960s, with an average rate of 0.3–0.4°C
per decade, which exceeds the global average during the same
period (Chen et al., 2015a). Previous studies further indicated
such warming trend is elevation-dependent. Specifically, the
warming rate increases with elevation for lower altitude
regions (<∼4,500–5,000 m) and this phenomenon is more
obvious during autumn and winter (Yan and Liu, 2014), while

this warming trend is absent or lower at higher elevations
(>∼5,000 m) based on satellite-based temperature datasets
(Guo et al., 2019; Pepin et al., 2019). Other changes include
slight increases in precipitation, wind speed weakening, solar
radiation declining and mixed trends of relative humidity (Yang
et al., 2014; Bibi et al., 2018). These changes can have significant
impact on regional water and energy balance, and cause non-
negligible changes in the cryosphere, including glacier retreat, soil
warming and permafrost degradation.

Frozen ground occupies the most area of the Tibetan Plateau
(Figure 1), with approximately 40% coverage of permafrost and
55% coverage of seasonally frozen ground (Zou et al., 2017). Since
the 1970s, several in-situ observation networks have been
established to monitor the thermal state of Tibetan Plateau
frozen ground (Yang et al., 2010). These in-situ soil
temperature records have demonstrated substantial changes
occurred in Tibetan Plateau frozen ground including
permafrost degradation over the past few decades. For
example, the in-situ observations in the Beiluhe region
indicated that the active layer thickness has increased at a rate
of ∼4.26 cm yr−1 from 2002 to 2012 while the permafrost

FIGURE 1 | The distribution of permafrost and in-situ observations over the Tibetan Plateau region. The permafrost classification is based on the international
permafrost association permafrost map (Brown et al., 1997), and the “high” and “low” in the legend refer to the ice content of permafrost. Green dots represent
meteorological stations from China Meteorological Administration, black triangles refer to the borehole sites with deeper soil temperature measurements from previous
studies (Wu and Zhang, 2008; Luo et al., 2012; Cao et al., 2019), and red dots are regular observation sites with soil temperature observations within a depth of a
few meters (data source including Yang et al., 2013a; Cao et al., 2019; Zheng et al., 2020).
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temperatures at 10 m depth have increased by ∼0.14°C during the
same period (Wu et al., 2015). In the inner Tibetan plateau,
maximum frozen depth decreased at a rate of 0.71 cm yr−1 during
the period 1967–1997 (Zhao et al., 2004), and reduction in
the maximum frozen depth has accelerated since 2000 (Peng
et al., 2017). Previous study also revealed that a distinct talik
layer separating the permafrost from overlying active layer has
already formed along the Qinghai-Tibet Highway (Jin et al.,
2008).

Previous studies based on the in-situ observations provided
detailed assessments of permafrost thermal state at local scales.
However, extrapolating site-level observations across the Tibetan
Plateau is likely to entail large uncertainties, due to the sparse in-
situ stations, shallow observation depth at most sites,
inconsistency in the measurement methods and data gaps.
Most in-situ observations and boreholes (up to 10 m) were
established along the Qinghai-Tibet Railway/Highway to meet
the engineering demand (Wu and Zhang, 2008; Jin et al., 2011;
Wu et al., 2020), while most of the meteorological stations from
China Meteorological Administration are located in the
seasonally frozen ground of the central or eastern Tibetan
Plateau (Figure 1).There are limited in-situ observations in the
western Tibetan Plateau, with only a few boreholes located in
A-erh-chin Mountain, Gaize and west Kunlun (Zou et al., 2017).
The limited number of in-situ sites poses great challenges for a
comprehensive, regional-scale assessment of the Tibetan Plateau
permafrost thermal state. For example, there are large
discrepancies among the current Tibetan Plateau permafrost
coverage maps (Zou et al., 2017; Wu et al., 2018; Zheng et al.,
2020), and it is difficult to accurately evaluate these maps due to
the different compilation approaches and insufficient in-situ
observations (Cao et al., 2019).

Satellite or airborne remote sensing can provide information
on environmental conditions and freeze/thaw state related to
underlying permafrost properties with improved sensitivity to
subsurface soil properties (Jorgenson and Grosse, 2016), which
can provide critical constraints on assessing regional permafrost
vulnerability. With a wide range of satellite and airborne
observations available from existing and upcoming missions,
remote sensing data are increasingly becoming an essential
element for regional permafrost monitoring (NRC, 2014).
However, current satellite remote sensing systems cannot
provide information on deeper (>∼10 cm) soils; therefore, an
integration of remote sensing data with process-based models are
needed to obtain information on permafrost properties and
dynamics. This review summarizes recent progress
and challenges using multi-source satellite remote sensing data
and process-based models to improve regional permafrost
monitoring across Tibetan Plateau. Airborne remote sensing
also plays an important role in regional permafrost studies
(Miller et al., 2019). For example, the airborne electromagnetic
method has shown a great potential in mapping Alaskan
permafrost (Minsley et al., 2012; Rey et al., 2019). However,
there is very limited airborne experiment in the Tibetan Plateau;
therefore, we only briefly discuss its application in regional
permafrost studies, which mainly occur in other permafrost
areas (Discussion).

The paper is structured as follows: we first discuss the unique
characteristics of Tibetan Plateau permafrost environment
(Environmental Controls on Tibetan Plateau Permafrost
Distribution and Soil Freeze/Thaw Dynamics), and then
summarize the recent advances in regional Tibetan Plateau
permafrost studies using various remote sensing technologies,
and through combination of remote sensing with modeling
approaches (Regional Monitoring Approaches and Associated
Challenges). We also discuss the unique challenges in Tibetan
Plateau permafrost monitoring, the potential of geophysical
measurements and other methods to characterize subsurface
variability and spatial heterogeneity in permafrost areas
(Discussion). We conclude by addressing research priorities
and future studies needed to accurately simulate the evolution
of Tibetan Plateau permafrost and eco-hydrology (Research
Priorities and Recommendations).

Environmental Controls on Tibetan Plateau
Permafrost Distribution and Soil Freeze/
Thaw Dynamics
The Tibetan Plateau is characterized by relatively thin and warm
permafrost with low ice content, potentially more vulnerable to
ongoing and future warming due to the unique environmental
conditions, arid climate, high elevation and steep geothermal
gradient (Wang and French, 1995; Yang et al., 2010; Zhao et al.,
2010; Cheng et al., 2019; Zhao et al., 2020). Therefore, an
improved understanding of permafrost sensitivity to
environmental conditions in the Tibetan Plateau region is
essential for effectively monitoring potential changes and
vulnerability of Tibetan Plateau permafrost (Figure 2).

Permafrost distribution in the Tibetan Plateau is controlled by
the high elevation and complex topography, and has
characteristics different from permafrost in other regions
(Wang and French, 1995). Topographic factors such as
elevation affect regional climate through the effects on
precipitation, temperature lapse rates and solar radiation
loading (Gruber et al., 2017). Therefore, topography can affect
soil freeze/thaw dynamics by altering the land surface
temperature and the surface energy budget. Field
investigations show that the lower limit of permafrost in the
Yellow River region is ∼4,400 a.s.l., while seasonally frozen
ground occurs at lower elevations such as major river valleys
(Luo et al., 2012). Other topographic factors, such as aspect and
slope, also influence permafrost distribution. Due to different
solar radiation loading on different slope and aspect, the lower
limit of Tibetan Plateau permafrost on the north slope is usually
lower than that on the south slope with more sunny conditions
(Cheng and Wu, 2007). In-situ data from the central Tibetan
Plateau show that the average frost depth was much deeper on
north facing slopes than on south facing slopes, and varied
considerably with elevation on both slopes (Ma et al., 2015).

Soil conditions also have a significant influence on permafrost
thermal state. Soil texture is one of the major factors determining
soil thermal conductivity, heat capacity, and hydraulic
conductivity (Chen et al., 2012; Yi et al., 2018a). For example,
gravel soils have a larger thermal conductivity and can result in a
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rapid response of soil temperatures to climate change. The
existence of gravels also tends to reduce the soil water holding
capacity and enhance hydraulic conductivity and drainage (Pan
et al., 2017). As the consequence of slow soil-forming processes
and strong erosion, gravel soils are widespread in the Tibetan
Plateau and has distinct physical properties from agricultural soils
(Arocena et al., 2012; Yi et al., 2018a). In addition, given that
bedrock has quite different hydrological and thermal properties
from upper soil layers, soil depth (or the depth to bedrock) also
has significant influence on soil freeze/thaw dynamics especially
for deep soils. Soil moisture content also affects the soil freeze/
thaw processes through soil water phase change and changing
physical properties such as soil thermal and hydraulic
conductivity (Scherler et al., 2010). Higher soil moisture
content is generally associated with a longer zero-curtain
period, and thus delay soil freeze/thaw onsets (Luo et al.,
2014; Jiang et al., 2018). Tibetan Plateau soils are usually
unsaturated and soil moisture shows a strong heterogeneity
both vertically and spatially (Yang et al., 2013a), and how it
affects the Tibetan Plateau soil freeze/thaw dynamics and
permafrost changes remains under investigated (Yang et al.,
2010). Moreover, although soil organic content in the Tibetan
Plateau is relatively low compared with the northern high-
latitude region, it can strongly influence soil thermal
conditions due to its correlation with soil properties such as
high soil porosity and high soil moisture content (Chen et al.,
2012; Zhou et al., 2013).

In addition, surface conditions, such as vegetation cover and
snow cover, act as important environmental controls on soil
freeze/thaw dynamics and permafrost distribution. Vegetation

cover affects the partition among the sensible, latent and soil
heat fluxes, and therefore plays an important role in surface
water and energy balances (Li et al., 2015a). Although most
Tibetan Plateau permafrost region is dominated by alpine
meadows or grasslands with sparse vegetation, Wang et al.
(2012a) still found that decrease of alpine meadow and
alpine swamps in the Tibetan Plateau were related to the
increasing sensitivity of soil to climate changes and the
greater shifts in soil temperature and water dynamics.
Furthermore, different types of vegetation cover may exert
different impacts on soil thawing (Wang et al., 2012b).
Winter snow cover also has an important effect on soil
freeze/thaw dynamics and permafrost temperature (Zhang,
2005; Yi et al., 2015). Snow cover plays an important role in
determining how soil responds to surface warming due to its
strong insulation effects and impact on surface energy balance
associated with changes in surface albedo and snow water phase
change (Zhang, 2005). Different from the overall thicker snow
cover in the northern high latitude region, snow in the Tibetan
Plateau often melts quickly due to strong solar radiation, and
snow cover is generally shallow and ephemeral, with overall low
albedo of fresh snow and limited insulation effects (Wang et al.,
2020; Zheng et al., 2020). Therefore, snow cover in the Tibetan
Plateau may have a cooling effect on underlying soil
temperature due to the dissipated latent heat resulted from
frequent snow melting or sublimation (Zhu et al., 2017).
Moreover, snow meltwater that infiltrates into the soil could
result in additional soil temperature fluctuations due to soil heat
transport through convection and soil water phase change
(Scherler et al., 2010; Luo et al., 2014).

FIGURE 2 | Interaction among different environmental factors and soil freeze/thaw (F/T) dynamics in the Tibetan Plateau region. Solid and dash arrows indicate the
influences and feedbacks respectively. ALT and MFD represent active layer thickness (defined for permafrost area) and maximum frozen depth (defined for seasonally
frozen ground) respectively.
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REGIONAL MONITORING APPROACHES
AND ASSOCIATED CHALLENGES

Remote Sensing of Tibetan Plateau
Permafrost
Current Progress
The sparse distribution of in-situ observation sites over the
Tibetan Plateau (Figure 1) highlights the potential of satellite
remote sensing to significantly improve regional permafrost
monitoring across Tibetan Plateau. Remote sensing
technology, including optical, near- and thermal-infrared,
passive and active microwave remote sensing, has been used
to directly or indirectly monitor the near-surface soil freeze/thaw
and permafrost state in the Tibetan Plateau. The wavelength
ranges from 0.4–0.7, 0.7–3.0, and 3.0–100 μm for optical, near-
and thermal-infrared remote sensing, respectively; microwave
remote sensing covers the spectrum from 1 mm to ∼1 m in
wavelength and has a much deeper penetration depth (Ulaby
et al., 1982). Optical and near-infrared remote sensing are often
used to detect the vegetation canopy and land surface properties,
while microwave sensors can provide information on land surface
moisture and temperature variations due to strong sensitivity to
changes in land surface dielectric properties and emissivity. The
applications of remote sensing in permafrost can be largely
grouped into two categories: 1) identifying and mapping
surface features and objects typical for permafrost areas; and
2) retrieving physical variables directly or indirectly relevant to
subsurface thermal conditions (Tedesco, 2014). The first category
was dominated by the application of high spatial-resolution
optical and near-infrared images, while the second category
covers a wider range of remote sensing systems from optical
to microwave sensors as discussed below.

Permafrost Monitoring Using Optical and Infrared Remote
Sensing
Optical and near-infrared remote sensing with high spatial
resolutions (<100 m) has been widely used to identify
geological structures and landscapes associated with
permafrost, e.g., hummock, thermokarst lakes, freeze/thaw
boils, and surface classification, which can be used to infer the
presence of underlying permafrost (Panda et al., 2010; Wang
et al., 2014; Niu et al., 2018; Ran et al., 2018; Huang et al., 2020).
Data from some high-resolution satellites such as Landsat-8 and
GaoFen-1, 2, can be used to extract the landscape features and
structures (Niu et al., 2018). This is especially useful for
permafrost research in mountain regions characterized by
heterogeneous surface condition like Tibetan Plateau. On the
other hand, optical and near-infrared remote sensing can also
provide information on land surface variables that can be used as
auxiliary data to empirical or process-based models to infer the
permafrost thermal state (Wang et al., 2014; Dai et al., 2018; Ran
et al., 2018). For example, regional snow cover extent, surface
albedo and vegetation cover products, which are available from
optical sensors such as MODIS (250-m resolution), Landsat (30-
m resolution), and Sentinel-2 (20-m resolution), have been used
as model ancillary inputs to simulate the permafrost thermal state
due to significant influences of vegetation and snow cover on

surface energy and water balance (Niu et al., 2018; Zheng et al.,
2019b). In addition, many thermal infrared satellite systems (e.g.,,
Terra, Aqua, and geostationary platforms like GOES and
METEOSAT) could monitor the land surface temperature at
spatial resolutions of 1–50 km, which is more directly linked to
the subsurface ground thermal state (Holmes et al., 2009). Optical
and thermal infrared remote sensing can provide information at
high spatial resolution; however, it should be noted that factors
such as frequent clouds and mixing pixels will introduce large
uncertainties to these land surface products, and affect their
application in permafrost studies (Kou et al., 2017).

Optical and thermal infrared imaging methods provide
valuable regional datasets; however, permafrost is essentially a
subsurface phenomenon and these methods are limited to
imaging the land surface. Permafrost monitoring requires
knowledge of soil temperature and heat transfer at deep layers;
therefore, statistical or empirical models have been developed to
utilize surface parameters derived from optical and infrared
remote sensing to map permafrost extent and distribution
(Zou et al., 2017; Aalto et al., 2018; Obu et al., 2019).
Statistical models, e.g., decision tree or logistic regression
models, have been applied to Tibetan Plateau permafrost
mapping through building relationship between permafrost
indices and multiple environmental factors including satellite-
based land surface temperature and snow cover extent products.
More recent studies are also developed using deep learning
methods to create Tibetan Plateau permafrost maps (Wang
et al., 2019a; Huang et al., 2020). Empirical models such as the
TTOP (temperature at the top of permafrost) model and
Kudryavtsev model that are derived from simplified heat
transfer equations and require fewer inputs have been also
widely used in Tibetan Plateau permafrost mapping (Zhao
et al., 2017a; Zou et al., 2017).

Permafrost Monitoring Using Microwave Remote Sensing
Microwave remote sensing shows strong sensitivity to soil
dielectric changes induced by landscape and particularly soil
freeze/thaw state, and can operate under all-weather
conditions (Ulaby et al., 2014); therefore, it has been widely
used to map surface soil freeze/thaw status and permafrost
changes in both high latitude and high elevation regions (e.g.,,
Li et al., 2012a; Li et al., 2013; Park et al., 2016).

Brightness temperature (Tb) measured by passive microwave
remote sensing is associated with changes in surface emissivity
and temperature conditions, both of which are closely associated
with soil freeze/thaw status. Depending on the frequency and its
penetration ability, relatively higher frequency (e.g., Ka-band,
∼27–40 GHz) is commonly used to detect the freeze/thaw state of
landscape surface elements, while lower frequencies such as
L-band (∼1–2 GHz) and P-band (∼250–500 MHz) provide
enhanced sensitivity to soil surface and profile freeze/thaw
conditions (Du et al., 2015; Naderpour and Schwank, 2018).
The Tb at Ka-band shows less sensitivity to freeze/thaw induced
changes in surface emissivity, and is more correlated with land
surface temperature especially for the vertical polarization
(Holmes et al., 2009). A negative spectral gradient between 18
and 37 GHz was also found for the frozen soils due to volume
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scatter darkening within the frozen soil (Zuerndorfer and
England, 1992). Therefore, a combination of low Tb37V
(37 GHz Tb at vertical polarization) and negative 18–37 GHz
spectral gradient values has been widely used in frozen soil
classification (Zhao et al., 2011; Han et al., 2015). Surface
conditions such as dry snow may confound the soil freeze/
thaw classification, and a number of groups have explored
combining different indices to identify different surface
conditions. For example, Jin et al. (2009) developed a decision
tree algorithm to classify surface soil freeze/thaw state, through
incorporating Tb37V, polarization Tb difference at 19 GHz, and a
scattering index to distinguish scattering and non-scattering
surfaces. Zhao et al. (2011) developed a discriminant
algorithm that employs the Tb37V and the quasi-emissivity of
Tb18.7H based on model simulations and Fisher linear
discrimination analysis of different surface ground conditions.
More recent studies also explored the values of L-band Tb in soil
freeze/thaw classifications due to its deeper penetration depth
(∼50 and ∼5 cm for the frozen and thaw soils, respectively)
(Rautiainen et al., 2016; Zheng et al., 2019a).

Despite with high revisit frequency (less than a few days),
current passive microwave sensors have the spatial resolutions on
the order of 10–50 km, which can add large uncertainties to
freeze/thaw classifications in an area with high topographic relief
like the Tibetan Plateau (Li et al., 2013). Alternatively, space-
borne synthetic aperture radar (SAR) sensors provide
measurements of radar backscatter at much finer scales
(∼10–100 m) but have a much longer temporal revisit
(>10 days). SAR signals share similar frequency-dependent
responses to vegetation canopy and surface soil dielectric
changes as microwave emission techniques, and radar
backscatter at different frequencies (eg C-band, ∼4–8 GHz;
Ku-band, ∼12–18 GHz) can be potentially used to characterize
surface freeze/thaw and soil moisture status in the Tibetan
Plateau (Van der Velde and Su, 2009; Han et al., 2011). The
integration of active and passive microwave remote sensing
provides a promising way to monitor surface and soil freeze/
thaw and soil moisture states of Tibetan Plateau permafrost,
leveraging the strengths of each method (Dente et al., 2014). A
few studies also explored the value of combining passive
microwave remote sensing and MODIS land surface
temperature for high-resolution freeze/thaw mapping in the
Tibetan Plateau (Zhao et al., 2017b; Kou et al., 2017).

More recently, interferometric synthetic aperture radar
(InSAR) has shown great potential for regional mapping of
active layer thickness. InSAR works by detecting surface
deformation resulting from soil freezing induced uplift and
thawing induced subsidence through measuring the phase
shifts between repeat pass SAR images acquired at different
times (Liu et al., 2012; Li et al., 2015b; Daout et al., 2017; Jia
et al., 2017; Wang et al., 2018). It should be noted that this
technique requires repeat passes to be obtained with less than 5 m
deviation to enable accurate interferograms and phase shifts to be
produced. Different techniques have been developed to generate
interferograms and reconstruct the long-term series and seasonal
trends in the surface deformation, which are linked with the long-
term permafrost thaw and seasonal active layer thawing rate,

respectively. Empirical approaches have been used to convert the
surface deformation to active layer thickness assuming a uniform
soil saturation profile (e.g.,, Liu et al., 2012; Jia et al., 2017). A
more recent study accounts for the soil saturation differences
among different land cover types in the Tibetan Plateau (Wang
et al., 2018), which results in different response curves of surface
deformation to thaw depth. Li et al. (2015b) developed a new
approach that uses the time lag between the periodic features of
InSAR-observed surface deformation and land surface
temperature to estimate the time interval between maximum
surface air temperature and maximum seasonal thaw depth.

Challenges
Currently, there are no direct remote sensing methods to detect
deeper soil freeze/thaw and thermal conditions. Most satellite
detection of soil freeze/thaw is generally limited to upper soil layer
within a few centimeters of the surface. A potential approach to
overcome this limitation is to introduce lower frequency sensors
such as P-band SAR for soil profile characterization (Chen et al.,
2019) and incorporate multi-frequency microwave observations
such as joint L- and P-band SAR for enhanced delineations of soil
profile freeze/thaw characteristics (Du et al., 2015). On the other
hand, algorithms that can link surface properties and soil freeze/
thaw indices to permafrost properties still need improvements.
For example, most methods using InSAR derived surface
deformation to estimate active layer thickness either ignore the
effects of vertical variability of soil water content and soil
properties (Liu et al., 2012; Li et al., 2015b; Jia et al., 2017), or
use site-specific soil moisture profiles (Wang et al., 2018). This
can introduce non-negligible errors when upscaled to the broader
Tibetan Plateau, which is characterized by strong heterogeneous
soil conditions, deep active layer and more variable soil moisture
profiles. A drier surface layer can result in a delayed thawing
subsidence period, comparing with the Arctic permafrost region
(Daout et al., 2017). In addition, prior knowledge of ground ice
content is important to interpret the long-term trend of surface
deformation, but such information is still lacking at regional scale
in the Tibetan Plateau.

Current satellite sensors still cannot provide measurements
with sufficient spatial and temporal resolution to meet
requirements for regional soil freeze/thaw and permafrost
monitoring in the Tibetan Plateau. Satellite passive microwave
remote sensing measurements are available at 10–50 km
resolutions, which may not accurately represent the surface
and subsurface conditions for each resolution element,
especially in the heterogeneous mountain regions (Li et al.,
2014). In addition, ambiguity often exists in the remote
sensing retrievals using a single frequency due to its sensitivity
to multiple land surface properties. More comprehensive
evaluations on the accuracy of current satellite measurements
or retrievals should be conducted through integrating point-scale
in-situ measurements, multi-resolution satellite observations and
forward radiative transfer model simulations (Dai et al., 2017).
Moreover, it is highly desirable to understand the scaling effects
of freeze/thaw state and bridge the multi-sensor retrievals
especially for landscape freeze/thaw monitoring over complex
terrain and diverse land cover types (Li et al., 2014; Du et al.,
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2015). On the other hand, the Tibetan Plateau is characterized by
large diurnal temperature range and rapid freeze/thaw changes,
with long freeze/thaw transition periods (up to a fewmonths) (Jin
and Li, 2009). Therefore, remote sensing data with finer temporal
resolution are needed for better monitoring the diurnal freeze/
thaw cycles in the Tibetan Plateau permafrost area.

Process-BasedModeling of Tibetan Plateau
Permafrost
As mentioned above, current satellite remote sensing is largely
restricted to the measurements of near-surface soils and their
properties, while subsurface properties are more relevant to
permafrost conditions. Many studies have combined satellite
remote sensing data with empirical or statistical models to
estimate the presence of permafrost as discussed above.
However, these models usually oversimplify or overlook key
processes controlling soil freeze/thaw and permafrost
dynamics (Zheng et al., 2019b). Additionally, simple models
also generally assume that the frozen subsurface is in
equilibrium with the current climate, which may not capture
the transient changes in frozen ground (Zhao et al., 2017a).
Process-based models can better represent the underlying
processes with the potential to provide more reliable estimates
of regional permafrost distribution and changes.

Current Progress
Frozen soil parameterizations in early process models was
implemented using analytic or approximate solution of Stefan
problem due to computational limitations (Li and Koike, 2003).
With increased computational power, numerical models with
high precision have been widely used in Tibetan Plateau. Most
numerical models simulate the soil temperature in one dimension
by employing a finite-difference or finite-element form of heat
transfer equation, while many of them also consider other
processes such as soil water migration, and link soil freeze/
thaw process with hydrological process (Riseborough et al.,
2008). A range of models have been used to model Tibetan
Plateau permafrost distribution and changes, including soil
process model GIPL2.0, land surface model CoupModel, CLM,
and some hydrological models incorporating soil freeze/thaw
scheme into water transfer process like VIC and GBEHM
(Geomorphology-Based Eco-Hydrological Model) (Guo and
Wang, 2013; Lan et al., 2015; Qin et al., 2017; Zheng et al., 2019b).

Earlier permafrost models like GIPL 2.0 (Qin et al., 2017) do
not simulate surface energy balance, and usually directly set land/
ground surface temperature as the upper boundary condition for
soil heat transfer. These models are able to simulate soil
temperature for deep layers which could be used to identify
the presence of permafrost, while other processes like surface
energy balance, snow melting are generally not included (Qin
et al., 2017; Sun et al., 2019). These models have relatively lower
requirements on climatic forcing data and usually use land/
ground surface temperature and external soil moisture data as
inputs. Despite the simplified heat-water transfer processes, it can
reduce the uncertainties that may be introduced by external
inputs such as highly uncertain precipitation data in the

Tibetan Plateau. Nevertheless, current soil moisture products
available from global satellite remote sensing and land model
data assimilation system also show large uncertainties in the
Tibetan Plateau region (Yang et al., 2013a; Zhao et al., 2014; Chen
et al., 2017). In addition, although using ground surface
temperature as upper boundary conditions can reduce the
need of calculating surface energy balance budget, those data
may not be widely available at the regional scale. The remotely
sensed land surface temperature can be used as a substitute, but
the difference between ground surface temperature and land
surface temperature can be large due to the buffering effects of
surface vegetation or snow cover (Luo et al., 2018; Luo et al, 2020).

A number of regional and global land hydrological models are
also adapted for permafrost simulation in the Tibetan Plateau
region (Table 1). Some hydrological models link the soil freeze/
thaw scheme with hydrological-related process. For example,
GBEHM model is developed from a hillslope-based hydrology
model (GBHM) (Yang et al., 2015; Zheng et al., 2019b). Land
models describe the complex land system, and therefore often
include many processes related to soil freeze/thaw, such as surface
energy balance processes, snow melting and infiltration process,
soil water migration, and variability in soil thermal properties due
to soil organic content changes etc. In addition to traditional
numerical solution used in most models, there are also some
variations in the model concepts and solution in recent models.
For example, there is a new solution of 1-D heat transfer based on
enthalpy in a land surface model HydroSiB2, showing good
performance in soil freeze/thaw modeling in the Tibetan
Plateau (Bao et al., 2016; Wang et al., 2017). These models
have been applied to either site scale or regional scale in the
Tibetan Plateau, with differences in the forcing data and
representations of essential physical processes.

The parametrizations or representations of hydrological and
thermal processes are different among different land hydrological
models, such as the soil column depth and lower boundary
conditions (Table 1), resulting in varying model performance.
For example, SHAW model assumes that the soil thermal
conductivity is a weighting average of various components in the
soil, while CoupModel calculate the soil thermal conductivity based
on three soil freeze/thaw state (i.e., unfrozen, frozen and partially
frozen). Yang et al. (2013b) compared the simulation results from
CoupModel and SHAW model at northern Tibetan Plateau sites,
and found that soil heat transfer scheme used in CoupModel
showed a better performance than SHAW model. Usually, these
models require meteorological forcing including air temperature,
wind speed, precipitation and radiation to solve the surface energy
andwater balance. It is generally difficult to directly use satellite data
(such as land surface temperature) to drive these land models,
which imposes additional difficulties for high-resolution (∼≤1 km)
simulations as high-resolution surface meteorology datasets are not
readily available in the Tibetan Plateau. Moreover, most land
surface models are originally developed for surficial soil layers
with a focus on the energy and mass exchange between the
surface and the atmosphere, and therefore generally have
simplified representation of the soil properties and thermal
processes in deep soil layers (Sun et al., 2019).
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Challenges
Large uncertainties exist in the reanalysis data, surface
meteorology, surface and soil datasets in the Tibetan Plateau
region, which are required for model inputs and
parameterization, limiting a comprehensive evaluation of
model processes and structure across the region (Dai et al.,
2019). Ground-based meteorological data are particularly
sparse in the Tibetan Plateau, with current stations mainly
located in the central plateau and along the Qinghai-Tibet
Railway/Highways, and complex topography adds additional
challenges to upscaling local meteorological data to regional
scale. For example, Zheng et al. (2019b) showed that the
uncertainties associated with the extrapolation or
interpolation of meteorological data were comparable to the
uncertainties of model parameterizations. Previous studies also
found that similar uncertainties were associated with model
simulated frozen ground using different atmospheric forcing
data comparing with model simulations using different
parameterizations (Wang et al., 2016a; Guo et al., 2017). On
the other hand, meteorological forcing data generated from
global climate models has a coarse spatial resolution and cannot
represent the local or small-scale climate variability (Su et al.,
2013; Westermann et al., 2015). The unique topography and
strong heterogeneous surface conditions in the Tibetan Plateau
make it particular challenging to downscale coarse-resolution
meteorology datasets (Yue et al., 2016). A recently released
China meteorological forcing data incorporating meteorological
stations, satellite data and re-analysis data has somewhat
improved quality in the Tibetan Plateau and has been widely
used; however, its uncertainty remains higher in the Tibetan
Plateau than other regions of China (He et al., 2020). In
addition, regional-scale soil datasets in the Tibetan Plateau,
including soil properties (such as soil texture and soil organic
carbon content), soil depth and ground ice content are
extremely limited, which are important for model
parameterization due to their significant impacts on soil heat
and water transfer (Chen et al., 2015b; Cao et al., 2019).

Process representation in current models also needs
improvement. A large gradient can exist in the surface air-
ground temperature in the Tibetan Plateau region due to arid
climate and high solar radiation (Wang and French, 1995).
Without accounting for this temperature gradient, large biases
can exist in the model simulated soil temperatures. Soil
properties in global land models are generally derived from
agriculture soil samples, while the physical properties of gravel
soils in Tibetan Plateau are less considered (Yi et al., 2018a).
Although most models have coupled soil heat transfer with soil
water movement, the soil moisture profile is not generally well
represented, partly due the complex interactions between
topography, soil organic carbon content, vegetation
distribution and their coupled effects on the dynamics of soil
moisture (Wang et al., 2012a). Some key factors affecting the soil
heat transfer unique to the mountain areas are also not
adequately represented in current models (Zhou et al., 2013).
For example, lateral water flow is generally ignored in most
models, which may be of particular importance in the mountain
areas (Zheng et al., 2019b). Simulating ground ice content in theT

A
B
LE

1
|C

om
pa

ris
on

s
of

m
od

el
s
us

ed
fo
r
Ti
be

ta
n
P
la
te
au

pe
rm

af
ro
st

si
m
ul
at
io
n.

A
ll
m
od

el
s
in
cl
ud

e
so

il
he

at
tr
an

sf
er

pr
oc

es
s,

w
hi
ch

is
no

t
in
cl
ud

ed
he

re
.

T
im

e
st
ep

Fo
rc
in
g

d
at
a

S
o
il

w
at
er

tr
an

sf
er

S
ur
fa
ce

en
er
g
y

b
al
an

ce

S
no

w
S
o
il

o
rg
an

ic
S
o
il

co
lu
m
n

d
ep

th

Lo
w
er

b
o
un

d
ar
y

co
nd

it
io
n

R
ef
er
en

ce

S
H
A
W

1
h/
da

ily
Ta

ir,
pr
ec

,
W
,
S
W
,
Q

✔
✔

✔
—

U
se
r
de

fi
ne

d
U
se
r
de

fi
ne

d
m
od

el
-e
st
im
at
ed

Tg
Li
u
et

al
.
(2
01

3)
C
ou

pM
od

el
10

m
in
/1

h/
da

ily
Ta

ir,
pr
ec

,
W
,
S
W
,
Q
..
.

✔
✔

✔
✔

U
se
r
de

fi
ne

d
U
se
r
de

fi
ne

d
m
od

el
-e
st
im
at
ed

Tg
Zh

ou
et

al
.
(2
01

3)

G
B
E
H
M

D
ai
ly

Ta
ir,

pr
ec

,
C
F,

Q
,
pr
es
,
la
nd

su
rfa

ce
te
m
pe

ra
tu
re

✔
✔

—
—

U
se
r
de

fi
ne

d
A
ss
ig
ne

d
ge

ot
he

rm
al

fl
ux

Y
an

g
et

al
.
(2
01

5)
G
IP
L2

.0
D
ai
ly

Tg
0a

N
o

N
o

N
o

N
o

U
se
r
de

fi
ne

d
A
ss
ig
ne

d
ge

ot
he

rm
al

fl
ux

Q
in

et
al
.
(2
01

7)
C
LM

3
h/
da

ily
Ta

ir,
pr
ec

,
W
,
S
W
,
LW

,
Q
,
pr
es

✔
✔

✔
✔

45
.1

m
g
�0

G
uo

an
d
W
an

g
(2
01

3)
N
oa

h
30

m
in
/3

h
Ta

ir,
pr
ec

,
W
,
S
W
,
LW

,
Q
,
pr
es

✔
✔

✔
✔

40
m

E
st
im
at
ed

Tg
at

40
m

W
u
et

al
.
(2
01

8)
V
IC

1
h/
3
h/
da

ily
Ta

ir,
pr
ec

,
W
,
S
W
,
LW

,
Q
,
pr
es

✔
✔

✔
✔

50
m

g
�0

La
n
et

al
.
(2
01

5)

N
ot
e:

Ta
ir,

ai
rt
em

pe
ra
tu
re
;P

re
c,

pr
ec

ip
ita
tio

n;
W
,n

ea
rs

ur
fa
ce

w
in
d
sp

ee
d;

S
W
,d

ow
nw

ar
d
sh

or
tw

av
e
ra
di
at
io
n;

LW
,d

ow
nw

ar
d
lo
ng

w
av
e
ra
di
at
io
n;

Q
,s

pe
ci
fi
c
hu

m
id
ity
;P

re
s,

ai
rp

re
ss
ur
e;

C
F,

cl
ou

d
fra

ct
io
n;

Tg
,s

oi
lt
em

pe
ra
tu
re
;g

,s
oi
l

th
er
m
al

gr
ad

ie
nt
.

a T
he

re
qu

ire
d
pa

ra
m
et
er

is
no

t
lis
te
d
in

th
e
ta
bl
e.

Frontiers in Earth Science | www.frontiersin.org December 2020 | Volume 8 | Article 5604038

Hong et al. Review on Tibetan Permafrost Monitoring

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles#articles


Tibetan Plateau permafrost is also a challenge. Accurate
representation of ground ice content especially near the
permafrost table will have a large impact on projecting
future permafrost dynamics due to potentially large latent
heat release and thermokarst activity as a result of thawing
ground ice (Chen et al., 2015b; Liljedahl et al., 2016). On the
other hand, model performance is highly affected by boundary
and initial conditions, which vary greatly among models. Zero
heat flux at lower boundary is widely adopted in most
land models, while the geothermal gradient in the Tibetan
Plateau show high spatial variability (Wu et al., 2010).
Assigning a zero or constant geothermal flux might lead to
large biases in model simulated deep soil temperature and
permafrost depth especially at longer time scale (Xiao et al.,
2013). More data on deep-soil layer like borehole observations
are needed to improve deep soil parameterization and
representation of lower boundary conditions in the
permafrost models.

Integrate Remote Sensing Data With
Process-Based Models to Improve Tibetan
Plateau Permafrost Monitoring
Remote sensing can provide spatially continuous landscape and
climatic forcing data across large scale, which is especially useful
for regional modeling in a heterogeneous terrain like the Tibetan
Plateau. Here we summarize recent efforts that use multi-source
remote sensing datasets to improve regional modeling of Tibetan
Plateau permafrost or closely related environmental parameters,
through model initialization, parameterization and data
assimilation.

Climatic factors (such as air temperature and precipitation) in
the Tibetan Plateau area show evident elevation dependence. In
many process-based simulations, the SRTM (Shuttle Radar
Topographic Mission) DEM (Digital Elevation Model) is used
as a basis to extrapolate the in-situ meteorology observations to
regional scale and generate model forcing data (e.g., Guo and
Wang, 2013; Gao et al., 2018). However, in addition to elevation,
other factors such as vegetation, soil wetness, slope, and aspect,
also play important roles on the regional climate variability, and
large uncertainties may exist in the spatial extrapolation using
sparse ground observations (Wang et al., 2019b; Zheng et al.,
2019b). Previous studies found that MODIS land surface
temperature is able to capture the spatial pattern of near-
surface air temperature and is especially useful in reducing the
spatial interpolation errors in data-scarce regions (Zhu et al.,
2013; Shamir and Georgakakos, 2014). In the northeast Tibetan
Plateau, Wang et al. (2016b) used the lapse rate derived from
MODIS land surface temperature product during the spatial
interpolation of air temperature, and found the model
simulated snow processes was improved comparing with
simulations using the interpolated air temperature data.
Regarding precipitation, previous studies found that the
precipitation-elevation relationship contrasts between the
northern and southern Tibetan Plateau, and the satellite-based
precipitation data can approximately capture such patterns (Tang
et al., 2018; Wang et al., 2019b). Nevertheless, very few studies
have investigated the impacts of such satellite-based

improvements in spatial extrapolation of climatic forcing on
frozen soil simulations.

In addition to producing regional climatic forcing data,
satellite remote sensing data has been also directly used as
model parameters, such as vegetation coverage, slope and
aspect, to improve regional simulations of Tibetan Plateau
frozen ground. For example, based on the SRTM DEM, Zhang
et al. (2018) quantified the topographic effects of solar radiation
on permafrost distribution in the northeast Tibetan Plateau and
the simulated permafrost coverage increased by 8% when
accounting for the impact of topographic shadows on surface
energy budget. Li et al. (2019) found that introducing MODIS-
based vegetation coverage data into the CoLM can reduce the
warming biases in land surface temperature and surface soil
temperature by ∼10°C in sparse vegetated areas in the Tibetan
Plateau. Jin and Li (2009) assimilated the satellite microwave-
based brightness temperature into SHAW model at the Amdo
station in the central Tibetan Plateau, and found that the errors of
simulated upper (0–2.58 m) soil temperature during wintertime
reduced by 0.76°C. Through assimilating in-situ soil moisture
data, Zhou et al. (2008) found the accuracy of frozen depth
simulation has improved.

A process-based model fully driven by satellite observations
would bridge the data gap in data-scarce region such as the
Tibetan Plateau with the potential to improve regional permafrost
simulation. As discussed above, most process-based models
heavily rely on surface meteorological forcing data (Zheng
et al., 2019b; Guo et al., 2017), while satellite observations are
not fully consistent with the requirements of these models. For
example, satellite remote sensing is not able to observe the near-
surface wind speed, which, however, is an essential factor in
solving the surface energy balance. In a recent study, Zheng et al.
(2019b) used a maximum entropy production-based
parameterization of surface energy balance to replace the
originally turbulent theory-based scheme in GBEHM to make
it fully driven by satellite data and capable of capturing the water-
heat coupled processes within soil layers. The model was applied
to simulate the frozen soil distribution and recent changes across
the entire Tibetan Plateau (Zheng et al., 2020). The satellite-based
model simulations showed overall higher accuracy, comparing
with previous Tibetan Plateau permafrost maps generated using
ground-based measurements (Figure 3, adapted from Zheng
et al., 2020). In addition to the physics-based scheme, machine
learning and artificial intelligence have also obtained reliable
performance in solving the surface energy budget (Adnan
et al., 2017; Zhao et al., 2019) as well as in regional permafrost
mapping (Pastick et al., 2015; Aalto et al., 2018). A hybrid
approach that combines machine learning-based surface
energy balance and process-based heat-water coupled
processes seems to be a potentially useful tool for regional
mapping of Tibetan Plateau permafrost, while such studies are
still lacking.

Although currently there are very limited studies using satellite
data to directly improve model performance in simulating
Tibetan Plateau permafrost through data assimilation, many
efforts have been devoted to improving the simulation of
variables closely related to the permafrost thermal state, such
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as soil moisture (Zhao et al., 2014; Yang et al., 2020), snow cover
and snow depth (Zhang et al., 2014; Wang et al., 2020), and other
key environmental variables including air temperature and net
radiation (Li et al., 2012b; Lin et al., 2016). Through assimilating
the satellite-based microwave brightness temperature at 6.9 and
18.7 GHz, Yang et al. (2007a) found the accuracy of simulated
surface energy budget was improved. Lin et al. (2016) found that
assimilating MODIS snow cover would be especially important in
reducing uncertainties in air temperature predictions in the
Tibetan Plateau. Those results could potentially improve the
model simulated soil thermal regime and thus permafrost
distribution. Despite its potential advantages in improving
frozen soil simulation, the application of data assimilation is
greatly limited due to large uncertainties in current satellite
products and retrieval algorithms in the Tibetan Plateau
(Chen et al., 2017). In addition, satellite-based soil moisture
and snow cover retrievals from passive microwave remote
sensing data have generally coarse spatial resolution, and
appropriate downscaling scheme is needed to characterize the
spatial heterogeneities within the coarse-grid in the mountain
areas (Zhao et al., 2014).

DISCUSSION

Unique Challenges in Tibetan Plateau
Permafrost Monitoring
Unique environmental conditions in the Tibetan Plateau result in
permafrost characteristics different from that in the northern high
latitudes or other alpine environments as discussed above. The
topography in the Tibetan Plateau is complex and characterized by
strong heterogeneity at small spatial scales, exerting strong control
on local permafrost distribution (Luo et al., 2012), while most
satellite data or models have relatively coarse resolutions (>1 km)
and cannot well represent such local-scale variability (Yang et al.,

2010). Moreover, the complex topography in the Tibetan Plateau
can result in strong spatial heterogeneity in local-scale snow cover
and land surface temperature conditions, which adds additional
uncertainties to satellite-based freeze/thaw detection (Zhao et al.,
2017b; Dai et al., 2018). For example, snow accumulated in shady
areas can result in strong scattering, impacting the accuracy of
coarse-resolution passivemicrowave remote sensing retrievals (Dai
et al., 2017). Accurately accounting for the impact of topography
on Tibetan Plateau soil freeze/thaw dynamics and permafrost
distribution requires improved remote sensing algorithms and
models.

Other surface or subsurface conditions affecting the Tibetan
Plateau permafrost are also different from those in the high-
latitude regions. The Arctic is mostly underlain by continuous
permafrost (Brown et al., 1997), characterized by overall high soil
carbon content, thicker snow cover and more saturated soil
condition (Hinzman et al., 2013). Previous study showed the
uncertainty in spatial and vertical soil organic distribution is the
main factor affecting the model simulated active layer thickness
in Alaska, followed by the impacts of soil moisture (Yi et al.,
2018b). The timing and amount of snow cover also play an
important role in affecting pan-Arctic soil temperatures,
especially in deeper soils, due to its strong insulation effects
(Yi et al., 2015; Jones et al., 2016). However, the frozen
ground in the Tibetan Plateau is generally characterized by
unsaturated soils, low organic carbon content, shallow snow
cover, and shorter snow duration (Li et al., 2008; Kang et al.,
2010). Large uncertainties exist in Tibetan Plateau remote sensing
and model soil moisture products due to strong spatial and
vertical variability in soil moisture. The uncertainties limit
their usefulness in regional permafrost monitoring (Han et al.,
2015; Bi et al., 2016). For example, most InSAR-based active layer
retrieval algorithms assume a saturated soil profile within the
active layer, while Tibetan Plateau permafrost generally shows a
much deeper and drier active layer compared with that in the

FIGURE 3 |Mean spatial patterns of permafrost distribution (A) and active layer thickness (B) over the Tibetan Plateau during the period of 2002–2016, simulated
using a remote sensing driven hydrology model (Zheng et al., 2019b; Zheng et al., 2020). The satellite-based permafrost map indicates that permafrost and seasonally
frozen ground account for ∼37% and ∼56% of the Tibetan Plateau respectively, with an overall accuracy of 79.3–90.7% in identifying permafrost boreholes and
76.5–86.4% in identifying seasonally frozen ground boreholes. The accuracy is generally higher than permafrost maps generated using ground-stations, which
demonstrates the advantage of satellite remote sensing-based methods in simulating frozen soils in data-scarce regions.
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Arctic region (Jia et al., 2017). Other Tibetan Plateau
environmental factors also need to be carefully considered in
model parameterization. For example, the insulation effects of
soil organic carbon in the Tibetan Plateau is likely limited due to
its lower content; however, soil carbon content can significantly
affect Tibetan Plateau soil freeze/thaw dynamics through altering
the soil hydraulic properties and soil moisture distribution (Zhou
et al., 2013; Jiang et al., 2020). Shallow snow cover may have a
cooling effect on subsurface soil temperature through reducing
the absorption of solar radiation (Wang et al., 2020). In addition,
the coarse-fragment soil with a larger thermal conductivity is
widespread in the Tibetan Plateau, unlike the prevailing peat soils
in the Arctic. This should be considered in the model
parameterization when simulating the Tibetan Plateau
permafrost (Arocena et al., 2012; Pan et al., 2017; Yi et al., 2018a).

Potential of Geophysical Measurements in
Regional Permafrost Studies
Current satellite remote sensing cannot directly detect deep soils
and the permafrost, while geophysical techniques have been
proven to be useful for subsurface soil characterization and
permafrost detection in a minimally invasive manner.
Examples of geophysical approaches include thermistors and
dielectric sensors, ground penetrating radar, and
electromagnetic methods (Dafflon et al., 2016). Among these
techniques, electromagnetic methods are becoming increasingly
popular, which calculates the ground conductivity or resistivity
through measuring the changes in the eddy currents and induced
magnetic fields in the subsurface (Hauck et al., 2001). Based on
the distinct difference of resistivity between frozen and unfrozen
materials, the electromagnetic method can detect permafrost
existence with a relatively high spatial resolution. It has the
advantage of being sensitive to the liquid soil water content,
and providing information on the structure and content of the
deep soil layer, which is lacking but usually required by models
(Minsley et al., 2012; Mikucki et al., 2015). In addition to the
surface geophysical measurements, airborne electromagnetic
methods have been widely used in the polar regions to detect
the permafrost over diverse landscapes at the regional scale
(Minsley et al., 2012; Rey et al., 2019). Airborne
electromagnetic methods have less terrain-induced noise than
ground measurements, and may be particular useful for
permafrost mapping in mountain regions (Hauck et al., 2001;
Su et al., 2020), while such applications are still lacking in the
Tibetan region.

The geophysical measurements in combination with other
datasets have shown great potential to improve model
representation of subsurface properties in permafrost region.
For example, Dafflon et al. (2016) combined electromagnetic
method and other types of observations, and successfully mapped
subsurface variability in polygon shaped Arctic tundra area and
document the key controls on the spatial distribution of soil
properties. Léger et al. (2019) used the soil temperature data from
a spatially distributed temperature profiling system and electrical
resistivity data to identify correspondences between surface and
subsurface property distribution in discontinuous permafrost

regions. The results from these studies provide the basis for
model parameterization and initialization, while other studies
have directly used such observations to improve process
representation in the permafrost models (Tran et al., 2017,
Tran et al., 2018). Due to strong influences of organic carbon
content on soil hydrological-thermal parameters, Tran et al.
(2017) performed joint inversion of multiple datasets including
soil temperature, moisture and electrical resistivity data to
estimate the soil organic carbon profile along a transect in
Barrow, Alaska, through linking the petrophysical and
geophysical models with the CLM model. Combining the
CLM model and electrical resistivity data, a follow-on study
further investigated the soil thaw depth and its controlling
factor at a high spatiotemporal resolution over a long period
(Tran et al., 2018). However, it should be noted that additional
errors may be introduced into the model estimates due to
uncertainties in electrical resistivity inversion method and
retrievals.

Improving Model Representation of Spatial
Heterogeneity
An important feature of permafrost affected landscapes is the
large spatial heterogeneity in soil active layer conditions, which
are generally poorly represented in global land models (Muster
et al., 2012; Mishra et al., 2017). Information on active layer soil
conditions at landscape scales is needed to better represent the
spatial heterogeneity and scaling functions in global models and
reconcile coarser model simulations with more extreme local
heterogeneity in active layer and permafrost conditions. Many
studies have combined in-situ measurements, satellite remote
sensing and models to address this problem. However, most
studies focus on the high-latitude permafrost landscapes while
Tibetan Plateau permafrost studies represent a relatively new
research topic. Therefore, we summarize relevant studies in the
high-latitudes, and hope to provide some insights for similar
applications to the Tibetan Plateau region.

Local to landscape scale variations in active layer conditions
can be effectively monitored using in-situ ground measurements
(Brown et al., 2000; Romanovsky et al., 2010) or ground-based
remote sensing including ground penetrating radar and electrical
resistivity measurements (Hubbard et al., 2013; Schaefer et al.,
2015). While these methods provide detailed assessments of
active layer properties, they are generally applied over limited
local areas (<1 km2) and are unsuitable for mapping and
monitoring over large regions. Regionally refined active layer
products upscaled from carefully designed in-situ network
measurements using remote sensing based geospatial data
layers offer the potential to improve the representation of
permafrost active layer properties in global land models.
Earlier studies used empirical models driven by in-situ ground
observations to map permafrost and active layer properties over
larger areas (e.g., Anisimov et al., 2002; Panda et al., 2010). More
recent studies used machine learning data-fusion approaches and
remote sensing data, including optical-infrared and LIDAR data,
to extend ground-based or airborne measurements to produce
regional active layer and permafrost maps (Hubbard et al., 2013;
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Pastick et al., 2015). Similar as active layer thickness, a variety of
methods including geospatial analysis and machine-learning
data-driven approaches have been applied to upscale in-situ
soil organic carbon content and soil moisture measurements
to provide grid-cell mean estimates at a large footprint for
direct comparison with satellite or model-based products (e.g.,
Mishra and Riley, 2015; Clewley et al., 2017).

The above spatial analysis and datasets provide critically
needed information on permafrost distribution for global
model parameterization and validation (Mishra et al., 2017).
Previous studies have demonstrated the importance of
considering sub-grid scale variability in land cover and surface
properties in large-scale global models to accurately simulate
water, energy and carbon exchange in permafrost landscapes
(Liston, 2004; Gouttevin et al., 2012). However, how to represent
those local effects to facilitate upscaling of model simulated water,
energy and carbon fluxes remains a challenge (Muster et al.,
2012). Potential improvements may include statistical
representation of spatial distribution and temporal changes in
the surface variables related to permafrost properties. For
example, Zhang et al. (2014) used statistical functions derived
from field measurements to characterize the spatial variability of
surface ground and soil conditions and incorporated this
information into a process model to simulate the frequency of
permafrost occurrence at very high spatial (<1 km) resolution.
Much better accuracy in model simulated ground temperatures in
Norway was achieved when using a gamma distribution to
represent sub-grid variability in snow distribution than using
grid-cell average snow depth (Gisnås et al., 2016). Yi et al. (2018b)
also found the model better represented the statistical distribution
of active layer thickness when using a logistic distribution
consistent with the spatial distribution of surface wetness
derived from the P-band radar data to represent sub-grid
variability of organic layer thickness. In addition, the zonation
approach can combine diverse datasets over different scales and
identify the large-scale zones that have distinct properties, which
can be used to characterize the spatial heterogeneity in complex
permafrost environments. For example, Wainwright et al. (2015)
employed a nested polygon geomorphic zonation approach to
characterize the distributions of environmental properties in
Arctic tundra and assess their impact on ecosystem carbon
fluxes. The combination of zonation approach and emerging
technologies such as machine learning approach can generate
spatially-explicit datasets from a diverse range of observations
supporting the model needs of parameterization and
initialization, and may have great potential in permafrost
research (Hubbard et al., 2018; Hubbard et al., 2020).

RESEARCH PRIORITIES AND
RECOMMENDATIONS

We have reviewed the state of knowledge for Tibetan Plateau
permafrost, soil freeze/thaw state, and summarized recent
progress in using satellite remote sensing data and models to
monitor Tibetan Plateau permafrost. This exercise has revealed
important gaps in capabilities for monitoring and modeling the

current state of Tibetan Plateau permafrost as well as projecting
its future trajectory. Here we recommend the following research
priorities to address these gaps.

Satellite-based optical and infrared remote sensing provide high
spatial resolution land surface conditions. These techniques have great
potential for producing Tibetan Plateau classification maps and
determining correlations between these classifications and
permafrost distributions, especially in regional-scale applications.
Particularly, high-resolution imagery (<10m scale) can be used to
capture the high degree of spatial heterogeneity in the Tibetan Plateau
and further infer the related permafrost states, such as using high-
resolution imaging of swamps, wetlands and small watersheds to
monitor changes in the hydrologic state thatmay be coupledwith local
permafrost degradation.

Microwave remote sensing has shown great potential in
surface freeze/thaw and permafrost monitoring due to its
strong sensitivity to soil water content and phase changes, its
ability to penetrate clouds, and providing all-weather monitoring
of the land surface. However, current microwave remote sensing
methods are limited to detections in the upper soil layer within a
few centimeters of the surface. Deeper soil remote sensing
requires lower frequency surveys (such as P-band SAR) and
multi-frequency observations (such as joint L- and P-band
SAR) to enable soil vertical profile retrievals. These sensors
and corresponding algorithms should be developed. InSAR
have been widely used to map regional subsidence and active
layer thickness in the Tibetan Plateau, but more systematic
subsidence mapping is still needed, with particular emphasis
on the permafrost transition zone that is vulnerable to abrupt
thaw and degradation. Improved approaches and regional data
such as accurate DEM and soil moisture information are also
needed to support InSAR active layer retrieval.

The apparent scarcity of local-scale observations greatly limits
our process understanding in the Tibetan Plateau permafrost
area. Therefore, we also call for the expansion of the in-situ
sampling network, particularly in the western Tibetan Plateau,
along the transition zones between discontinuous and sporadic
permafrost zones, and along elevation gradients (Figure 1).
Additional information on deep soil temperature, ground ice
content, more consistent soil moisture and dielectric profiles,
improved mapping of soil texture and soil organic content are
required for improving remote sensing algorithms and regional
models. Geophysical measurements especially airborne
electromagnetic method can obtain information on deep
ground structure and unfrozen water content, and provide
more spatially extensive measurements than point-scale
observations, and should be considered when expanding the
local-scale observational network in the Tibetan Plateau.

Integrating local-scale observations, remote sensing data with
process-based models will be an effective way to monitor regional
permafrost and project its future state. However, a number of
factors limit such applications in Tibetan Plateau permafrost
research, including but not limiting to large uncertainties in
current satellite products for the Tibetan Plateau area,
mismatch between model input data needs and information
provided by current satellite sensors, insufficient accounting
for spatial heterogeneity impact on permafrost distribution.
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Better approaches to combine diverse datasets at different spatial
and temporal scales with models are needed to address the above
challenges, and should be developed. In addition, current model
scheme and parameterization also require improvements to
better reproduce the unique soil freeze/thaw characteristics in
the Tibetan Plateau region.
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