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The Mann-Kendall (MK) statistical test has been widely applied in the trend detection

of the hydrometeorological time series. Previous studies have mainly focused on the null

hypothesis of “no trend” or the “Type I Error.” However, few studies address the capability

of the MK test to successfully recognize the trends. In some cases, especially when

the trend test is jointly applied with hydropower station design, flood risk assessment,

and water quality evaluation, the “Type II error” is equally important and should not be

neglected. To cope with this problem, we carry out Monte Carlo simulations and the

results indicate that in addition to the significance level and the sample length, the MK

test power has a close relationship with the sample variance and the magnitude of the

trend. For a given time series with fixed length, the power of the MK test increases as the

slope increases and declines with increasing sample variance. A deterministic relationship

between the slope and the standard deviation of the white noise that can be used for

evaluating the power of the MK test has also been detected. Furthermore, we find that

a positive autocorrelation contained in the time series will increase both the Type I and

the Type II errors due to the enlargement of the variance in the MK statistics. Finally, we

recommend that researchers slightly increase the significance level and lengthen the time

series sample to improve the power of the MK test in future studies.

Keywords: Mann-Kendall (MK) test, non-parametric test, power of a test, trend analyses, serial correlation and

trend tests

INTRODUCTION

Stationarity has drawn much attention since the publication of the article in the journal Science
by Milly et al. (2008), which announced “Stationarity is dead.” As one of the co-authors, Hirsch
(2011) argued that non-stationarity came from many other sources other than climate change,
some of which may even have more significant influences. It was noted by Bayazit (2015) that the
impacts of climate change and anthropogenic activities on river basins and low-frequency climatic
variability were the main reasons for non-stationarity. Milly et al. (2015) stated that non-stationary
conditions can come from local human activities (such as land use and land cover change, land
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drainage, dams, diversions, water withdrawals, and groundwater
depletion) and anthropogenic climate change (ACC), whose
influences are extensive, imperceptible, and growing (Shao et al.,
2016, 2018; Wang et al., 2017; Zhu et al., 2018; Bai et al., 2019;
Wang K. et al., 2019; Yu et al., 2019).

Many studies worldwide have investigated anthropogenic
changes in the form of gradual trends or abrupt changes
in the time series of hydrological variables (Serinaldi et al.,
2018). Statistical hypothesis tests together with deterministic
hydrological models (Kan et al., 2017a,b, 2018), climate models,
and expert opinion are undoubtedly indispensable tools for trend
recognition, as chaos theory stats that even a deterministic system
may perform unpredictably (Yevjevich, 1974; Milly et al., 2015).

TheMann-Kendall (MK) statistical test (Mann, 1945; Kendall,
1975), a rank-based non-parametric method, has been widely
used for detecting trends in hydrometeorological time series
such as groundwater (Helsel and Hirsch, 1992), water quality
(Hirsch et al., 1982; Hirsch and Slack, 1984; Hipel et al., 1988;
Burn et al., 2012), streamflow (Douglas et al., 2000; Yue et al.,
2002b; Cong et al., 2010; Sang et al., 2014; Serinaldi et al., 2018),
lake level (Chebana et al., 2017), temperature, and precipitation
(Lettenmaier et al., 1994; Sang et al., 2014; Wang S. et al.,
2019). Compared to parametric tests (e.g., regression coefficient
test), non-parametric tests (e.g., the MK test and Spearman’
rho test) have no requirements of homoscedasticity or prior
assumptions on the distribution of the data sample (Önöz and
Bayazit, 2003) and are less sensitive to outliers (Hamed and
Ramachandra Rao, 1998; Hamed, 2007). As the MK test statistic
is determined by the ranks and sequences of time series rather
than the original values, it is robust when dealing with non-
normally distributed data, censored data, and time series with
missing values (Hirsch and Slack, 1984), which are commonly
encountered in hydrometeorological time series (Duan et al.,
2018, 2019; Gao et al., 2018, 2019; Dong et al., 2019).

Although the MK test is relatively effective and robust, it still
has a basic requirement that the data should be independent
(Wasserstein et al., 2019). In other words, the MK test is
not robust against serial correlation, which may be statistically
significant in some hydrological and climate time series (Tian
et al., 2018a,b). The positive serial correlation contained in the
data will lead to over-rejection of the null hypothesis of no trend
(Cox and Stuart, 1955), which has long been discussed and well-
documented (Kulkarni and Von Storch, 1995; Von Storch and
Navarra, 1995; Hamed and Ramachandra Rao, 1998; Yue and
Wang, 2002; Yue et al., 2002a, 2003; Bayazit and Önöz, 2007;
Bayazit, 2015). Two main approaches have been proposed to
eliminate the influence of serial correlation, the first is applying
pretreatment to the data, and the second is modifying the MK
test to account for serial correlation (Hamed, 2008). Since Von
Storch and Navarra (1995) and Kulkarni and Von Storch (1995)
quantified the influence of serial correlation on the MK test by
Monte Carlo simulation and proposed the “pre-whitening (PW)”
procedure to eliminate it, PW has been widely applied. Similar
to other hypothesis tests, the MK test also has two types of
errors, rejecting H0 when there is no trend (Type I error) and
accepting H0 when there is a true trend (Type II error). PW can
significantly reduce the Type I error caused by serial correlation

but will also increase the risk of Type II error, because the
presence of a trend alters the estimate of the magnitude of serial
correlation and the power of MK will deteriorate after PW, as
Yue et al. (2002b) stated. Yue et al. (2002b, 2003) advocated that a
trend first be removed in a series before the PW procedure, which
is known as the “trend free pre-whitening (TFPW)” approach, as
well as its modified version TFPWcu from Serinaldi and Kilsby
(2016). Hamed (2009) suggested the correction of bias in the
correlation coefficient to enhance the effectiveness of PW. The
mutual interaction between serial correlation and trend makes
this quite complicated and brings extensive debate on how to
apply PW properly (Yue and Wang, 2002; Bayazit and Önöz,
2004; Zhang and Zwiers, 2004). Yue and Wang (2002) and
Bayazit and Önöz (2007) suggest that PW should be avoided
when the sample size and the magnitude of the trend slope
are large. Based on another thought known as effective sample
size, which was proposed by Bayley and Hammersley (1946) and
first applied by Lettenmaier (1976) with Spearman’s rho test and
the Mann-Whitney test, Hamed and Ramachandra Rao (1998)
proposed a variance correction approach for the MK test, as
Yue et al. (2002b) stated that serial correlation influences the
MK test by altering the variance in the estimate of the statistic.
Eventually, the debate around different approaches dealing with
serial correlation and trend becomes a mathematical game and
compromises the balance between the significance and power of
theMK test, and the only thing thatmatters is which error is more
unacceptable in specific cases.

Stationarity and non-stationarity elements coexist in most
hydrometeorological systems, and there are always time-
invariant mechanisms in hydrological systems, as Montanari and
Koutsoyiannis (2014) argued. Hypothesis tests such as the MK
test are utilized to recognize the non-stationary components,
which appear deterministic, apart from uncertain and random
stationary components. For a specific trend test, the capability
of recognizing a significant trend depends on whether the
non-stationary (trend) components are strong enough to shine
through the stationary (random) components, which should
be considered when the power of a test is assessed. What
should be noted is that for various hydrometeorological variables,
there can be vast differences in the magnitudes of the involved
uncertainties. The magnitude can be very small with annual
maximum or minimum temperature data, or be quite large with
annual runoff time series, as implied by the variance in the
data samples. Even though thousands of trend detection studies
have been published, most of them only concentrate on the null
hypothesis of “no trend,” Vogel et al. (2013) argued, while little
or no attention is paid to the power. The above-reviewed articles
have little consideration of the magnitude of the uncertainty
when assessing the power of the MK test.

The objectives of this study are as follows: (a) to explore
the power of the MK test against different uncertainty levels;
(b) to investigate the effect of serial correlation on the Type
I error of the MK test against different uncertainty levels; (c)
to document the effect of serial correlation on the power of
the MK test against different uncertainty levels; and (d) to
propose some reasonable suggestions in using the MK test in
future studies.
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METHODOLOGY

Description of the MK Test
The Mann–Kendall trend test (Mann, 1945; Kendall, 1975) is
based on the correlation between the ranks and sequences of a
time series. For a given time series {Xi, i = 1, 2 . . . , n}, the null
hypothesis H0 assumes it is independently distributed, and the
alternative hypothesis H1 is that there exists a monotonic trend.
The test statistic S is given by:

S =
∑n−1

i = 1

∑n

j = i+1
sgn(Xj − Xi) (1)

where Xi and Xj are the values of sequence i, j; n is the length of
the time series and

sgn (θ) =







1 if θ > 0
0 if θ = 0

−1 if θ < 0
(2)

Mann (1945) and Kendall (1975) have documented that the
statistic S is approximately normally distributed when n≥ 8, with
the mean and the variance of statistics S as follows:

E (S) = 0 (3)

V (S) =
n (n− 1) (2n+ 5) −

∑m
i=1 Tii(i− 1)(2i+ 5)

18
(4)

where Ti is the number of data in the tied group and m is the
number of groups of tied ranks. The standardized test statistic Z
is computed by

Z =











S−1√
V(S)

S > 0

0 S = 0
S+1√
V(S)

S < 0
(5)

The standardized MK statistic Z follows the standard normal
distribution with E (Z) = 0 and V (Z) = 1, and the null
hypothesis is rejected if the absolute value of Z is larger than the
theoretical value Z1−α/2 (for two-tailed test) or Z1−α (for one-
tailed test), where α is the statistical significance level concerned.

Synthetic Study Using Monte Carlo
Simulation
A synthetic study using Monte Carlo simulation is carried out in
this study. Monte Carlo simulation has been extensively utilized
to assess the effect of serial correlation on statistical hypothesis
tests (Kulkarni and Von Storch, 1995; Yue and Wang, 2002;
Yue et al., 2002a,b) and the power of statistical hypothesis tests
(Hirsch et al., 1982; Lettenmaier, 1988; Yue and Pilon, 2004; Yue
and Wang, 2004; Sang et al., 2014). In this study, the time series
with trend is generated by

Yt = Tt + B+ Nt (6)

where Nt is white noise, B is a constant parameter, and Tt can be
defined as:

Tt = At (7)

FIGURE 1 | Probability matrix for the MK test, with the null hypothesis H0

showing no trend.

where A is the slope value. For time series Yt , Tt + B represents
the trend term, and Nt represents the random term.

The serial correlation is presented by an autoregressive
process of first order, the AR(1) process, the same as Kulkarni
and Von Storch (1995) used.

Xt = ρXt−1 + Nt (8)

where ρ is the lag-1 autocorrelation coefficient and Nt is white
noise. What else has been taken into consideration is the variance
in white noise, named power spectral density (PSD), because it
is the main influencing factor of the variance in a given sample,
which to some extent can reflect the uncertainty.

For a time series in which the trend term and correlation
term coexist, the variance in the sample is determined by three
factors: PSD, the length of the time series and the magnitude of
the trend value. The influence of the length of the time series and
the magnitude of the trend value are reflected in the trend term.
For time series Yt = At + B (t = 1 ∼ n), the variance is

Variance_Trend =
n2 + 11

12
A2 (9)

Based on the abovementioned equation, the variance from the
trend term will be quite small with limited slope value A.
Therefore, the influence from the trend term to the magnitude
of sample variance is limited, and the variance will be close to the
PSD of white noise. This factor will be evaluated in the following
study using gauged data.

Evaluation of the Power of the MK Test
For the statistical hypothesis test, the significance level α is the
probability of rejecting the null hypothesis when there is no
trend. The power of the MK test is the probability of rejecting
the null hypothesis, 1− β , when there is a trend contained in the
data sample (see Figure 1).

For samples with a specific length and significance level, the
power and the size of the confidence interval are contradictory
(see Figure 2), which means that a small significance level
(probability of Type I error) will reduce the power of the test.
While applying the hypothesis test, the Type I error can be
controlled by the significance level α, but the Type II error
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FIGURE 2 | Relationship of confidence interval, critical region and power for (A) one-tailed test and (B) two-tailed test.

depends on the sample length in addition to α. In specific cases,
the Type II error should also be controlled in addition to reducing
the Type I error, especially when the MK test is associated with
hydropower station design, flood risk assessment, and water
quality evaluation. The power seems more important in such
situations, as Vogel et al. (2013) argued, because the power
informs us about the likelihood of whether society is prepared
to accommodate and respond to such trends. Delaying action
should bemade when designing flood control engineering if there
are no sufficient historical data (Rehan and Hall, 2014).

In Monte Carlo simulation experiments, the power of the MK
test can be estimated by the following equation, as Yue et al.
(2002a) and Yue and Pilon (2004) stated:

Power =
Nrej

N
(10)

where N is the total number of experiments and Nrej is the
number of experiments whose observed value is larger than the
critical value (see Figure 2).

RESULTS AND DISCUSSION

Power of the MK Test Against PSD
Monte Carlo simulations under various combinations of the
trend term and the random term are conducted to observe the
power of the MK test against the PSD of white noise. In the
first simulation experiment, the sample length is set to 50, 100,
200, and 400. The PSD of white noise varies from 10−4 to 104

with a multiplier of 100.08, and the value of the slope varies from
10−3 to 10−1 with a multiplier of 100.02. Therefore, we can obtain
a square matrix with a size of 101 × 101, and each element
represents a combination of the PSD and the value of the slope.
The serial correlation is not taken into consideration in this part
and therefore is set to zero. With each combination of PSD and
slope, 1,000 time series are generated with the abovementioned
method, and the rejection number of the MK test is recorded and
demonstrated in a heat map (see Figure 3). The dashed line is
shown as a boundary, the left of which the rejection number is
larger than 950 and the right is <950. The solid line is the line

on which the variance of the trend term is equal to the PSD of
white noise.

It is obvious that for a given sample length, the rejection
number, which can represent the power of the MK test, increases
as the slope increases and decreases with increasing PSD. A
clearly linear boundary, on the left of which the rejection number
is larger than 950 and on the right is <950, divides the space into
a high rejection region and a low rejection region. The equation
of those dashed lines can be estimated by multiple simulations,
which are:















A =
√
PSD× 10−1.44 = SD× 10−1.44 n = 50

A =
√
PSD× 10−1.92 = SD× 10−1.92 n = 100

A =
√
PSD× 10−2.36 = SD× 10−2.36 n = 200

A =
√
PSD× 10−2.80 = SD× 10−2.80 n = 400

(11)

where A is the slope value and SD is the standard deviation of the
white noise.

What those equations interpreted is that there is a
deterministic relation between the slope and the PSD of
white noise, which can be used for evaluating the power of the
MK test. When a sample of hydrometeorological time series is
collected and analyzed by the MK test, the magnitude of the
slope beyond which the test is effective can be estimated by the
length of the sample and the PSD or SD of the white noise. The
paradox is, as mentioned above, that the variance in the sample
data is not exactly equal to the PSD of the white noise because
of the influence of the trend term. The solid line in Figure 3

indicates that the influence of the trend term is increasing with
the increase in the length of the sample and the magnitude of the
trend, which could be the determinant of the sample variance
if the ratio of the slope value to the SD of white noise is large
enough. However, in actual situations, the coexistence situation
of the slope value and the variance in the sample are limited:
the situation in which a large slope value and white noise with
a small PSD coexist in one sample is rare, and the influence of
the trend on the variance in the sample is finite. To verify this,
11 variables extracted from 30 hydrologic gauges and 9 variables
extracted from 20 meteorological stations, i.e., a total of 510
samples with the length of each sample equal to 55, are analyzed.
The Theil–Sen approach (TSA) proposed by Theil (1950) and
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FIGURE 3 | Heat map of the rejection number under different combinations of PSD and slope. (A) Sample lengths = 50; (B) sample lengths = 100; (C) sample

lengths = 200; and (D) sample lengths = 400.

Sen (1968) is used to estimate the trend. The ordinary SD of the
sample and the trend-removed SD, which can be assumed as
the SD of the white noise, are calculated and shown in Figure 4

using logarithmic coordinates. The trends of the sample data are
removed by

Yt
′
= Yt − Tt = Yt − At

As Figure 4 shows, the ordinary SD values and the trend-
removed SD values are almost the same, as all the data points are
close to the dashed line whose gradient is 1. To better illustrate
this, the variation in the ratio of the two SDs is shown in the
subfigure of Figure 4. The influence of the trend on the variance
decreases with increasing PSD of white noise. For the 510 samples
analyzed in this study, the difference between the variance in the
sample and the PSD of white noise is quite small. Therefore, the
magnitude of the slope beyond which the MK test is effective can
be roughly estimated by the length and the variance in the sample,
which is practically meaningful.

The power of the MK test is a monotonically increasing
function of the sample length, as shown in Figure 3 and more
obviously demonstrated in Figure 5. For example, the rejection
ratios are ∼0.98, 0.8, 0.6, and 0.4 when the PSD equals 1 and the
sample lengths are 400, 200, 100, and 50, respectively, and the

FIGURE 4 | Comparison of ordinary SD and trend-removed SD.

ratios will increase to 0.1, 0.04, 0.03, and 0.025, respectively, when
the PSDs are equal to 100. The fact should be noted is that the
rejection ratios in this figure cannot perfectly represent the power
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of the MK test because, in this simulation, the scope of the slope
value is limited; however, it is still meaningful and interpretive.
From another perspective, Figure 5 indicates that if the desired
power is specified, the way to resist the PSD for maintaining the
power is to extend the sample length to a required minimum
value. For a power of 0.9, represented in Figure 5 as a black
dashed line, the minimum sample length required will be 50 if
the variance in the sample is ∼0.08, and the required length will
increase to 400 if the variance in the sample is 1.7. However, those
values largely depend on the evaluation method of the power of
the test. As mentioned in the above paragraphs, the scope of the

FIGURE 5 | The rejection ratio of the MK test against the PSD of white noise.

slope values is limited from 0.001 to 0.1 in this simulation, which
means that the ratios in Figure 5 are incomplete expressions of
the power of the MK test.

Therefore, a comparison of the distributions of test statistics
against different PSDs is made and shown in Figure 6. In each
subfigure, 10,000 time series are simulated. Figure 6A shows the
distribution of the MK test statistic where there is no trend;
Figure 6B shows the distribution of the MK test statistic against
different PSDs where the slope value varies from 0.001 to 0.1;
Figure 6C shows the distribution of the MK test statistic against
different PSDs where the slope values vary from 10−5 to 10−2 ×
SD; and Figure 6D shows the distribution of the MK test statistic
against different PSDs where the slope values vary from 10−5

to 10−1 × SD.
Figure 6B indicates that the difference between the power

of the MK test under a distinct PSD of white noise can be
quite large when the scope of the slope value is 0.001 to 0.1. In
addition, the variance in the MK test statistics is significantly
large when the sample variance is between 0.1 and 1.0. This
can be explained by Equation (11). Taking samples whose SDs
are equal to 1 as examples, the rejection rate will be close to 1
when the slope value is larger than 10−1.92 according to Equation
(11). The statistics become quite sensitive to the slope value
when it is larger than 10−1.92, and the distribution type is no
longer normal. Contrastive simulations are conducted where the
scope of the slope values are from 10−5 to 10−1 × SD and from
10−5 to 10−2 × SD, which means the upper limit of the slope is
controlled by the PSD of the white noise. The results are shown
in Figures 6C,D. These two subfigures signify that no matter

FIGURE 6 | Comparison of the distribution of test statistics against different PSDs with sample lengths equal to 100. The critical region is marked by the dashed line.

(A) Slope value = 0; (B) slope value = 0.001 – 0.1; (C) slope value = 10−5 to 10−2 × SD; and (D) slope value = 10−5 to 10−1 × SD.
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FIGURE 7 | Slope values against the SD of white noise.

how large the PSD of the white noise is, the power of the test
could always be large enough if the upper scope of the slope is
set with a sufficiently high value. Therefore, when evaluating the
power of the MK test, it is unreasonable to consider the power
of the MK test with a fixed scope of slope or even neglecting
the scope of slope; however, this factor is neglected by most
of the existing studies. A variable upper limit associated with
the PSD of white noise should be adopted to assess the power
of the MK test. The reason is that in practice, the magnitude
of the slope would be limited in a time series with a specific
PSD. The 510 samples used above are performed as a case study
of this situation, as shown in Figure 7. The slope values are
estimated by TSA and then removed to obtain the SD of the
white noise. Two dashes are drawn as references: the blue dash
is A = 10−1 × SD, and the red dash is A = 10−1.92 × SD,
which is slightly off the theoretical value of Equation (11) as the
sample length is 55. This result might be caused by the influence
of serial correlation or the approach used for estimating the slope.
All the significant results are located between the two lines, and
the blue line is chosen as the upper limit analyzed in Figure 6D.
Rejection rates in these two situations were recorded, and the
results are shown in Figure 8, which indicate that the power of
the MK test varies from 0.24 to 0.07 when the upper limit of the
slope value is set as 10−2 × SD (Scope b) and will increase to
0.61 and 0.22 when the upper limit of the slope value is set to
10−1 × SD (Scope a).

Generally, for a given population, the power of a statistical
hypothesis test is just a function of the sample length if the
significance level is set. For tests utilized for seeking trends in
time series with different variances, it is meaningful to evaluate
the power by separating it with the different conditions of the
sample variance because the sample variance can always be
calculated and is an unbiased estimation of the variance in the
population. Even though it is difficult to evaluate the power of the
general population, it becomes operable when the population of
hydrometeorological variables is classified according to variance,
as discussed above.

FIGURE 8 | Power of the MK test against different SD values and different

slope scopes.

Effect of Serial Correlation on the Type I
Error of the MK Test Against PSD
As stated by Kulkarni and Von Storch (1995), Von Storch
and Navarra (1995), and Yue et al. (2002b), the existence of
positive serial correlation will increase the Type I error of the
MK test. To investigate the influence of serial correlation on
the MK test against different PSDs and sample lengths, two
simulation experiments were conducted with sample lengths set
as 50 and 100, the PSD varying from 10−4 to 104 and serial
correlations varying from 0 to 0.9. For each combination of
serial correlation and the PSD, 1,000 simulations were conducted.
As the significance level is set to 0.05, the theoretical value
of the rejection rate should be 0.05 when there is no trend.
However, as shown in Figure 9, the rejection rate increases as
the serial correlation increases and will be ∼0.15 when the serial
correlation is 0.3, which is the same as the result of Kulkarni and
Von Storch (1995) Additionally, it indicates that the rejection
rate remains unchanged with various PSDs, which means the
effect of serial correlation on Type I error is the same for time
series with different variances. Little differences in rejection rates
can be observed between the two subfigures, and the rejection
rate in Figure 9B is slightly higher than that in Figure 9A. The
difference may not come from the variation in sample lengths but
from the fact that the actual serial correlation value is not exactly
the one added into the time series through Equation (8), which
is more obvious with a short sample lengths. By Monte Carlo
simulation, we find that the serial correlations within different
time series added through Equation (8) show negative skewness
rather than a normal distribution. The mean value becomes
larger and the coefficient of variation decreases with increasing
sample length. This should be the source of the slight differences
in rejection rates between various sample lengths.

Figure 10 shows the distributions of the standardized MK
statistics against different serial correlations, while no trend
exists in the time series. In this simulation, the sample lengths
are both set as 100, the PSDs of white noise are both set
as 1, and the autocorrelation coefficients are 0 and 0.9. As
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FIGURE 9 | Heat map of the rejection number under different serial correlation coefficients. (A) Sample lengths = 50 and (B) sample lengths = 100.

FIGURE 10 | Distributions of the standardized MK statistics with different autocorrelation coefficients. (A) Autocorrelation coefficient = 0 and (B) autocorrelation

coefficient = 0.9.

illustrated by the box-plot and the violin-plot, neither the
asymptotic normality nor the mean of the MK statistic changes
with the serial correlation. The variance in the standardized
MK statistics increases from 1 to 13.2, while the serial
correlation increases from 0 to 0.9. This result explains why
the existence of positive serial correlation causes an increase
in rejection rates when there are no trends, in other words,
the probability of Type I error. The positive serial correlation
increases the variance in the standardized MK statistics and
keeps the mean value of the standardized MK statistics as zero;
therefore, the probability that statistics fall into the critical region
is increasing.

Effect of Serial Correlation on the Power of
the MK Test Against PSD
To investigate the effect of serial correlation on the power of the
MK test against PSD, another two simulation experiments were
conducted, the first one with fixed PSD and the second one with
fixed slope value, and the results are shown in Figures 11, 12,
respectively. Figure 11 shows that for a specific PSD and slope
value, the variations in the rejection rate show different patterns
with increasing serial correlations. Taking Figure 11A as an

example, the rejection rate increases with serial correlation when
the slope value is 0.001, while it decreases with increasing serial
correlation when the slope value is 0.01. Therefore, for time series
with specific PSD values, the effect of serial correlation on the
power of the MK test will be different from variable slope values.
This is contradictory to previous studies that suggested that
the positive serial correlation makes the MK test overestimate
the significance of the trend. For time series with large slope
values, the effect would be negative with the existence of serial
correlation. With increasing PSD, the threshold of the slope value
increases, as shown in Figure 11B.

The same law can be observed from Figure 12, which
indicates that with a fixed slope value, the effect of serial
correlation on the power of the MK test changes with the PSD
values. Furthermore, there is a region outside which the serial
correlation has no effect on the power of the MK test. To
determine the thresholds of the affected region, we calculate the
cumulative difference of the rejection number of each row against
the rejection number of time series whose serial correlation is
zero. Two lines corresponding to Figures 12A,B are made and
shown in Figure 13. These two lines have the same pattern, which
indicates that the cumulative difference of the rejection number
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FIGURE 11 | Heat map of the rejection rate with different combinations of slope values and serial correlation values, where the sample length is 100 and PSD values

are equal to 1 and 100 respectively. (A) PSD = 1 and (B) PSD = 102.

FIGURE 12 | Heat maps of the rejection rate with different combinations of PSD values and serial correlation values, where the sample length is 100 and the slope

values are equal to 0.01 and 0.1, respectively. (A) Slope value = 0.01 and (B) slope value = 0.1.

begins to decrease when the PSD is equal to
(

Slp

10−0.92

)2
; when

the PSD is equal to
(

Slp

10−1.92

)2
, it arrives at the minimum value;

and the cumulative difference becomes positive when the PSD is

larger than
(

Slp

10−2.2

)2
.

Based on Equation (11), for time series whose sample length is
100, the MK test is effective when the slope term and the random
term satisfy A >

√
PSD × 10−1.92. Therefore, in the effective

domain of the MK test, the effect of serial correlation on the
power of the MK test is negative, which means positive serial
correlation will decrease the power of theMK test; in other words,
it will increase the probability of Type II error. To explore this
phenomenon, the distributions of the standardized MK statistics
against different serial correlations while trend terms exist in the
time series were analyzed and are shown in Figure 14. Similar
to the influence of positive serial correlation on the MK test
statistics when there is no trend, the variance in standardizedMK
statistics increases with the serial correlation. However, the mean
value of the standardized MK statistics decreases with the serial
correlation rather than remaining zero, as it does when there is
no trend.

FIGURE 13 | Cumulative difference of the rejection number against different

PSD values.

By comparing the subfigures of Figure 14, we find that
the mean value of the MK statistics decreases with the serial
correlation and the PSD value, and the variance in the MK
statistics increases with the serial correlation but remains the
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FIGURE 14 | Distributions of the standardized MK statistics, where the sample length is 100 and the slope value is equal to 0.01: (A) PSD = 1, autocorrelation

coefficient = 0; (B) PSD = 1, autocorrelation coefficient = 0.9; (C) PSD = 100, autocorrelation coefficient = 0; and (D) PSD = 100, autocorrelation coefficient = 0.9.

same as the variation in the PSD. Compared to the variance in
the MK statistics, the effect of the mean value is more significant
to the rejection rate. The impact of the variance becomes larger
when the mean value is small. The effect of the PSD is more
pronounced on the mean value of theMK statistics, and the effect
of the serial correlation is more obvious on the variance in the
MK statistics. Therefore, we conclude that the serial correlation
influences the power of the MK test mainly by enlarging the
variance in the MK statistics and by decreasing the mean value
of the MK statistics. When the mean value of the MK statistics is
large, which usually happens with time series that have large slope
values and small PSDs, the influence of serial correlation is small
and negative. When the mean value of the MK statistics is close
to zero, which commonly occurs with time series that have small
slope values and large PSDs, the influence of serial correlation on
the power of the MK test is large and positive.

CONCLUSIONS

For a long time, statistical hypothesis tests have been regarded
as “silver bullets” for analysing climate change. However, in a
recently published article, the American Statistical Association
(ASA) encouraged “Moving to a World Beyond ‘p < 0.05”’
because the significance testing is not as powerful as it seems.
Researchers should be more thoughtful when applying these
tests (Wasserstein et al., 2019). In this study, we investigated
the power of the MK test for detecting monotonic trends
in hydrometeorological time series against random terms
of different uncertainty levels. The results of Monte Carlo
simulation experiments indicate that there is a deterministic
relation (Equation 11) between the slope value and the PSD of
white noise, which can be used for evaluating the power of the
MK test. Based on those equations, the magnitude of the slope
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beyond which the MK test is effective can be roughly estimated
by the length and the variance in the sample. A variable upper
limit of the slope value that is associated with the PSD of white
noise has been adopted to evaluate the power of the MK test,
which is different from the previous studies using a fixed upper
limit but seems more accordant with practical situations. When
the scope of the slope value is set from 10−5 to 10−1 × SD, the
power of the MK test ranges from ∼0.61 to 0.22, corresponding
to PSD values equal to 10−4 and 104, respectively. The way to
resist the PSD of white noise for maintaining a specific power
is extending the sample length to a required minimum value
because the power of the MK test is an increasing function of
the sample length. Simulation experiments show that the positive
serial correlation existing in the time series will increase the Type
I error by increasing the variance in the MK test statistics, and
the effects are unconcerned with the variance in the sample.
Moreover, the positive serial correlation existing in the time series
will decrease the power of the MK test, in other words, increase
the probability of Type II error. This influence is mainly from
enlarging the variance in the MK statistics and from decreasing
the mean value of the MK statistics. By presenting this article,
we hope that researchers who use the MK test in their future
studies realize that the power of the MK test is not as strong as
it seems, especially for limited sample length and large sample
variance. To improve the situation, we can slightly increase the
significance level, such as from 0.05 to 0.1, or delay the analysis

to lengthen the sample time series. For different variables, the
required lengths could be very different, which can be much
shorter for temperature and humidity time series than for runoff
and precipitation time series.
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