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Geophysical properties of snow are known to be sensitive to climate variability and
are of primary importance for hydrological and climatological process simulations.
Numerous studies using passive microwaves have attempted to quantify snow from
space, but the methods suffer from poor spatial resolution retrievals, combined with a
great sensitivity to snow grain morphology. Those issues motivated work using active
microwaves that are now core to space mission concept proposals currently under
development. However, a clear limitation remains with regards to snow microstructure
contribution to backscattering, especially in large depth hoar (DH) layers typical of polar
snowpacks. This leads to difficulties retrieving snow water equivalent (SWE) from space
or developing radiative transfer models used in assimilation approaches owing to a lack
of field observations of snow microstructure. As such, this paper presents an innovative
technique to measure various snow grain metrics in the field where micro-photographs
of snow grains are taken under angular directional LED lighting. The projected shadows
are digitized so that a 3D reconstruction of the snow grains is possible and distribution
functions can be proposed for various snow grain metrics and grain types. This device,
dLED, has been used in several field campaigns and a very large dataset was collected
and is presented in this paper. Distribution histograms from >160,000 digitized grains
were produced for each metric for all grains considered as a whole dataset (unclassified),
and also for each grain type: (1) defragmented/broken (DF), (2) DH, (3) facets (F),
(4) rounds (R), and (5) precipitation particles (PP). We selected distribution functions
for each metric per grain time by analyzing L-moment diagrams that summarize the
shape of a probability distribution. Our results show that the logarithmic Kappa (LKAP)
distribution is well suited to explain the snow grain metric distribution for each grain type.
Location, scale and shape parameter values for each distribution are presented and a
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comparison with values derived from our shortwave infrared laser device, the InfraRed
Integrating Sphere (IRIS), is provided. A discussion is presented on the pros and cons of
the dLED and the use of the distributions presented in this paper for microwave radiative
transfer modeling work.

Keywords: snow grain, distribution, radiative transfer modeling, microstructure, snow

INTRODUCTION

In the context of global climate change observed over the past
four decades in northern regions, numerous studies have focused
on the retrieval of surface state variables to monitor the rate
and amplitude of observed changes (Takala et al., 2011; Brown
and Derksen, 2013; Estilow et al., 2015). Globally, the rate
of temperature increase has vary in the last decade (Kosaka
and Xie, 2013), but Arctic air temperatures have continued to
increase (+1.3◦C warmer in 2015 when compared to the 1981–
2010 mean) (National Oceanic and Atmospheric Administration
[NOAA], 2017). Currently, the Arctic is warming at more than
twice the rate of lower latitudes, leading to a decrease in sea
ice cover (Serreze and Stroeve, 2015), glacier mass balance
(Papasodoro et al., 2015), permafrost extent (Schuur et al., 2015)
and snow cover (Derksen and Brown, 2012). This is of particular
relevance in a context where snow covers up to 40 million
km2 during winter in North America and supports freshwater
supplies for consumption, agriculture and hydroelectricity. Snow
also supports a multi-billion dollar tourism and recreation
industry while controlling the surface energy budget of northern
ecosystems playing a crucial role on how the Earth reacts
to climate change.

Numerous studies have thus focused on the retrieval of this
crucial state variable over the past four decades. Pioneering
work in the 1970s and 1980s (Chang et al., 1987) proposed new
approaches to retrieve snow depth and water equivalent from
space using passive microwave brightness temperatures. Over
the years, considerable research (Foster et al., 1997; Kelly and
Chang, 2003; Derksen et al., 2012; Langlois et al., 2012; King et al.,
2015) has found that microwave approaches depend strongly
on snow grain morphology (size and shape), which was poorly
parameterized in models. This led to strong biases in the retrieval
calculations (Domine et al., 2006; Langlois et al., 2010; Montpetit
et al., 2012). Related uncertainties from space retrievals and the
development of complex thermodynamic multilayer snow and
microwave emission models motivated several studies on the
development of new approaches to quantify snow grain (e.g.,
Domine et al., 2006; Matzl and Schneebeli, 2006; Langlois et al.,
2010; Montpetit et al., 2012) given the lack of field measurements.

Until recently, grain size was poorly defined and measured,
mainly due to the unstable nature of snow grain size and
shape under metamorphic processes (Gallet et al., 2009). In
dry conditions, snow grains can change size and shape under
a temperature gradient where grain growth is observed owing
to the mass transfer from warmer to colder grains, typically
forming faceted and depth hoar grains (Colbeck, 1983; Gubler,
1985). In the absence of a sufficient temperature gradient (0.1

to 0.3◦C/cm, Sturm et al., 2002), equilibrium metamorphism
will occur where the bottom grains are at equilibrium with
water vapor at a higher density than the upper grains. The
high Specific Surface Area of snow (SSA), i.e., the ratio of the
grain volume to its surface, then provides a lot of energy to
induce microscale heat and mass transfer (e.g., Bader et al., 1939;
Colbeck, 1982), changing the structure of the snow grain through
a decrease in SSA (Cabanes et al., 2002). In wet conditions, the
metamorphic process will change given saturated or unsaturated
snow where saturated conditions will promote large grain growth
from adhesion of water to the ice crystals while undersaturated
conditions will lead to the formations of clusters (Denoth, 1980;
Langlois and Barber, 2007).

The complexity of the thermodynamic processes involved,
combined with measurement constraints, led to the development
of SSA and optical diameter retrievals from optical methods.
The optical diameter of snow grains can be quantified using
near infrared and shortwave infrared reflectance (Kokhanovsky
and Zege, 2004; Domine et al., 2006; Matzl and Schneebeli,
2006; Langlois et al., 2010; Montpetit et al., 2012) and now,
measurement devices are available commercially and used by
several groups. However, since such devices are expensive,
traditional micro-photographs of snow grains remain widely
used to “quantify” various snow grain metrics for different
applications (e.g., Lesaffre et al., 1998; Langlois et al., 2007;
Bartlett et al., 2008). Such photographs, if digitized, can provide
interesting information and fair estimation on metamorphism
processes in place but yield no information on the volume and
SSA, which are key variables for microwave radiative transfer
models (RTMs) (Royer et al., 2017) and retrieval approaches
from space. For instance, several studies coupling RTMs with
measured snow SSA for simulations of brightness temperatures
have all found that a scaling factor is needed in order to optimize
the difference between simulated and measured brightness
temperatures (Langlois et al., 2012; Roy et al., 2013). Roy et al.
(2013) hypothesized that the scaling factor is related to the
grain size distribution of snow and the stickiness between grains.
Even more relevant to this study is the fact that RTMs such
as the Dense Media Radiative Transfer – Multi Layers (DMRT-
ML) model assumes a Rayleigh snow grain size distribution
(Picard et al., 2013).

Recent work has proposed innovative techniques in the
measurement of SSA and correlation length. In situ techniques
using near-infrared and short-wave infrared photography or
shortwave infrared lasers have been rather successful, but are
often cost prohibitive and very few datasets exist to date for
polar snowpacks. Other well-known methods using methane
absorption techniques and microCT measurements are arguably
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still considered as the reference methods for precise SSA
measurement but are cost-prohibitive, and sample extraction
for casting very large depth hoar remains extremely difficult
contributing to the fact that very few research groups can build
snow microstructure datasets for arctic regions. Hence, our group
developed a new approach to the “traditional” measurements
of snow grain metrics where micro-photographs of snow grains
are taken under angular directional LED lighting. The projected
shadows are digitized so that a 3D reconstruction of the snow
grains is possible and distribution functions can be found for
various snow grain metrics and grain types. This device, dLED
(see section “ Data and Methods”), has been used in several field
campaigns and a very large dataset was collected and is presented
in this paper. Hence, objectives of this paper are to: (1) present
the low-cost dLED approach used to measure snow grain metrics,
(2) provide various snow grain metric distribution functions for
different grain types from over 160,000 digitized snow grains,
(3) evaluate the effect of snow grain types on different snow
grain metric distributions and (4) compare metrics retrieved
from dLED, including the surface specific area (SSA), with well-
established SSA measurements using our InfraRed Integrated
Sphere (IRIS) laser-based device.

DATA AND METHODS

Study Site
The fieldwork occurred in winter 2009–2010 for the European
Space Agency “Cold Regions Hydrology high-resolution
Observatory” mission concept proposal. Although the mission
concept was not funded, the fieldwork allowed the collection of
a very unique snow, lake ice and permafrost dataset (Derksen
et al., 2012). More precisely, our field campaign was conducted
in Churchill, Manitoba, Canada with logistical support from the
Churchill Northern Studies Centre. The area includes forests,
open areas, dry and wet fens as well as numerous lakes. The main
objective of the field campaign was to acquire coincident passive
and active microwave measurements over snow and lake ice,
under a range of soil and vegetation conditions.

Although the field campaign included a total of six intensive
observing periods from November 2009 to May 2010, this paper
focuses on data collected during the four following periods: (1)
January 4th–17th; (2) February 7th–20th; (3) March 14th–27th,
and (4) April 18th–30th of 2010. During those short campaigns,
a total of 127 snowpits were dug across wet and dry fens and
forested and open areas. Of the 127 snowpits, 78 included IRIS
measurements [see section “InfraRed Integrating Sphere (IRIS)”];
107 included dLED (see section “dLED”) for a total 588 photos
spanning across the four measurement periods.

Snow Measurements
dLED
The dLED was developed by our group in 2009 and consists of
an enclosed box equipped of about 30 cm× 30 cm× 45 cm (first
described in Royer et al., 2017), with four LEDs mounted inside
on the side of the box (separated by 90◦) at a height of 20 cm
from the snow grain plate. They are angled at 45◦ in relation to

the snow sample s extracted from a given layer. A Nikon D1X
is mounted on top of the box and the LEDs, to take successive
pictures of the illuminated grains. The Nikon D1X has a 5.0MP
APS-C (23.7 cm× 15.5 mm) sized CCD sensor which provides a
resolution of 3008× 1960 pixels. A total of five pictures are taken:
(1) full sample with white lighting from top (Figures 1A,B); (2)
with the LED placed at azimuth 0◦ (Figure 1C); (3) LED at
azimuth 90◦ (Figure 1D); (4) LED at azimuth 180◦ (Figure 1E),
and (5) LED at azimuth 270◦ (Figure 1F).

In Figure 1, the grains are first digitized individually, then the
projected shadows in each azimuth direction are also digitized.
Once digitized, for each photo, a calibration is conducted where
the 2 mm grid is digitized as scale so that the length of each pixel
is known, to allow for any variability in the focus. Using the scale,
the program calculates the length of each “lines” of the projected
shadow in the four azimuthal directions so that the height of
the snow grain’s edge creating this shadow can be calculated.
As such, each 2D pixel from the initial grain digitized can be
associated to a height, and a 3D representation of the snow grains
is then possible. The 2D polygons are used to extract eccentricity,
minor axis, major axis, projected surface and perimeter that are
used in section “Snow Grains Analyzed,” of this paper. The 3D
reconstruction data are used to derive SSA and compared with
IRIS data in section “dLED vs. IRIS Comparison.” In both 2D and
3D cases, calculations can be done for both individual grain data,
and photo averages, which in fact corresponds to a layer average.
In order to avoid a user selection bias, all the snow grains from
each plate (i.e., samples from a given layer) were digitized so that
for the 581 photos (i.e., 581 layers), a total of 162,516 grains were
digitized (averaging 263 grains digitized/photo), from which a
sub-sample was manually selected for the 3D reconstruction. All
metric calculations were conducted using the digitized photos.
Seven snow grain metrics in total were computed:

Eccentricity
Eccentricity corresponds to the eccentricity of the ellipse that has
the same second-moments as the snow grain. It considers ratio of
the distance between the foci of the snow grain and its major axis
length. An ellipse whose eccentricity is 0 is actually a circle, while
an ellipse whose eccentricity is 1 is a line segment.

Area (mm2)
Area (mm2) computes the projected surface of the snow grain
(i.e., polygon), with respect to the photograph scale. It considers
the actual number of pixels in the snow grain polygon.

Minor axis (mm)
Minor axis (mm) corresponds to the length of the minor axis of
the ellipse that has the same normalized second central moments
as the snow grain polygon.

Major axis (mm)
Major axis (mm) corresponds to the length of the major axis of
the ellipse that has the same normalized second central moments
as the snow grain polygon.

Ratio
Ratio computed from the ratio between minor and major axes.
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FIGURE 1 | Illustration of the different steps to compute snow grain metrics from the dLED. The two photographs at the top (A,B) represent the process of selecting
a single grain, and the bottom four photographs highlight the projected shadow digitization (C–F) for a 3D reconstruction (G) of each individual grain.
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Perimeter (mm)
Perimeter (mm) computes the contour length of the
snow grain polygon.

Equivalent sphere (mm)
Equivalent sphere (mm) diameter of a circle with the same
area as the region.

With regards to the SSA retrieval precision, calibration tests
using metallic bearings/balls were conducted in a laboratory, and
mathematically, it can be demonstrated that the SSA derived from
the projected shadows is identical to the theoretical SSA for which
the rationale is presented here:

The total volume of a snow grain measured by the dLED is
in fact a half-sphere, mounted on a cylinder since the projected
shadows make abstraction of the curvature below the grain.
In our case, the height of the cylinder is equal to the radius
(r = h) with a total surface of the cylinder expressed as:
2πr2

+ 2πrh = 4πr2 if r = h. In our case, we must subtract 1
x πr2 which corresponds to the cylinder surface, located under
the sphere so that we now have 3πr2, and to add half the
sphere surface = 4πr2/2, giving a total surface = 5πr2 with an
overestimation of πr2.

For the volume, we simply add the cylinder volume to that
of half the sphere such that: cylinder volume = πr2h = πr3 if
r = h and a half sphere volume = (4/3πr3)/2 = 2/3 πr3, giving
a total volume of 5/3 πr3 with an overestimation of 1/3πr3. In
the context of SSA, the theoretical perfect sphere SSA can be
expressed by S/V = 4πr2/4/3 πr3 = 3/r; which is identical to
the SSA derived from the dLED expressed by S/V = 5πr2/5/3
πr3 = 3/r. Calibration tests using metallic sphere (steel balls from
0.8 to 4.8 mm) showed that the retrieval error (bias) on Dmax was
estimated of the order of 0.03 mm.

InfraRed Integrating Sphere (IRIS)
The InfraRed Integrating Sphere (IRIS) is a laser-based device
mounted on an integrating sphere collecting snow reflectance
data. Based on original work from Gallet et al. (2009) (after

Domine et al., 2006), who developed the first integrating sphere
system for snow grain studies, our group adapted the original
version for which details can be found in Montpetit et al. (2012).
IRIS measures reflectance (R) at 1300 nm, which can physically
be linked to SSA following the (Kokhanovsky and Zege, 2004)
such that:

Ra,λ = exp

(
−K0b

√
γλ

(
6

SSA

))
(1)

Where K0 represents the escape function set at 1.26 given the
geometry of the integrating sphere, which creates a mix of
directional/diffuse hemispherical albedo, b a shape factor set at
4.53 that corresponds to spheres that are best described in the
shortwave infrared spectrum (Picard et al., 2009) and γλ the
absorption coefficient of ice. IRIS outputs voltages measured by
a photodiode, and reflectance can be retrieved from reflectance
targets measurements at 5%, 20%, 50%, 75% and 99%. This
calibration is conducted for each snowpit (refer to Montpetit et al.
(2012) for further details on IRIS).

Distribution Analysis
The histograms for each metric were produced for all grains
considered as a whole dataset (unclassified), and separately for
each grain type: (1) DF, (2) Depth Hoar (DH), (3) Facets (F), (4)
Rounds (R), and (5) precipitation particles (PP). DF precipitation
particles (DF) are usually found near the surface where fresh
snow is broken by saltation from wind redistribution. This type
of snow grain is associated with a decrease in surface area (i.e.,
rounding), which can lead to sintering and increase in density
(Fierz et al., 2009). Depth hoar (DH) grains can be present in
various forms such as striated crystals or hollows, and are typical
of bottom snowpack layers formed by kinematic metamorphism
under a sustained temperature gradient. Facetted snow grains (F)
consist of hexagonal prisms that can be found near the surface
if they develop from PP or deeper in the snowpack at early
stages of DH development. Rounded grains (R) can also be found

TABLE 1 | Definition of frequency distribution used.

Frequency
distribution

Acronym Parameters Remarks Derived parameters

Kappa KAP ξ , α, k, h Eqs 2 and 3

Generalized
logistic
distribution

GLO ξ , α, k, h = −1 k 6= 0 For a fixed value of h, skewness
and kurtosis are function of ξ ,
α, k, and the gamma function 0

Generalized
pareto
distribution

GPA ξ , α, k, h = 1 k 6= 0

Generalized
extreme value
distribution

GEV ξ , α, k, h- > 0 k 6= 0

Generalized
normal
distribution

GN µ (mean); σ (scale); β (shape) The thickness of probability
distribution tails is measured by
kurtosis. For a normal
distribution, β = 2 and
kurtosis = 3

Pearson type III PE3 a (scale), d, p a > 0, d > 0 and p > 0 PE3 is a generalized gamma
distribution
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FIGURE 2 | L-moment ratio diagrams for the unclassified snow grain dataset (A,B) (only one point for each metric) and for classified snow grains (C,D). Classified
snow grains include one point for each category: Facets, Depth Hoar and Precipitation Particles. The lines represent theoretical relationship between the L-skewness
and L-kurtosis of known family of distributions.

within the snow cover or near the surface and are formed from
equilibrium metamorphism (within the snowpack) and by wind
redistribution (near the surface). In all cases, they correspond
to dense layers with an increase in strength. PP are found in
numerous forms, depending on the formation process in the
atmosphere driven by temperature and supersaturation levels.
Their forms include dendrites, needles, plates and columns for
which the rate of rounding will vary. For complete details on
snow grain types, please refer to the International classification
for seasonal snow on the ground (Fierz et al., 2009).

In order to select an appropriate distribution, visual
diagnostics were employed to assess the quality of the
fitting. We used among others, the four-parameter Kappa
(KAP) distribution that has been encountered for modeling
extreme hydrological values. It includes as a special case the
common three-parameter distributions: generalized extremes
values distribution (GEV), generalized logistic distribution
(GLO), and generalized pareto distribution (GPA). The other
three-parameter distributions considered are the generalized
normal distribution (GNO) and Pearson type III (PE3)
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FIGURE 3 | Snow grain metric distribution fits for all snow grains, unclassified with a total of 162,515 grains. The generalized extreme values distribution (GEV) is
best for Eccentricity. The distribution of the log transformed data generalized normal distribution (LGNO) is best for Ratio while the log transformed four-parameter
Kappa (LKAP) function fits Major/minor axis (mm), Area (mm2), and equivalent sphere (mm).
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distribution, which, respectively, extend the common log-
normal and gamma distributions with two parameters. For all
these candidate distributions, the parameterization proposed by
Hosking and Wallis (1997) is used, which includes a location and
scale parameter, as well as 1 or 2 shape parameters, depending
on the choice of the distributions. These distributions are used
directly to model the snow grain metrics at the original scale,
but also at the logarithm scale. The distribution of the log
transformed data can be converted back to the original scale,
which will be denoted, respectively, LKAP, LGEV, LGLO, LGNO,
LGPA, and LPE3. Estimation is performed using L-moments
(Greenwood et al., 1979; Hosking, 1992) and by removing 1% of
the data (0.5% at the beginning of the distribution and 0.5% at the
end) that behaves differently from the center of the distribution
and has an undesirable effect on the quality of the estimation.
Considering x to be the grain size, the cumulative distribution
function (cdf) of the Kappa distribution can be defined as:

F (x) =

{
1− h

[
1−

k (x− ξ)
α

]1/k
}1/h

(2)

where ξ (location, that control the center of the distribution;
central tendency), α (scale), k (shape 1), and h (shape 2) are
parameters. The associated quantile function is given as:

x (F) = ξ +
α

k

1−

(
1− Fh

h

)k
 (3)

The Kappa distribution is a generalization of some of the
more commonly used three-parameter distributions: for k 6=
0, the GPA, GEV, and GLO distributions are all special cases
for h = 1, h = 0 and h = –1, respectively. The cdf, quantile
function and L-moment parameter estimators for the GLO
and GEV distributions can be found in Hosking and Wallis
(1997) (Table 1).

RESULTS AND DISCUSSION

L-Moments Analysis
Figure 2 shows the L-moment ratio diagrams that compare the
sample L-skewness and L-kurtosis to their theoretical values,
which is useful to summarize their shapes. L-skewness, like
classical skewness, measures asymmetry, where a positive value
indicates a relatively heavier right tail compared to the left tail.

Similarly, L-kurtosis is a flattening measurement where higher
values correspond to relatively lower density in the center of the
distribution and heavier tails. In Figure 2, sample L-moments
are represented as dots. For all considered distributions except
Kappa, a relationship between the L-skewness and L-kurtosis
exist and takes the shape of a theoretical line as shown in Figure 2.
Dots close to this theoretical line suggest good agreement
between sample and theoretical L-moments. For example, in the
top-left panel the black cross representing the Eccentricity metric
is closer to the GEV line, which suggests this distribution as a
good fit. Also, the metrics like the Major or Minor axis in the
top-right panel are further from the lines, which suggests that a
log-kappa that is more general maybe needed. From Figure 2,
it is clear that (1) there is an appropriate distribution for each
classified snow grain and (2) the distribution of each grain metric
is similar for each classified snow grain.

Snow Grains Analyzed
The 581 photographs were classified individually by dominant
“grain type” (Fierz et al., 2009) and a total of five main classes were
identified as: (1) Defragmented/broken (DF) (12,338 grains),
(2) Depth Hoar (48,387 grains), (3) Facets (50,190 grains),
(4) Rounds (50,633 grains), and (5) PP (967 grains). The DF
grains were not used in the distribution analysis since the
grains had too much visual damage to be classified. This mainly
occurred in crusted layers where the insertion of the plate for the
photographs was difficult. In this paper, the “unclassified” snow
grain distributions correspond to the distribution analysis of the
whole dataset (i.e., 162,515 snow grains), while the “classified”
snow grain distributions correspond to the distribution analysis
based on grain type. Also, there are many types of PP (columns,
plates, dendrites and plates, hollow columns, etc.), but the
distributions presented in this paper only include dendrites and
plates and one should be careful when applying the distribution
functions to other types of PP.

Unclassified Snow Grain Distributions
A first analysis was conducted including all digitized snow grains
(i.e., 162,515 grains) so that no distinctions were made according
to grain type. Distribution histograms were produced for each
metric such as: eccentricity, area (projected surface 2D, mm2);
minor axis (mm); major axis (mm); axis ratio (major/minor);
perimeter (mm) and equivalent optical diameter (mm) and the
best distribution fits were chosen from Figures 2A,B, highlighted
in Figure 3 and summarized in Table 2.

TABLE 2 | Statistical fits summary for unclassified snow grains for the distribution of the log transformed data.

Metric Distribution Location ξ Scale α Shape1 k Shape2 h

Eccentricity GEV 0.0189 0.0044 0.6208 –

AxisMAJ LKAP −0.3468 0.7465 0.2024 0.1887

AxisMIN LKAP −0.8501 0.7275 0.1996 0.2874

Ratio LGNO −0.6073 0.7836 0.1931 –

Area LKAP −1.7171 1.4170 0.1895 0.2283

Perimeter LKAP 0.6775 0.8655 0.1941 0.2519

Eq. sphere LKAP −0.7378 0.7085 0.1895 0.2283
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FIGURE 4 | Same as Figure 3 but for all snow grains classified as “rounded” with a total of 50,633 grains.
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FIGURE 5 | Same as Figure 3 but for all snow grains classified as “facetted” with a total of 50,190 grains.
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FIGURE 6 | Same as Figure 3 but for all snow grains classified as “depth hoar” with a total of 48,387 grains.
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FIGURE 7 | Same as Figure 3 but for all snow grains classified as “precipitation particles” with a total of 967 grains.
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TABLE 3 | Statistical fits summary for classified snow grains for the distribution of the log transformed data.

Grain type Metric Distribution Location ξ Scale α Shape1 k Shape2 h

Rounded Eccentricity GEV 0.0185 0.0044 0.6077 –

Rounded AxisMAJ LKAP −0.4736 0.5963 0.2047 0.1166

Rounded AxisMIN LKAP −0.9284 0.5645 0.2118 0.2066

Rounded Ratio LGNO −0.6840 0.7718 0.2003 –

Rounded Area LKAP −1.8674 1.1353 0.2232 0.1557

Rounded Perimeter LKAP 0.5586 0.6769 0.1711 0.1622

Rounded Eq. sphere LKAP −0.8128 0.5676 0.2231 0.1553

Facets Eccentricity GEV 0.0191 0.0043 0.6311 –

Facets AxisMAJ LKAP −0.2408 0.7356 0.2454 0.1573

Facets AxisMIN LKAP −0.7789 0.7908 0.3061 0.3029

Facets Ratio LGNO −0.5776 0.7716 0.2015 –

Facets Area LKAP −1.7715 1.6936 0.3189 0.3519

Facets Perimeter LKAP 0.8100 0.8627 0.2377 0.2088

Facets Eq. sphere LKAP −0.7648 0.8466 0.3187 0.3515

Depth hoar Eccentricity GEV 0.0192 0.0044 0.6347 –

Depth hoar AxisMAJ LKAP −0.3035 0.9776 0.2958 0.3225

Depth hoar AxisMIN LKAP −0.8918 1.0103 0.2965 0.4800

Depth hoar Ratio LGNO −0.5531 0.7998 0.1849 –

Depth hoar Area LKAP −1.6937 1.8484 0.2590 0.3893

Depth hoar Perimeter LKAP 0.7171 1.0939 0.2687 0.3530

Depth hoar Eq. sphere LKAP −0.7235 0.9213 0.2577 0.3844

Precip. Part Eccentricity GEV 0.0188 0.0046 0.6248 –

Precip. Part AxisMAJ LKAP −0.2644 0.6048 0.1873 −0.0029

Precip. Part AxisMIN LKAP −0.7224 0.5067 0.1387 0.0268

Precip. Part Ratio LGNO −0.6236 0.8136 0.2073 −

Precip. Part Area LKAP −1.2569 1.0246 0.1933 −0.0048

Precip. Part Perimeter LKAP 0.7543 0.6384 0.1019 −0.0026

Precip. Part Eq. sphere LKAP −0.5076 0.5123 0.1933 −0.0049

Classified Snow Grain Distributions
As mentioned earlier, the 581 photos were classified into grain
“types.” Four classes are highlighted here where a distribution fit
was identified for each class (Figures 4–7 and Table 3).

From Figures 4–7, we compiled the average metric statistics
for the classified snow grains. The results are depicted in Table 4:

From the table above, the metamorphic processes behind
the formation of depth hoar are such that large snow grain
are found due to the upward migration of vapor following a
temperature gradient (Colbeck, 1989). Consequently, snow grain

TABLE 4 | Snow metric averages for depth hoar, facets, rounds, and
precipitation particles.

Metric Units Depth hoar Facets Rounds Precip. part

Eccentricity – 0.0198 0.0197 0.0192 0.0195

Area mm2 2.2 1.24 0.62 1.05

Axis minor mm 1.05 0.87 0.63 0.75

Axis major mm 1.78 1.46 1.02 1.27

Perimeter mm 6.24 5.13 3.4 4.34

Axis ratio – 1.73 1.7 1.62 1.67

Eq. sphere mm 1.15 0.94 0.7 0.89

eccentricity is expected to increase as snow grains get longer.
Furthermore, the area, perimeter and both minor and major
axes are expected to be larger, which is the case in Table 4.
Interestingly, the difference between facets and depth hoar is
more marked in the “size” metrics (i.e., area, perimeter, axes
and equivalent sphere) than in the shape metrics (i.e., ratio and
eccentricity). When we look at rounded grains (rounds), again
the changes in eccentricity and axis ratio are not as significant
as changes in the “size” metrics. The rounded grains are the
consequence of equilibrium metamorphism (or melt, although
not the case in this study) where the large grains are eroded by
a mass redistribution from the snow grain’s convex areas to its
concave areas with lower saturation vapor pressure values. This
process, along with significant sublimation in the absence of a
temperature gradient, will lead to small and rounder grains, in
agreement with the numbers presented in Table 4. Finally, PP
have shape metrics similar to those of depth hoar and facets. As
mentioned above, in our study, only 967 snow grains from two
photographs were identified as PP. Looking at the pictures, the PP
mainly consisted of flakes and a couple of needles that increased
the values of eccentricity and axis ratio, but of smaller size (about
50% of area, and 25% in equivalent diameter, minor and major
axes). Given what is presented, it is suggested that the size metrics
present more important changes than the shape metrics from
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FIGURE 8 | Measured SSA values compared with (A) eccentricity and (B) axis ratio computed from the dLED.

one grain type to another. However, one should note that more
precipitation particle types should be considered. Fresh particles
can consist of snowflakes, needles or columns, depending on
the atmospheric conditions in which they formed (temperature,
vapor pressure) (St-Pierre and Thériault, 2015), and considering
their shape metrics individually would greatly affect the numbers
presented in Table 4.

dLED vs. IRIS Comparison
Snow grain metrics from the dLED are compared to SSA
measurements from the IRIS system in order to evaluate if the
latter can provide information on snow grain shape. First, SSA
measurements were compared to the two “shape” metrics, namely
eccentricity and computed axis ratio (Figure 8).

The comparison between IRIS SSA measurements and
computed grain shape metrics did not show any statistically
significant correlation. The highest correlations (although not
significant) were obtained using a linear regression, with an
important scatter centered around SSA values of 10 to 15 m2/kg.
However, the decrease in either eccentricity and/or axis ratio with
increasing SSA makes sense since an eccentricity of 0 corresponds
to a perfect sphere. Therefore, for large grains such as depth hoar,
the expected eccentricity would increase, whereas SSA values are
usually very low for such grains. In our case, small eroded grains
(rounded) would also correspond to low SSA, but would have
low eccentricity. Therefore, since our dataset is mostly comprised
of both grain types, it is not surprising to see that no statistical
relationship can be found when comparing both. One should
note, however, that the high SSA values in Figure 8 correspond
to PP, which were primarily digitized as circles since the camera
resolution did not produce the level of detail needed to properly
draw the complicated contours of such grains. As a consequence,
they are associated with low eccentricity values. The statistical
fitting results are depicted in Figure 9.

The comparison between measured SSA from the IRIS and
size metrics computed from the dLED highlights stronger
correlations when compared to the shape metrics analysis from

Figure 9. The strongest correlations are found with an exponent
function, with best results obtained with minor and major axes,
where the major axis can be considered, and the geometrical
diameter (Langlois et al., 2010; maximum snow grain extent).

The 3D reconstruction allowed the retrieval of volume and
surface for the grains so that SSA could be computed. We thus
compared the computed SSA from the dLED to the IRIS in order
to see if proper SSA values could be retrieved considering that
the IRIS remains the best approach for SSA measurements on
the field. The comparison is depicted in Figure 10 for the whole
dataset, and for a measured (from IRIS) range of SSA values
between 0 and 30 m2/kg.

Results from Figure 10 suggest an underestimation of SSA
values derived from the dLED. Although statistically significant,
the relationship seems to saturate for measured SSA above
30 m2/kg. The resolution of the camera and the digitization
approach are such that high SSA snow grains (i.e., fresh
snowflakes) are thin and complex to digitize. The projected
shadows are very small so that large uncertainties can be found
with such types of grains. In Figure 10A, this can be seen for SSA
values above 30 m2/kg where no statistical relationship can be
found. When considering values in the range of measured SSA
from 0 to 30 m2/kg in Figure 10B, the correlation improves with
an R2 of 0.52. The underestimation remains, but results suggest
that for lower SSA snow grains (i.e., easier to digitize with clear
shadows), the dLED could retrieve SSA with reasonable accuracy.

DISCUSSION

Past studies have investigated the use of snow micro-photographs
to quantify various metrics (Lesaffre et al., 1998; Langlois et al.,
2007, Langlois et al., 2008; Royer et al., 2017). The purpose of
our study was not to overcome 2D techniques, but rather to
use a new technique that allows digitizing a sufficient amount
of grain to produce statistical distributions on various metrics of
interests for radiative transfer models. Past works were mainly
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FIGURE 9 | Measured SSA values compared with: Major axis, Minor axis, Perimeter, Area, and Equivalent sphere computed from the dLED.

limited by the number of grains (sample size) digitized. Digitizing
few snow grains per sample will lead to a user selection bias,
which is avoided in our context where all shapes present in
the photos are considered, and likely located in the tails of the
distribution fits presented.

One limitation for this study resides in the definition of what
constitutes a snow grain, which is a matter of ongoing debate
in the snow community. From snow grain photographs, we
must digitize snow grains as polygons, but one should note that

bonded grains were not separated manually. This would have
been necessary in refrozen crusts, or depth hoar chains, which
were not observed in our dataset from the nature of the snow
and the climate. Likely some depth hoar chains might have been
broken if present by extracting the sample, but that brings us back
to the definition of what constitutes a “grain.” This is an ongoing
debate, especially in the metamorphism and energy exchange
formulations in future snow models. This said, from a RTM
perspective, we must quantify a “scatterer”, so that the proposed
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FIGURE 10 | Comparison between specific surface area (SSA) measured with both IRIS and dLED for (A) the whole dataset and (B) measured over the value range
of 0–30 m2/kg from IRIS (considered here as the reference).
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method in this paper remains relevant. As far as identifying
the snow grains, they were manually digitized by four trained
users that were asked to digitize every polygon visible on each
photograph to avoid a “selection bias.” This represents several
months, full time for four trained people, but we believed this
was necessary to overcome limitations of past studies identified
earlier. However, the authors acknowledge that this will lead to
the digitization of broken grains but again, we are confident that
by digitizing several hundred snow grains the contribution of
broken grains will not affect the averaged metric values. Such
grains would be located in the tails of the statistical distributions,
thus not affecting the distribution types.

CONCLUSION

The work presented a very large dataset of >160,000 digitized
snow grains including depth hoar, facets, rounded, and PP.
The dataset was collected over a period of 6 months using a
new device allowing the digitization of projected snow grain
shadows under LED illumination. The use of the dLED allows
the analysis and retrieval of both shape (eccentricity, axis ratio)
and metric (area, perimeter, diameter, axis length) information.
We analyzed various distribution functions of the classified snow
grains (i.e., depth hoar, rounded, facets, and PP) and showed
that the Kappa distribution function provided the best fit to the
derived distributions from the dLED. More specifically, when
considering all the snow grains independently from the type,
the snow grain metric distributions can be explained using GEV
(eccentricity), LGNO (ratio), and LKAP (minor/major axes, area,
perimeter and equivalent sphere). When the snow grains are
classified by type, the same distribution functions are found
for each metric, but with different location, scale and shape
values provided in the Tables in section “Results and Discussion.”
This suggests that the distribution function with a snow cover
is not only grain type dependent but depends also on the
shape/metric analyzed.

The derived morphology parameters from the dLED were
compared to SSA measured by the IRIS, which was considered
as a reference in this paper. Results showed that a statistically
significant relationship can be found between IRIS SSA and
“metric” parameters, with strongest correlation with the axis
lengths. This suggests that the dLED can be used to derive snow
grain metrics but does not provide any significant information
on grain shape (other that the ability to visually identify grain
types). Furthermore, we investigated the potential in using the
dLED to derive SSA from the computed volume and surface
of the digitized 3D grains. Results showed that the dLED
SSA are underestimated compared to the IRIS values, which
can be linked to an overestimation of snow grain volume by
the dLED. Although the comparison between dLED and IRIS
SSA is statistically significant, the correlation improves when
considering a shorter range of SSA between 0 and 30 m2/kg. In
that range, the linear correlation has an R2 value of 0.52. The
dLED SSA remain underestimated, but in that range it can be
suggested that the dLED allows SSA (mostly rounds, and depth
hoar) to be derived.

This paper thus suggests distribution functions that are
reproducible, and therefore useful in RTMs. The distributions
found in this paper can be implemented in RTMs such as the
Snow Microwave Radiative Transfer model (Picard et al., 2018)
and to evaluate the improvement in simulations of brightness
temperatures and the sensitivity of scaling factors to different
snow grain metrics that could help assess the stickiness effect
on the simulation biases. Improvements to RTMs will help
improve the monitoring of snow state variables in space and
time with the coupling of such models to snow thermodynamic
models such as SNOWPACK (Langlois et al., 2012) or Crocus
(Larue et al., 2018). For instance, SWE retrievals are critical
in understanding changes in hydrological patterns at various
scales. Other potential approaches using assimilation schemes to
derive snow density with more accuracy will contribute largely
in quantifying trends in ungulates foraging conditions that are
currently endangered from snow densification (Langlois et al.,
2017; Dolant et al., 2018). This is of particular relevance with
the new MEaSUREs Calibrated Enhanced-Resolution Passive
Microwave dataset recently available at 3.125 and 6.5 km spatial
resolution (Brodzik et al., 2018), which will help produce
improved maps of snow state variables at the watershed scale.
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